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Quantum mechanics


QM has also explained:

•  the stability of atoms

•  the photoelectric effect

•  everything else we’ve looked at


c1
�5(ec2/� � 1)

Classical theory (1900): const / ¸4���

Quantum theory (1900 – 1924): 


Blackbody radiation paradox: ���
How much power does a hot object emit at wavelength ¸?


Bose-Einstein condensate (1995)




Difficulties of quantum 
mechanics


  Heisenberg’s uncertainty principle


  Topological effects


  Entanglement


Exponential complexity:���
 Simulating N objects ���
requires effort »exp(N)




The doctrine of quantum 
information


  Abstract away physics to device-independent 
fundamentals: “qubits”


  operational rather than foundational statements: ���
Not “what is quantum information” but “what can we do 
with quantum information.”




Product and entangled states

state of

system A


state of���
system B


The power of [quantum] computers

One qubit ´ 2 dimensions

n qubits ´ 2n dimensions


↵0|0i+ ↵1|1i �0|0i+ �1|1i

Entanglement

“Not product” := “entangled”���
cf. correlated random variables


e.g. 
 |00i+ |11ip
2

6= |↵i ⌦ |�i

product joint state of A and B


↵0�0|00i+ ↵0�1|01i+ ↵1�0|10i+ ↵1�1|11i
|00i := |0i ⌦ |0i etc.


⨂




[quantum] ���
entanglement


[classical] 
correlation


vs.


Make comparable using density matrices


|00ih00|+ |11ih11|+ |00ih11|+ |11ih00|
2

| ih | =
| i = |00i+ |11ip

2

Entangled state


By contrast, a random mixture of |00i and |11i is


|00ih00|+ |11ih11|
2

Correlated state


How to distinguish?  off-diagonal elements not enough




when is a mixed state 
entangled?


Definition: ρ is separable (i.e. not entangled)

if it can be written as


⇢ =
X

i

pi|↵iih↵i|⌦ |�iih�i|

probability���
distribution
 unit vectors


Difficulty: This is hard to check.


Heuristic: All separable states are PPT (Positive under Partial Transpose).���
Problem: So are some entangled states.


∈conv{|α⟩⟨α| ⊗ |β⟩⟨β|}


S


conv(S)




Why care about Sep testing?


1. validate experiment
 Creating entanglement is a major experimental���
challenge.  Even after doing tomography on the���
created states, how do we know we have 
succeeded?




2. understand noise and 
error correction


How much noise will ruin entanglement?  How 
can we guard against this?  Need good 
characterizations of entanglement to answer.


3. other q. info tasks
 Sep testing is equivalent to many tasks without 
obvious connections, such as communication 
rates of q. channels. [H.-Montanaro, 1001.0017]


4. relation to optimization 
and simulation


described later (see also 1001.0017)




limits on entanglement testing

Detecting pure-state entanglement is easy, so ���
detecting mixed-state entanglement is hard


[H-Montanaro, ���
1001.0017]


1.  Given                       , how close is |ψ⟩ to a ���
state of the form |α1⟩⨂|α2⟩⨂…⨂|αN⟩?


2.  With one copy of |ψ⟩ this is impossible to estimate.���
We give a simple test that works for two copies.


3.  Combine this with

a)  [Aaronson-Beigi-Drucker-Fefferman-Shor 0804.0802]

b)  a widely believed assumption (the “exponential time hypothesis”)

c)  other connecting tissue (see our paper)


to prove that testing whether a d-dimensional state is approximately���
separable requires time ≥ dlog(d).  



4. This rules out any simple heuristic (e.g. checking eigenvalues).


| i 2 (Cd)⌦N



CHSH game


Alice
 Bob


a∊{0,1}
 b∊{0,1}


Goal: xy = (-1)ab


a
 b x,y 

0 0 same 

0 1 same 

1 0 same 

1 1 different 

Max win probability is 3/4. Randomness doesn’t help.


shared ���
strategy


x2{-1,1}
 y2{-1,1}




When
 Bob measures

b=0


b=1


When
 Alice measures

a=0


a=1


CHSH with entanglement

Alice and Bob share state


x=-1


x=1


x=-1


x=1


y=-1


y=1


y=1


y=-1


win prob ���
cos2(π/8)���
≈ 0.854 


|00i+ |11ip
2

Based on inputs a,b they choose measurement angles.

Measurement outcomes determine outputs x,y.




CHSH with entanglement

a=0���
x=-1


b=0���
y=-1
 a=1


x=-1


b=1 ���
y=1


b=1 ���
y=-1


a=0

x=1


b=0

y=1


a=1

x=1


Why it works ���
Winning pairs

are at angle π/8���


Losing pairs ���
are at angle 3π/8���
���
∴ Pr[win]=cos2(π/8)


goal: xy=(-1)ab




games measure entanglement


Alice
 Bob


a∊{0,1}
 b∊{0,1}


ρ


x2{-1,1}
 y2{-1,1}


ρ separable à Pr[win] ≤ 3/4



conversely, Pr[win] – 3/4 is a measure of entanglement.




