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Quantum mechanics



QM has also explained:


•  the stability of atoms


•  the photoelectric effect


•  everything else we’ve looked at



c1
�5(ec2/� � 1)

Classical theory (1900): const / ¸4���

Quantum theory (1900 – 1924): 



Blackbody radiation paradox: ���
How much power does a hot object emit at wavelength ¸?



Bose-Einstein condensate (1995)





Difficulties of quantum 
mechanics



  Heisenberg’s uncertainty principle



  Topological effects



  Entanglement



Exponential complexity:���
 Simulating N objects ���
requires effort »exp(N)





The doctrine of quantum 
information



  Abstract away physics to device-independent 
fundamentals: “qubits”



  operational rather than foundational statements: ���
Not “what is quantum information” but “what can we do 
with quantum information.”





Product and entangled states


state of


system A



state of���
system B



The power of [quantum] computers


One qubit ´ 2 dimensions


n qubits ´ 2n dimensions



↵0|0i+ ↵1|1i �0|0i+ �1|1i

Entanglement


“Not product” := “entangled”���
cf. correlated random variables



e.g. 

 |00i+ |11ip
2

6= |↵i ⌦ |�i

product joint state of A and B



↵0�0|00i+ ↵0�1|01i+ ↵1�0|10i+ ↵1�1|11i
|00i := |0i ⌦ |0i etc.



⨂





[quantum] ���
entanglement



[classical] 
correlation



vs.



Make comparable using density matrices



|00ih00|+ |11ih11|+ |00ih11|+ |11ih00|
2

| ih | =
| i = |00i+ |11ip

2

Entangled state



By contrast, a random mixture of |00i and |11i is



|00ih00|+ |11ih11|
2

Correlated state



How to distinguish?  off-diagonal elements not enough





when is a mixed state 
entangled?



Definition: ρ is separable (i.e. not entangled)


if it can be written as



⇢ =
X

i

pi|↵iih↵i|⌦ |�iih�i|

probability���
distribution

 unit vectors



Difficulty: This is hard to check.



Heuristic: All separable states are PPT (Positive under Partial Transpose).���
Problem: So are some entangled states.



∈conv{|α⟩⟨α| ⊗ |β⟩⟨β|}



S



conv(S)





Why care about Sep testing?



1. validate experiment

 Creating entanglement is a major experimental���
challenge.  Even after doing tomography on the���
created states, how do we know we have 
succeeded?






2. understand noise and 
error correction



How much noise will ruin entanglement?  How 
can we guard against this?  Need good 
characterizations of entanglement to answer.



3. other q. info tasks

 Sep testing is equivalent to many tasks without 
obvious connections, such as communication 
rates of q. channels. [H.-Montanaro, 1001.0017]



4. relation to optimization 
and simulation



described later (see also 1001.0017)





limits on entanglement testing


Detecting pure-state entanglement is easy, so ���
detecting mixed-state entanglement is hard



[H-Montanaro, ���
1001.0017]



1.  Given                       , how close is |ψ⟩ to a ���
state of the form |α1⟩⨂|α2⟩⨂…⨂|αN⟩?



2.  With one copy of |ψ⟩ this is impossible to estimate.���
We give a simple test that works for two copies.



3.  Combine this with


a)  [Aaronson-Beigi-Drucker-Fefferman-Shor 0804.0802]


b)  a widely believed assumption (the “exponential time hypothesis”)


c)  other connecting tissue (see our paper)



to prove that testing whether a d-dimensional state is approximately���
separable requires time ≥ dlog(d).  





4. This rules out any simple heuristic (e.g. checking eigenvalues).



| i 2 (Cd)⌦N



CHSH game



Alice

 Bob



a∊{0,1}

 b∊{0,1}



Goal: xy = (-1)ab



a

 b x,y 

0 0 same 

0 1 same 

1 0 same 

1 1 different 

Max win probability is 3/4. Randomness doesn’t help.



shared ���
strategy



x2{-1,1}

 y2{-1,1}





When

 Bob measures


b=0



b=1



When

 Alice measures


a=0



a=1



CHSH with entanglement


Alice and Bob share state



x=-1



x=1



x=-1



x=1



y=-1



y=1



y=1



y=-1



win prob ���
cos2(π/8)���
≈ 0.854 



|00i+ |11ip
2

Based on inputs a,b they choose measurement angles.


Measurement outcomes determine outputs x,y.





CHSH with entanglement


a=0���
x=-1



b=0���
y=-1

 a=1



x=-1



b=1 ���
y=1



b=1 ���
y=-1



a=0


x=1



b=0


y=1



a=1


x=1



Why it works ���
Winning pairs


are at angle π/8���



Losing pairs ���
are at angle 3π/8���
���
∴ Pr[win]=cos2(π/8)



goal: xy=(-1)ab





games measure entanglement



Alice

 Bob



a∊{0,1}

 b∊{0,1}



ρ



x2{-1,1}

 y2{-1,1}



ρ separable à Pr[win] ≤ 3/4





conversely, Pr[win] – 3/4 is a measure of entanglement.





