quantum information and convex optimization

Aram Harrow (MIT)

Simons Institute 25.9.2014

outline

1. quantum information, entanglement, tensors
2. optimization problems from quantum mechanics
3. SDP approaches
4. analyzing LPs \& SDPs using (quantum) information theory
5. ε-nets

quantum information \approx noncommutative probability

First pants,
Your shoes
probability

$$
\begin{array}{ll}
\Delta_{n}=\left\{p \in \mathbb{R}^{n}, p \geq 0,\right. & D_{n}=\left\{\rho \in \mathbb{C}^{n \times n}, \rho \geq 0\right. \\
\left.\Sigma_{i} p_{i}=\|p\|_{1}=1\right\} & \left.\operatorname{tr} \rho=\|\rho\|_{1}=1\right\}
\end{array}
$$

states
measurement $m \in \mathbb{R}^{n}$
$0 \leq m_{i} \leq 1$
"accept"
$\langle m, p\rangle$
$\frac{1}{2}\|p-q\|_{1}$

bipartite states

probability

quantum

$$
(p \otimes q)_{i j}=p_{i} q_{j} \quad(\rho \otimes \sigma)_{i j, k l}=\rho_{i, k} \sigma_{j, l}
$$

$$
m \otimes 1_{n} \text { or } 1_{n} \otimes m
$$

$$
M \otimes I_{n} \text { or } I_{n} \otimes M
$$ measurement

marginal state
$p_{i}^{(1)}=\Sigma_{j} p_{i j}$
$p_{j}^{(2)}=\Sigma_{i} p_{i j}$
$\rho_{\mathrm{i}, \mathrm{j}}^{(1)}=\operatorname{tr}_{2} \rho=\Sigma_{\mathrm{k}} \rho_{\mathrm{ik}, \mathrm{jk}}$
$\rho_{i, j}{ }^{(2)}=\operatorname{tr}_{1} \rho=\Sigma_{k} \rho_{k i, k j}$
separable states (not entangled)
conv\{p®q\} $=\Delta_{n 2}$
(never entangled)

Sep $=c o n v\{p \otimes \sigma\} \subsetneq D_{n z}$
(sometimes entangled)

entanglement and optimization

Definition: ρ is separable (i.e not entangled) if it can be written as $\rho=\Sigma_{i} p_{i} v_{i} v_{i}^{*} \otimes w_{i} w_{i}^{*}$

$$
\begin{aligned}
\text { Sep } & =\operatorname{conv}\left\{v v^{*} \otimes w w^{*}\right\} \\
& =\operatorname{conv}\{\rho \otimes \sigma\} \\
& =
\end{aligned}
$$

probability distribution unit vectors

Weak membership problem: Given ρ and the promise that $\rho \in$ Sep or ρ is far from Sep, determine which is the case.

Optimization: $h_{\text {Sep }}(M):=\max \{\operatorname{tr}[M \rho]: \rho \in \operatorname{Sep}\}$

complexity of $h_{\text {sep }}$

Equivalent to: [H , Montanaro '10]

- computing $\|T\|_{\text {inj }}:=\max _{x, y, z}\left|\left\langle T, x^{\otimes} y \otimes z\right\rangle\right|$
- computing $\|A\|_{2 \rightarrow 4}:=\max _{x}\|A x\|_{4} /\|x\|_{2}$
- computing $\|T\|_{2->o p}:=\max _{x}\left\|\Sigma_{i} x_{i} T_{i}\right\|_{\text {op }}$
- maximizing degree-4 polys over unit sphere
- maximizing degree-O(1) polys over unit sphere
$h_{\text {sep }}(M) \pm 0.1\|M\|_{\text {op }}$ at least as hard as
- planted clique
- 3-SAT[$\left.\log ^{2}(n) / p o l y \log \log (n)\right]$
[Brubaker, Vempala '09]
$h_{\text {sep }}(M) \pm 100 h_{\text {sep }}(M)$ at least as hard as
- small-set expansion [Barak, Brandão, H, Kelner, Steurer, Zhou '12]
$h_{\text {sep }}(M) \pm\|M\|_{\text {op }} /$ poly (n) at least as hard as
- 3-SAT[n] [Gurvits '03], [Le Gall, Nakagawa, Nishimura '12]

multipartite states

n d-dimensional systems $\rightarrow \mathrm{d}^{\mathrm{n}}$ dimensions
This explains:

- power of quantum computers
- difficulty of classically simulating q mechanics

Can also interpret as $2 n$-index tensors.

local Hamiltonians

Definition: k-local operators are linear combinations of $\left\{A_{1} \otimes A_{2} \otimes \ldots \otimes A_{n}\right.$: at most k positions have $\left.A_{i} \neq I.\right\}$
intuition: Diagonal case $=k-$ CSPs $=$ degree $-k$ polys
Local Hamiltonian problem:
Given k-local H, find $\lambda_{\text {min }}(H)=\min _{\rho} \operatorname{tr}[H \rho]$.
QMA-complete to estimate to accuracy \|H\|\| / poly(n). qPCP conjecture: ... or with error $\varepsilon\|H\|$

QMA vs NP: do low-energy states have good classical descriptions?

kagome antiferromagnet

$\mathrm{ZnCu}_{3}(\mathrm{OH})_{6} \mathrm{Cl}_{2}$

Herbertsmithite

Spin-Liquid Ground State of the $S=1 / 2$ Kagome Heisenberg Antiferromagnet

Simeng Yan, ${ }^{1}$ David A. Huse, ${ }^{2,3}$ Steven R. White ${ }^{1 *}$
We use the density matrix renormalization group to perform accurate calculations of the ground state of the nearest-neighbor quantum spin $S=1 / 2$ Heisenberg antiferromagnet on the kagome lattice. We study this model on numerous long cylinders with circumferences up to 12 lattice spacings. Through a combination of very-low-energy and small finite-size effects, our results provide strong evidence that, for the infinite two-dimensional system, the ground state of this model is a fully gapped spin liquid.

> W
> e consider the quantum $\operatorname{spin} S=1 / 2$ kagome Heisenberg antiferromagnet (KHA) with only nearest-neighbor isotropic exchange interactions (Hamiltonian $H=\Sigma S_{\mathrm{i}} \cdot S_{\mathrm{j}}$, where S_{i} and S_{j} are the spin operators for sites i and j, respectively) on a kagome
lattice (Fig. 1A). This frustrated spin system has long been thought to be an ideal candidate for a simple, physically realistic model that shows a spin-liquid ground state ($1-3$). A spin liquid is a magnetic system that has "melted" in its ground state because of quantum fluctuations, so it has
no spontaneously broken symmetries (4). A key problem in searching for spin liquids in two dimensional (2D) models is that there are no exact or nearly exact analytical or computational methods to solve infinite 2D quantum lattice systems. For 1D systems, the density matrix renormalization group (DMRG) (5,0), the method we use here, serves in this capacity. In addition to its interest as an important topic in quantum magnetism, the search for spin liquids thus serves as a test-bed for the development of accurate and widely applicable computational methods for 2D many-body quantum systems.

[^0]
quantum marginal problem

Local Hamiltonian problem:
Given l-local H, find $\lambda_{\min }(H)=\min _{\rho} \operatorname{tr}[H \rho]$.

Write $H=\Sigma_{|s| \leq 1} H_{s}$ with H_{s} acting on systems S. Then $\operatorname{tr}[H \rho]=\Sigma_{|s| \leq \mid} \operatorname{tr}\left[H_{s} \rho^{(s)}\right]$.
$O\left(n^{\mathrm{l}}\right)$-dim convex optimization: $\min \Sigma_{|\mathrm{s}| \leq \mid} \operatorname{tr}\left[H_{\mathrm{s}} \rho^{(\mathrm{s})}\right]$

QMA-complete to check such that $\left\{\rho^{(S)}\right\}_{|s| \leq 1}$ are compatible.
$O\left(n^{k}\right)$-dim relaxation: $(k \geq l)$
$\min \Sigma_{|\mathrm{s}| \leq 1} \operatorname{tr}\left[H_{\mathrm{s}} \rho^{(\mathrm{s})}\right]$
such that $\left\{\rho^{(s)}\right\}_{|S| \leq k}$ are locally compatible.

