monogamy of nonsignalling correlations

Aram Harrow (MIT)
Simons Institute, 27 Feb 2014

based on joint work with Fernando Brandão (UCL) arXiv:1210.6367 $+\varepsilon$ unpublished

"correlations"

(multipartite conditional probability distributions)

why study boxes?

Foundational: considering theories more general than quantum mechanics (e.g. Bell's Theorem)

Operational: behavior of quantum states under local measurement (e.g. this work)

Computational: corresponds to constraint-satisfaction problems and multi-prover proof systems.

why non-signalling?

Foundational: minimal assumption for plausible theory

Operational: yields well-defined "partial trace"

$$
p(x \mid a):=\Sigma_{y} p(x, y \mid a, b) \text { for any choice of } b
$$

Computational: yields efficient linear program

the dual picture: games

Non-local games:
Inputs chosen according to $\mu(a, b)$
Payoff function is $V(x, y \mid a, b)$
The value of a game using strategy p is $\Sigma_{x, y, a, b} p(x, y \mid a, b) \mu(a, b) \vee(x, y \mid a, b)$.

Complexity:
classical (local or LHV) value is NP-hard quantum value has unknown complexity non-signalling value in P due to linear programming

monogamy

$p(x, y \mid a, b)$ is k-extendable if there exists a NS box $q\left(x, y_{1}, \ldots, y_{k} \mid a, b_{1}, \ldots, b_{k}\right)$ with $q\left(x, y_{i} \mid a, b_{i}\right)=p\left(x, y_{i} \mid a, b_{i}\right)$ for each i

LHV correlations can be infinitely shared.
This is an alternate definition.
Applications

1. Non-shareability \cong secrecy
can be certified by Bell tests
2. Gives a hierarchy of approximations for LHV correlations running in time poly $\left(|X||Y|^{k}|A||B|^{k}\right)$
3. de Finetti theorems (i.e. k-extendable states \approx separable)

results

Theorem 1: If p is k-extendable and μ is a distribution on A, then there exists $q \in L H V$ such that $\max _{b} \underset{a \sim \mu}{\mathbb{E}}\|p(X, Y \mid a, b)-q(X, Y \mid a, b)\|_{1} \leq \sqrt{\frac{2 \ln |X|}{k}}$
cf. Terhal-Doherty-Schwab quant-ph/0210053 If $k \geq|B|$ then $p \in L H V$.

Theorem 2: If $p\left(x_{1}, \ldots, x_{k} \mid a_{1}, \ldots, a_{k}\right)$ is symmetric, $0<n<k$, and $\mu=\mu_{1} \otimes \ldots \otimes \mu_{k}$ then $\exists \nu$ such that

$$
\underset{a_{1}, \ldots, a_{n} \sim \mu}{\mathbb{E}}\left\|p\left(X_{1}, \ldots, X_{n} \mid a_{1}, \ldots, a_{n}\right)-\underset{q \sim \nu}{\mathbb{E}} q\left(X_{1} \mid a_{1}\right) \cdots q\left(X_{n} \mid a_{n}\right)\right\|_{1} \leq \sqrt{\frac{2 n^{2} \ln |X|}{k-n}}
$$

proof idea of thm 1

consider extension $p\left(x, y_{1}, \ldots, y_{k} \mid a, b_{1}, \ldots, b_{k}\right)$

case 2
$p\left(x, y_{2} \mid y_{1}, a, b_{1}, b_{2}\right)$ has less mutual information

proof sketch of thm 1

$$
\begin{aligned}
\log |X| & \geq I\left(X: Y_{1}, \ldots, Y_{k}\right) \\
& =I\left(X: Y_{1}\right)+I\left(X: Y_{2} \mid Y_{1}\right)+\ldots+I\left(X: Y_{k} \mid Y_{1}, \ldots, Y_{k-1}\right)
\end{aligned}
$$

\therefore for some j we have $I\left(X: Y_{j} \mid Y_{1}, \ldots, Y_{j-1}\right) \leq \frac{\log |X|}{k}$
Y_{1}, \ldots, Y_{j-1} constitute a "hidden variable" which we can condition on to leave X, Y_{j} nearly decoupled.

Trace norm bound follows from Pinsker's inequality.

what about the inputs?

$$
\begin{aligned}
\log |X| \geq & \max _{b_{1}, \ldots, b_{k}} I\left(X: Y_{1}, \ldots, Y_{k} \mid A, b_{1}, \ldots, b_{k}\right) \\
= & \max _{b_{1}, \ldots, b_{k-1}}\left(I\left(X: Y_{1} \mid A, b_{1}\right)+I\left(X: Y_{2} \mid A, b_{1}, b_{2}, Y_{1}\right)+\ldots+\right. \\
& I\left(X: Y_{k-1} \mid A, b_{1}, \ldots, b_{k-1}, Y_{1}, \ldots, Y_{k-2}\right)+ \\
& \left.\max _{b_{k}} I\left(X: Y_{k} \mid A, b_{1}, \ldots, b_{k}, Y_{1}, \ldots, Y_{k-1}\right)\right)
\end{aligned}
$$

Apply Pinsker here to show that this is
$\gtrsim\left\|p\left(X, Y_{k} \mid A, b_{k}\right)-L H V\right\|_{1}{ }^{2}$
then repeat for Y_{k-1}, \ldots, Y_{1}

interlude: Nash equilibria

Non-cooperative games:

Players choose strategies $p^{A} \in \Delta_{m^{\prime}} p^{B} \in \Delta_{n}$.
Receive values $\left\langle V_{A^{\prime}} p^{A} \otimes p^{B}\right\rangle$ and $\left\langle V_{B}, p^{A} \otimes p^{B}\right\rangle$.
Nash equilibrium: neither player can improve own value ε-approximate Nash: cannot improve value by $>\varepsilon$

Correlated equilibria:
Players follow joint strategy $p^{A B} \in \Delta_{m n}$.
Receive values $\left\langle V_{A}, p^{A B}\right\rangle$ and $\left\langle V_{B}, p^{A B}\right\rangle$.
Cannot improve value by unilateral change.

