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1.  quantum information, entanglement, tensors


2.  optimization problems from quantum mechanics


3.  SDP approaches


4.  analyzing LPs & SDPs using (quantum) information theory


5.  ε-nets




quantum information ≈ 
noncommutative probability


probability
 quantum

Δn = {p∈Rn, p≥0, ���
∑i pi = ||p||1 = 1}


Dn = {ρ∈Cn×n, ρ≥ 0���
trρ= ||ρ||1 = 1}


measurement


distance

= best bias


states


m∈Rn ���

0≤mi≤1

M∈Cn×n,

0 ≤ M ≤ I


“accept”
 ⟨m,p⟩
 ⟨M,ρ⟩ = tr[Mρ]
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bipartite states


product states ���
(independent)
 (p⊗q)ij = pi qj
 (ρ⊗σ)ij,kl = ρi,k σj,l


local���
measurement


m⊗1n or 1n⊗m
 M⊗In or In⊗M


marginal

state


pi
(1) = ∑j pij  


pj
(2) = ∑i pij


ρi,j
(1) = tr2ρ= ∑k ρik,jk


ρi,j
(2) = tr1ρ= ∑k ρki,kj


probability
 quantum


separable states���
(not entangled)


conv{p⊗q} = Δn2 



(never entangled)


Sep =conv{p⊗σ} ⊊ Dn2 



(sometimes entangled)




entanglement and optimization


Definition: ρ is separable (i.e. not entangled)

if it can be written as

ρ = ∑i pi vi vi

* ⊗ wi wi
* 


probability���
distribution
 unit vectors


Weak membership problem: Given ρ and the promise that ���
ρ∈Sep or ρ is far from Sep, determine which is the case.


Sep = conv{vv* ⊗ ww*}

     = conv{ρ⊗σ}


=


Optimization: hSep(M) := max { tr[Mρ] : ρ∈Sep }




complexity of hSep

Equivalent to: [H, Montanaro ‘10] 

•  computing ||T||inj := maxx,y,z |⟨T, x⊗y⊗z⟩|

•  computing ||A||2->4 := maxx ||Ax||4 / ||x||2

•  computing ||T||2->op := maxx ||∑ixiTi||op

•  maximizing degree-4 polys over unit sphere

•  maximizing degree-O(1) polys over unit sphere


hSep(M) ± 0.1 ||M||op at least as hard as

•  planted clique                          [Brubaker, Vempala ‘09]

•  3-SAT[log2(n) / polyloglog(n)]         [H, Montanaro ‘10] 


hSep(M) ± 100 hSep(M) at least as hard as

•  small-set expansion [Barak, Brandão, H, Kelner, Steurer, Zhou ‘12] 


hSep(M) ± ||M||op / poly(n) at least as hard as

•  3-SAT[n]          [Gurvits ‘03], [Le Gall, Nakagawa, Nishimura ‘12]




multipartite states

n d-dimensional systems à dn dimensions���
This explains:


•  power of quantum computers

•  difficulty of classically simulating q mechanics


Can also interpret as 2n-index tensors.


ρ


tr3ρ


ρ


tr[Mρ]


M
 ρ
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i3


j1
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local Hamiltonians

Definition: k-local operators are linear combinations of

{A1 ⊗ A2 ⊗ ... ⊗ An : at most k positions have Ai ≠ I.}



intuition: Diagonal case = k-CSPs = degree-k polys


Local Hamiltonian problem:

Given k-local H, find λmin(H) = minρ tr[Hρ].


QMA-complete to estimate to accuracy ||H|| / poly(n).

qPCP conjecture:  ... or with error ε||H||


QMA vs NP: ���
do low-energy states have good classical descriptions?




kagome antiferromagnet


Herbertsmithite

ZnCu3(OH)6Cl2




quantum marginal problem

Local Hamiltonian problem:

Given l-local H, find λmin(H) = minρ tr[Hρ].


Write H = ∑|S|≤l HS with HS acting on systems S.

Then tr[Hρ] = ∑|S|≤l tr[HSρ

(S)].


O(nl)-dim convex optimization:

min ∑|S|≤l tr[HSρ

(S)]

such that {ρ(S)}|S|≤l are compatible.


QMA-complete���
to check


O(nk)-dim relaxation:  (k≥l)

min ∑|S|≤l tr[HSρ

(S)]

such that {ρ(S)}|S|≤k are locally compatible.