Monogamy of entanglement


Alice
 Bob
 Charlie


a∊{0,1}


max Pr[AB win] + Pr[AC win] = ���
max Pr[xy = (-1)ab] + Pr[xz = (-1)ac] ���
     < 2 cos2(π/8)


b∊{0,1}
 c∊{0,1}


x∊{-1,1}
 y∊{-1,1}
 z∊{-1,1}


why?  If AB win often, then B is like a “hidden variable” for AC.




shareability implies separability


Intuition: Measuring B2, …, Bk leaves A,B1 nearly separable


A


a


x


B1


b1


y1


B2


b2


y2


…
 Bk


bk


yk


Pr[AB1 win] + . . .+ Pr[ABk win]

k
 3

4
+

cp
k

CHSH


any game

Pr[AB1 win] + . . .+ Pr[ABk win]

k
 classical value + c

r
logmin(dimA, |X|)

k

Proof uses information theory: [Brandão-H., 1210.6367, 1310.0017]

1. conditional mutual information shows game values monogamous

2. other tools show “advantage in non-local games” ≈ “entanglement”




proof sketch

outcome distribution is p(x,y1,…,yk|a,b1,…,bk)


case 1 ���
p(x,y1|a,b1) ≈���
p(x|a) ⋅p(y1|b1)


case 2 ���
p(x,y2|y1,a,b1,b2)

has less mutual���
information




less sketchy proof sketch


log |X| � I(X : Y1, . . . , Yk)

= I(X : Y1) + I(X : Y2|Y1) + . . .+ I(X : Yk|Y1, . . . , Yk�1)

∴ for some j we have 
I(X : Yj |Y1, . . . , Yj�1) 
log |X|

k

Y1, …, Yj-1 constitute a “hidden variable” which we can ���
condition on to leave X,Yj nearly decoupled.


Trace norm bound follows from Pinsker’s inequality.




what about the inputs?

log |X| � max

b1,...,bk
I(X : Y1, . . . , Yk|A, b1, . . . , bk)

= max

b1,...,bk�1

(I(X : Y1|A, b1) + I(X : Y2|A, b1, b2, Y1) + . . .+

I(X : Yk�1|A, b1, . . . , bk�1, Y1, . . . , Yk�2)+

max

bk
I(X : Yk|A, b1, . . . , bk, Y1, . . . , Yk�1)

◆

Apply Pinsker here to show that this is

& || p(X,Yk | A,bk) – LHV ||12 ������

then repeat for Yk-1, …, Y1




A hierachy of tests for 
entanglement


separable = ���
∞-extendable���




100-extendable


all quantum states (= 1-extendable)

2-extendable


Algorithms: Can search/optimize over k-extendable states in time dO(k).


Question: How close are k-extendable states to separable states?


Definition: ρAB is k-extendable if there exists an extension ���
                       with                        for each i.
⇢AB = ⇢ABi

⇢AB1...Bk



application #1:���
mean-field approximation


used in limit of high coordination number, e.g.


1-D


2-D


3-D


∞-D


Bethe

lattice




mean-field ≅ product states

mean-field ansatz for homogenous systems:      |α⟩⊗N


for inhomogenous systems:        |α1⟩⨂|α2⟩⨂…⨂|αN⟩




Result: Controlled approximation to ground-state energy with no 
homogeneity assumptions based only on coordination number.                                
[Brandão-H. 1310.0017]


 

Application: “No low-energy trivial states” conjecture 
[Freedman-Hastings] states that there exist Hamiltonians 
where all low-energy states have topological order. 
 ∴ This can only be possible with low coordination number.




application #2: optimization

Given a Hermitian matrix M:

•  maxα hα| M |αi is easy

•  maxα,β hα⨂β| M |α⨂βi is hard


B1
 B2
 B3
 B4


A


MAB1

MAB2 MAB3
MAB4

Approximate with
max

 
h |M

AB1
+ · · ·+MABk

k
| i

Computational effort: 
dO(k)




Key question: ���
approximation error as 
a function of k and d


 

connections to:

•  polynomial opt.

•  unique games ���

conjecture




speculative application: ���
simulating lightly-entangled���

quantum systems

Original motivation for quantum computing [Feynman ’82]


Nature isn't classical, dammit, and if 
you want to make a simulation of 

Nature, you'd better make it 
quantum mechanical, and by golly 

it's a wonderful problem, because it 
doesn't look so easy.


modern translation: Unentangled quantum systems can be simulated���
classically but in general we need quantum computers for this.




low-entanglement simulation


classically���
simulatable
 supports���

universal���
quantum���
computing


supports���
universal���
classical���
computing


?

degree of entanglement


≈0.1ns single-qubit Rabi oscillations ���
≈2.5ns decoherence time

≈10µs computation time


Open question: ���
Are there good 

classical simulations���
of lightly-entangled���
quantum systems?


Idea: model k-body���
reduced density matrices

where k scales with���
entanglement.  cf. results���
for ground states in 1310.0017.
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