Other Hamiltonian problems

Properties of ground state:
i.e. estimate $\operatorname{tr}[A \rho]$ for $\rho=\operatorname{argmin} \operatorname{tr}[H \rho]$
reduces to estimating $\lambda_{\min }(H+\mu \mathrm{A})$
Non-zero temperature:
Estimate log tr e^{-H} and derivatives
\#P-complete, but some special cases are easier
(Noiseless) time evolution:
Estimate matrix elements of $e^{i H}$
BQP-complete

SOS hierarchies for q info

1. Goal: approximate Sep

Relaxation: k-extendable + PPT (positive partial transpose)
2. Goal: $\lambda_{\text {min }}$ for Hamiltonian on n qudits Relaxation: L: k-local observables $\rightarrow \mathbb{R}$ such that $L\left[X^{*} X\right] \geq 0$ for all $k / 2$-local X.

Relaxation: L: products of $\leq k$ operators $\rightarrow \mathbb{R}$
such that $L\left[p^{*} p\right] \geq 0$ noncommutative poly p of $\operatorname{deg} \leq k / 2$, and operators on different parties commute.

Non-commutative positivstellensatz [Helton-McCullough `04]

1. SOS hierarchies for Sep

SepProdR $=\operatorname{conv}\left\{x x^{\top} \otimes x x^{\top}:\|x\|_{2}=1, x \in \mathbb{R}^{n}\right\}$
relaxation [Doherty, Parrilo, Spedalieri '03] $\sigma \in D_{n k}$ is a fully symmetric tensor $\rho=\operatorname{tr}_{3 \ldots k}[\sigma]$

Other versions use
 less symmetry. e.g. K-ext + PPT

2. SOS hierarchies for $\lambda_{\min }$

exact convex optimization: (hard)
$\min \Sigma_{|S| \leq k} \operatorname{tr}\left[H_{S} \rho^{(\mathrm{s})}\right]$
such that $\left\{\rho^{(s)}\right\}_{|s| \leq k}$ are compatible.
equivalent:
$\min \Sigma_{|s| \leq k} L\left[H_{s}\right]$ s.t.
$\exists \rho \forall \mathrm{k}$-local $\mathrm{X}, \mathrm{L}[\mathrm{X}]=\operatorname{tr}[\rho \mathrm{X}]$
relaxation:
$\min \Sigma_{|s| \leq k} L\left[H_{s}\right]$ s.t.
$L\left[X^{*} X\right] \geq 0$ for all $k / 2$-local X
$\mathrm{L}[\mathrm{I}]=1$

classical analogue of Sep

quadratic optimization over simplex
$\max \left\{\langle Q, p \otimes p\rangle: p \in \Delta_{n}\right\}=h_{\text {conv\{p } \otimes\}}(Q)$
If $Q=A$, then $\max =1-1 /$ clique\#.
relaxation:
$q \in \Delta_{n k}$ symmetric (aka "exchangeable")
$\pi=q^{(1,2)}$

Convergence: [Diaconis, Freedman '80], [de Klerk, Laurent, Parrilo '06] $\operatorname{dist}(\pi, \operatorname{conv}\{p \otimes p\}) \leq O(1 / k)$
\rightarrow error $\|Q\|_{\infty} / k$ in time $n^{O(k)}$

Nash equilibria

Non-cooperative games:

Players choose strategies $p^{A} \in \Delta_{m^{\prime}} p^{B} \in \Delta_{n}$.
Receive values $\left\langle V_{A^{\prime}} p^{A} \otimes p^{B}\right\rangle$ and $\left\langle V_{B^{\prime}} p^{A} \otimes p^{B}\right\rangle$.
Nash equilibrium: neither player can improve own value ε-approximate Nash: cannot improve value by $>\varepsilon$

Correlated equilibria:
Players follow joint strategy $P^{A B} \in \Delta_{m n}$.
Receive values $\left\langle V_{A}, p^{A B}\right\rangle$ and $\left\langle V_{B}, P^{A B}\right\rangle$.
Cannot improve value by unilateral change.

- Can find in poly(m, n) time with LP.
- Nash equilibrium $=$ correlated equilibrum with $p=p^{A} \otimes p^{B}$

finding (approximate) Nash eq

Known complexity:
Finding exact Nash eq. is PPAD complete.
Optimizing over exact Nash eq is NP-complete.