Other Hamiltonian problems

Properties of ground state:

i.e. estimate tr[Aρ] for ρ = argmin tr[Hρ]


reduces to estimating λmin(H + μA)


#P-complete, but some special cases are easier


Non-zero temperature:

Estimate log tr e-H and derivatives


(Noiseless) time evolution:

Estimate matrix elements of eiH


BQP-complete




SOS hierarchies for q info

1.  Goal: approximate Sep ���

Relaxation: k-extendable + PPT (positive partial transpose)


2.  Goal: λmin for Hamiltonian on n qudits���
Relaxation: L : k-local observables à R ���
such that L[X*X] ≥ 0 for all k/2-local X. 


3.  Goal: supρ,{A},{B} s.t. ...  ∑xy cxy⟨ρ, Ax ⊗ By⟩���
Relaxation: L : products of ≤k operators à R ���
such that L[p*p] ≥ 0 ∀noncommutative poly p of deg ≤ k/2, ���
 and operators on different parties commute.���
���
Non-commutative positivstellensatz [Helton-McCullough ‘04]




1. SOS hierarchies for Sep


SepProdR = conv{xxT ⊗ xxT : ||x||2=1, x∈Rn}


relaxation [Doherty, Parrilo, Spedalieri ’03]

σ∈Dnk is a fully symmetric tensor

ρ=tr3...k[σ]


σ
 =
 σ


Other versions use

less symmetry.���
e.g. k-ext + PPT




2. SOS hierarchies for λmin

exact convex optimization: (hard)

min ∑|S|≤k tr[HSρ

(S)]

such that {ρ(S)}|S|≤k are compatible.


equivalent: 

min ∑|S|≤k L[HS] s.t.

∃ρ ∀ k-local X, L[X] = tr[ρX]


relaxation: 

min ∑|S|≤k L[HS] s.t.

L[X*X] ≥ 0 for all k/2-local X ���
L[I]=1




classical analogue of Sep

quadratic optimization over simplex

max {⟨Q, p⊗p⟩ : p∈Δn} = hconv{p⊗p} (Q)


If Q=A, then max = 1 – 1 / clique#.


relaxation: ���
q∈Δnk symmetric (aka “exchangeable”)

π = q(1,2)


convergence:  [Diaconis, Freedman ‘80], [de Klerk, Laurent, Parrilo ‘06]

dist(π, conv{p⊗p}) ≤ O(1/k)

à error ||Q||∞ / k in time nO(k)




 Nash equilibria

Non-cooperative games: ���
Players choose strategies pA ∈ Δm, pB ∈ Δn.���
Receive values ⟨VA, pA ⊗ pB⟩ and ⟨VB, pA ⊗ pB⟩.



Nash equilibrium: neither player can improve own value���
ε-approximate Nash: cannot improve value by > ε


Correlated equilibria: ���
Players follow joint strategy pAB ∈ Δmn.���
Receive values ⟨VA, pAB⟩ and ⟨VB, pAB⟩.���
Cannot improve value by unilateral change.���


•  Can find in poly(m,n) time with LP.

•  Nash equilibrium = correlated equilibrum with p = pA ⊗ pB




finding (approximate) Nash eq

Known complexity: ���
Finding exact Nash eq. is PPAD complete.���
Optimizing over exact Nash eq is NP-complete.���
���
Algorithm for ε-approx Nash in time exp(log(m)log(n)/ε2)���
based on enumerating over nets for Δm, Δn.���
Planted clique and 3-SAT[log2(n)] reduce to optimizing 
over ε-approx Nash.


New result: Another algorithm for finding ���
ε-approximate Nash with the same run-time.



(uses k-extendable distributions)


[Lipton, Markakis, Mehta ‘03], [Hazan-Krauthgamer ’11], [Braverman, Ko, Weinstein ‘14]




algorithm for approx Nash

Search over���
such that the A:Bi marginal is a correlated equilibrium���
conditioned on any values for B1, …, Bi-1.


pAB1...Bk 2 �mnk

LP, so runs in time poly(mnk)


Claim: Most conditional distributions are ≈ product.���
���
Proof: 

log(m) ≥ H(A) ≥ I(A:B1...Bk) = ∑1≤i≤k I(A:Bi|B<i)���
 𝔼i I(A:Bi|B<i) ≤ log(m)/k =: ε2 ���i I(A:Bi|B<i) ≤ log(m)/k =: ε2 ���
∴ k = log(m)/ε2 suffices.