Monogamy of entanglement



Alice

 Bob

 Charlie



a∊{0,1}



max Pr[AB win] + Pr[AC win] = ���
max Pr[xy = (-1)ab] + Pr[xz = (-1)ac] ���
     < 2 cos2(π/8)



b∊{0,1}

 c∊{0,1}



x∊{-1,1}

 y∊{-1,1}

 z∊{-1,1}



why?  If AB win often, then B is like a “hidden variable” for AC.





shareability implies separability



Intuition: Measuring B2, …, Bk leaves A,B1 nearly separable



A



a



x



B1



b1



y1



B2



b2



y2



…

 Bk



bk



yk



Pr[AB1 win] + . . .+ Pr[ABk win]

k
 3

4
+

cp
k

CHSH



any game


Pr[AB1 win] + . . .+ Pr[ABk win]

k
 classical value + c

r
logmin(dimA, |X|)

k

Proof uses information theory: [Brandão-H., 1210.6367, 1310.0017]


1. conditional mutual information shows game values monogamous


2. other tools show “advantage in non-local games” ≈ “entanglement”





proof sketch


outcome distribution is p(x,y1,…,yk|a,b1,…,bk)



case 1 ���
p(x,y1|a,b1) ≈���
p(x|a) ⋅p(y1|b1)



case 2 ���
p(x,y2|y1,a,b1,b2)


has less mutual���
information





less sketchy proof sketch



log |X| � I(X : Y1, . . . , Yk)

= I(X : Y1) + I(X : Y2|Y1) + . . .+ I(X : Yk|Y1, . . . , Yk�1)

∴ for some j we have 

I(X : Yj |Y1, . . . , Yj�1) 
log |X|

k

Y1, …, Yj-1 constitute a “hidden variable” which we can ���
condition on to leave X,Yj nearly decoupled.



Trace norm bound follows from Pinsker’s inequality.





what about the inputs?


log |X| � max

b1,...,bk
I(X : Y1, . . . , Yk|A, b1, . . . , bk)

= max

b1,...,bk�1

(I(X : Y1|A, b1) + I(X : Y2|A, b1, b2, Y1) + . . .+

I(X : Yk�1|A, b1, . . . , bk�1, Y1, . . . , Yk�2)+

max

bk
I(X : Yk|A, b1, . . . , bk, Y1, . . . , Yk�1)

◆

Apply Pinsker here to show that this is


& || p(X,Yk | A,bk) – LHV ||12 ������

then repeat for Yk-1, …, Y1





A hierachy of tests for 
entanglement



separable = ���
∞-extendable���





100-extendable



all quantum states (= 1-extendable)


2-extendable



Algorithms: Can search/optimize over k-extendable states in time dO(k).



Question: How close are k-extendable states to separable states?



Definition: ρAB is k-extendable if there exists an extension ���
                       with                        for each i.

⇢AB = ⇢ABi

⇢AB1...Bk



application #1:���
mean-field approximation



used in limit of high coordination number, e.g.



1-D



2-D



3-D



∞-D



Bethe


lattice





mean-field ≅ product states


mean-field ansatz for homogenous systems:      |α⟩⊗N



for inhomogenous systems:        |α1⟩⨂|α2⟩⨂…⨂|αN⟩






Result: Controlled approximation to ground-state energy with no 
homogeneity assumptions based only on coordination number.                                
[Brandão-H. 1310.0017]



 

Application: “No low-energy trivial states” conjecture 
[Freedman-Hastings] states that there exist Hamiltonians 
where all low-energy states have topological order. 
 ∴ This can only be possible with low coordination number.





application #2: optimization


Given a Hermitian matrix M:


•  maxα hα| M |αi is easy


•  maxα,β hα⨂β| M |α⨂βi is hard



B1

 B2

 B3

 B4



A



MAB1

MAB2 MAB3
MAB4

Approximate with

max

 
h |M

AB1
+ · · ·+MABk

k
| i

Computational effort: 
dO(k)






Key question: ���
approximation error as 
a function of k and d



 

connections to:


•  polynomial opt.


•  unique games ���

conjecture





speculative application: ���
simulating lightly-entangled���

quantum systems


Original motivation for quantum computing [Feynman ’82]



Nature isn't classical, dammit, and if 
you want to make a simulation of 

Nature, you'd better make it 
quantum mechanical, and by golly 

it's a wonderful problem, because it 
doesn't look so easy.



modern translation: Unentangled quantum systems can be simulated���
classically but in general we need quantum computers for this.





low-entanglement simulation



classically���
simulatable

 supports���

universal���
quantum���
computing



supports���
universal���
classical���
computing



?


degree of entanglement



≈0.1ns single-qubit Rabi oscillations ���
≈2.5ns decoherence time


≈10µs computation time



Open question: ���
Are there good 

classical simulations���
of lightly-entangled���
quantum systems?



Idea: model k-body���
reduced density matrices


where k scales with���
entanglement.  cf. results���
for ground states in 1310.0017.
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