Algorithm for ε-approx Nash in time $\exp \left(\log (m) \log (n) / \varepsilon^{2}\right)$ based on enumerating over nets for Δ_{m}, Δ_{n}. Planted clique and $3-S A T\left[\log ^{2}(n)\right]$ reduce to optimizing over ε-approx Nash.
[Lipton, Markakis, Mehta '03], [Hazan-Krauthgamer '11], [Braverman, Ko, Weinstein '14]

New result: Another algorithm for finding ε-approximate Nash with the same run-time.
(uses k-extendable distributions)

algorithm for approx Nash

Search over $p^{A B_{1} \ldots B_{k}} \in \Delta_{m n^{k}}$ such that the $A: B_{i}$ marginal is a correlated equilibrium conditioned on any values for $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{i}-1}$.

LP, so runs in time poly(mnk

Claim: Most conditional distributions are \approx product.
Proof:
$\log (m) \geq H(A) \geq I\left(A: B_{1} \ldots B_{k}\right)=\sum_{1 \text { sisk }} I\left(A: B_{i} \mid B_{i j}\right)$
$\mathbb{E}_{\mathrm{i}} \mathrm{I}\left(\mathrm{A}: \mathrm{B}_{\mathrm{i}} \mid \mathrm{B}_{\mathrm{c}}\right) \leq \log (\mathrm{m}) / \mathrm{k}=: \varepsilon^{2}$
$\therefore k=\log (m) / \varepsilon^{2}$ suffices.

SOS results for $h_{\text {sep }}$

$\operatorname{Sep}(\mathrm{n}, \mathrm{m})=\operatorname{conv}\left\{\rho_{1} \otimes \ldots \otimes \rho_{\mathrm{m}}: \rho_{\mathrm{m}} \in \mathrm{D}_{\mathrm{n}}\right\}$
$\operatorname{SepSym}(n, m)=\operatorname{conv}\left\{\rho^{\otimes m}: \rho \in D_{n}\right\}$
bipartite
doesn't match hardness
Thm: If $M=\Sigma_{i} A_{i} \otimes B_{i}$ with $\Sigma_{i}\left|A_{i}\right| \leq I$, each $\left|B_{i}\right| \leq I$, then $h_{\text {sep }(n, 2)}(M) \leq h_{k-\operatorname{ext}}(M) \leq h_{\operatorname{sep}(n, 2)}(M)+c(\log (n) / k)^{1 / 2}$
[Brandão, Christandl, Yard '10], [Yang '06], [Brandão, H '12], [Li, Winter '12] multipartite

$$
M=\sum_{i_{1}, \ldots, i_{m}} c_{i_{1}, \ldots, i_{m}} A_{i_{1}}^{(1)} \otimes \cdots \otimes A_{i_{m}}^{(m)} \quad \sum_{i}\left|A_{i}^{(j)}\right| \leq I \quad\left|c_{i_{1}, \ldots, i_{m}}\right| \leq 1
$$

Thy:
ε-approx to $h_{\text {SepSym }(n, m)}(M)$ in time $\exp \left(m^{2} \log ^{2}(n) / \varepsilon^{2}\right)$, ε-approx to $h_{\text {sep }(n, m)}(M)$ in time $\exp \left(m^{3} \log ^{2}(n) / \varepsilon^{2}\right)$.
[Brandão, H'12], [Li, Smith '14]

SOS results for $\lambda_{\min }$

$H=\mathbb{E}_{(i, j) \in E} H_{i, j}$ acts on $\left(\mathbb{C}^{d}\right)^{\text {on }}$ such that

- each $\left\|H_{i, j}\right\| \leq 1$
- $|V|=n$
- (V, E) is regular
- adjacency matrix has $\leq r$ eigenvalues $\geq p o l y(\varepsilon / d)$