SOS results for hSep


doesn’t match hardness

Thm: If M =∑i Ai ⊗Bi with ∑i |Ai| ≤ I, each |Bi| ≤ I, then ���
hSep(n,2)(M) ≤ hk-ext(M) ≤ hSep(n,2)(M) + c (log(n)/k)1/2


bipartite


[Brandão, Christandl, Yard ’10], [Yang ’06], [Brandão, H ’12], [Li, Winter ‘12] 


Sep(n,m) = conv{ρ1 ⊗ ... ⊗ ρm : ρm ∈ Dn}

SepSym(n,m) = conv{ρ⊗m : ρ ∈ Dn}


X

i

|A(j)
i |  I

[Brandão, H ’12], [Li, Smith ’14]


Thm: 

ε-approx to hSepSym(n,m)(M) in time exp(m2 log2(n)/ε2).

ε-approx to hSep(n,m)(M) in time exp(m3 log2(n)/ε2).


multipartite

M =

X

i1,...,im

ci1,...,imA(1)
i1

⌦ · · ·⌦A(m)
im

|ci1,...,im |  1

≈matches Chen-Drucker hardness




SOS results for λmin

H = E(i,j)∈E Hi,j acts on (Cd)⊗n such that

•  each ||Hi,j|| ≤ 1

•  |V| = n

•  (V,E) is regular

•  adjacency matrix has ≤r eigenvalues ≥poly(ε/d)


Theorem

λmin(H) ≈ε hSep(d,n)(H)

and can compute this to error ε���
with  r∙poly(d/ε) rounds of SOS,

i.e. time nr∙poly(d/ε).


[Brandão-H, ’13] based on [Barak, Raghavendra, Steurer ‘11]




net-based algorithms

M =∑i∈[m] Ai ⊗Bi with ∑i Ai ≤ I, each |Bi| ≤ I, Ai ≥ 0

hierarchies estimate hSep(M) ±ε in time exp(log2(n)/ε2)


hSep(M) = maxα,βtr[M(α⊗β)] = maxp∈S ||p||B

S = {p : ∃α s.t. pi = tr[Aiα]} ⊆Δm

||x||B = ||∑i xi Bi||op


Lemma: ∀p∈Δm ∃q k-sparse (each qi = integer / k)���
||p-q||B ≤ c(log(n)/k)1/2.   Pf: matrix Chernoff [Ahlswede-Winter]


Performance

k ≃ log(n)/ε2, m=poly(n)

run-time

O(mk) = exp(log2(n)/ε2) 


Algorithm: Enumerate over k-sparse q

•  check whether ∃p∈S, ||p-q||B ≤ε

•  if so, compute ||q||B




nets for Banach spaces

X:A->B ���
||X||A->B = sup ||Xa||B / ||a||A                          operator norm

||X||A->C->B = min {||Z||A->C ||Y||C->B : X=YZ} factorization norm


Let A,B be arbitrary.  C = l1m 

Only changes are sparsification (cannot assume m≤poly(n))

and operator Chernoff for B.


result: 

estimated in time exp(T2(B)2 log(m)/ε2)


kXkA!B ± ✏kXkA!`m1 !B

Type 2 constant: T2(B) is smallest λ such that



E✏1,...,✏n2{±1}

�����

nX

1=1

✏iZi

�����

2

B

 �2
nX

1=1

kZik2B



ε-nets vs. SOS

Problem
 ε-nets
 SOS/info theory

maxp∈Δ pTAp




KLP ‘06
 DF ’80���
KLP ‘06


approx Nash




LMM ‘03
 H. ‘14


free games
 AIM ‘14
 Brandão-H ‘13


hSep
 Shi-Wu ‘11 ���
Brandão-H ‘14


BCY ‘10���
Brandão-H ’12���
BKS ‘13




questions / references

"   Application to 2->4 norm and small-set expansion.


"   Matching quasipolynomial algorithms and hardness.


"   simulating noisy/low-entanglement dynamics


"   conditions under which Hamiltonians are easy to simulate


"   Relation between hierarchies and nets


"   Meaning of low quantum conditional mutual information


Hardness/connections
 1001.0017

Relation to 2->4 norm, SSE
 1205.4484

SOS for hSep
 1210.6367

SOS for λmin
 1310.0017