Theorem
$\lambda_{\min }(H) \approx_{\varepsilon} h_{\operatorname{sep}(d, n)}(H)$
and can compute this to error ε with r-poly $(d / \varepsilon$) rounds of SOS, i.e. time n^{r}.poly (d / ε).
[Brandão-H, '13] based on [Barak, Raghavendra, Steurer '11]

net-based algorithms

$M=\sum_{i \in[m]} A_{i} \otimes B_{i}$ with $\Sigma_{i} A_{i} \leq I$, each $\left|B_{i}\right| \leq I, A_{i} \geq 0$ hierarchies estimate $h_{\text {sep }}(M) \pm \varepsilon$ in time $\exp \left(\log ^{2}(n) / \varepsilon^{2}\right)$

$$
\begin{aligned}
& h_{\text {Sep }}(M)=\max _{\alpha, \beta} \operatorname{tr}[M(\alpha \otimes \beta)]=\max _{p \in S}\|p\|_{B} \\
& S=\left\{p: \exists \alpha \alpha \text { st. } p_{i}=\operatorname{tr}\left[A_{i} \alpha\right]\right\} \subseteq \Delta_{m} \\
& \|x\|_{B}=\left\|\Sigma_{i} x_{i} B_{i}\right\|_{o p}
\end{aligned}
$$

Lemma: $\forall p \in \Delta_{m} \exists q k$-sparse (each $q_{i}=$ integer $/ \mathrm{k}$) $\|p-q\|_{B} \leq c(\log (n) / k)^{1 / 2}$. Pf: matrix Chernoff [Ahlswede-Winter]

Algorithm: Enumerate over k-sparse q - check whether $\exists p \in S,\|p-q\|_{B} \leq \varepsilon$

- if so, compute $\|q\|_{B}$

Performance
$k \simeq \log (n) / \varepsilon^{2}, m=\operatorname{poly}(n)$
run-time
$O\left(m^{k}\right)=\exp \left(\log ^{2}(n) / \varepsilon^{2}\right)$

nets for Banach spaces

$$
X: A->B
$$

$\|X\|_{A \rightarrow B}=\sup \|X a\|_{B} /\|a\|_{A} \quad$ operator norm $\|X\|_{A->C \rightarrow B}=\min \left\{\|Z\|_{A->C}\|Y\|_{C \rightarrow B}: X=Y Z\right\}$ factorization norm

Let A, B be arbitrary. $C=I_{1}^{m}$
Only changes are sparsification (cannot assume mspoly(n)) and operator Chernoff for B.

Type 2 constant: $T_{2}(B)$ is smallest λ such that

$$
\mathbb{E}_{\epsilon_{1}, \ldots, \epsilon_{n} \in\{ \pm 1\}}\left\|\sum_{1=1}^{n} \epsilon_{i} Z_{i}\right\|_{B}^{2} \leq \lambda^{2} \sum_{1=1}^{n}\left\|Z_{i}\right\|_{B}^{2}
$$

result: $\|X\|_{A \rightarrow B} \pm \epsilon\|X\|_{A \rightarrow \ell_{1}^{m} \rightarrow B}$ estimated in time $\exp \left(T_{2}(B)^{2} \log (m) / \varepsilon^{2}\right)$

ε-nets vs. SOS

Problem	ε-nets	SOS/info theory
max $_{p \in \Delta} P^{\top} A p$	KLP '06	DF '80 KLP '06
approx Nash	LMM '03	H. '14
free games	AIM '14	Brandão-H '13
$h_{\text {Sep }}$	Shi-Wu '11 Brandão-H '14	BCY '10 Brandão-H '12 BKS '13

questions / references

(8) Application to $2->4$ norm and small-set expansion.
(8) Matching quasipolynomial algorithms and hardness.
© simulating noisy/low-entanglement dynamics
© conditions under which Hamiltonians are easy to simulate
(8) Relation between hierarchies and nets
© Meaning of low quantum conditional mutual information

Hardness/connections	1001.0017
Relation to $2->4$ norm, SSE	1205.4484
SOS for $h_{\text {Sep }}$	1210.6367
SOS for $\lambda_{\text {min }}$	1310.0017

[^0]: Department of Physics and Astronomy, University of California, Irvine, CA 92617, USA. ${ }^{2}$ Department of Physics, Princeton University, Princeton, N] 08544, USA. ${ }^{3}$ Institute or Advanced Study, Princeton, NJ 08540, USA.
 To whom correspondence should be addressed. E-mail: srwhite@uci.edu