- Can find in poly(m, n) time with linear programming (LP).
- Nash equilibrium = correlated equilibrum with $p=p^{A} \otimes p^{B}$

finding (approximate) Nash eq

Known complexity:
Finding exact Nash eq. is PPAD complete. Optimizing over exact Nash eq is NP-complete.

Algorithm for ε-approx Nash in time $\exp \left(\log (m) \log (n) / \varepsilon^{2}\right)$ based on enumerating over nets for Δ_{m}, Δ_{n}. Planted clique reduces to optimizing over ε-approx Nash.

New result: Another algorithm for finding ε-approximate Nash with the same run-time.
(uses k-extendable distributions)

algorithm for approx Nash

Search over $p^{A B_{1} \ldots B_{k}} \in \Delta_{m n^{k}}$ such that the $A: B_{i}$ marginal is a correlated equilibrium conditioned on any values for $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{i}-1}$.

LP, so runs in time poly(mnk

Claim: Most conditional distributions are \approx product.
Proof: $\mathbb{E}_{i} \mathrm{I}\left(\mathrm{A}: \mathrm{B}_{\mathrm{i}} \mid \mathrm{B}_{\mathrm{c}}\right) \leq \log (\mathrm{m}) / \mathrm{k}$.
$\therefore k=\log (m) / \varepsilon^{2}$ suffices.

application: free games

free games: $\mu=\mu_{A} \otimes \mu_{B}$
Corollary:
The classical value of a free game can be approximated by optimizing over k -extendable non-signaling strategies.
run-time is polynomial in $|X||A| \exp \left(\frac{\log (|X|) \log (|B||Y|)}{\epsilon^{2}}\right)$
(independently proved by Aaronson, Impagliazzo, Moshkovitz)
Corollary:
From known hardness results for free games, implies that estimating the value of entangled games with $\sqrt{ } n$ players and answer alphabets of size $\exp (\sqrt{ } n)$ is at least as hard as 3-SAT instances of length n .

application: de Finetti theorems for local measurements

Theorem 1^{\prime} : If $\rho^{A B}$ is k-extendable and μ is a distribution over quantum operations mapping A to A^{\prime}, then there exists a separable state σ such that
$\max _{M_{B}} \underset{M_{A} \sim \mu}{\mathbb{E}}\left\|\left(M_{A} \otimes M_{B}\right)(\rho-\sigma)\right\|_{1} \leq \sqrt{\frac{2 \ln \left|A^{\prime}\right|}{k}}$

Theorem 2^{\prime} : If ρ is a symmetric state on $A_{1} \ldots A_{k}$ then there exists a measure ν on single-particle states such that

$$
\max _{M_{2}, \ldots, M_{n}} \|\left(\mathrm{id} \otimes M_{2} \otimes \ldots \otimes M_{n}\right)\left(\rho^{A_{1} \ldots A_{n}}-\underset{\sigma \sim \nu}{\mathbb{E}} \sigma^{\otimes n} \|_{1} \leq \sqrt{\frac{2 n^{2} \ln |A|}{k-n}}\right.
$$

improvements on Brandão-Christandl-Yard 1010.1750

1) A' dependence. 2) multipartite. 3) explicit. 4) simpler proof

ε-nets vs. info theory

\begin{tabular}{|c|c|c|}
\hline Problem \& ε-nets \& info theory

\hline approx Nash
$$
\max _{p \in \Delta} p^{\top} A p
$$ \& LMM `03 \& H. 14

\hline free games \& AIM '14 \& Brandão-H ${ }^{\text {'13 }}$

\hline \[
$$
\begin{aligned}
& \max _{\rho \in \text { Sep }} \operatorname{tr}[M \rho] \\
& Q M A(2)
\end{aligned}
$$

\] \& | Shi-Wu '11 |
| :--- |
| Brandão '14 | \& | BCY '10 |
| :--- |
| Brandão-H '12 |
| BKS '13 |

\hline
\end{tabular}

general games?

Theorem 1: If p is k-extendable and μ is a distribution on A, then there exists $\mathrm{q} \in \mathrm{LHV}$ such that $\max _{b} \underset{a \sim \mu}{\mathbb{E}}\|p(X, Y \mid a, b)-q(X, Y \mid a, b)\|_{1} \leq \sqrt{\frac{2 \ln |X|}{k}}$

Can we remove the dependence of q on μ ?

Conjecture?: $\mathrm{p} \in \mathrm{k}-\mathrm{ext} \rightarrow \exists \mathrm{q} \in \mathrm{LHV}$ such that

$$
\max _{a, b}\|p(X, Y \mid a, b)-q(X, Y \mid a, b)\|_{1} \leq \sqrt{\frac{2 \ln |X|}{k}}
$$

would imply that non-signalling games (in P) can be used to approximate the classical value of games (NP-hard)

general quantum games

Conjecture: If $\rho^{A B}$ is k-extendable, then there exists a separable state σ such that

$$
\max _{M_{A}: A \rightarrow X} \max _{M_{B}: B \rightarrow Y}\left\|\left(M_{A} \otimes M_{B}\right)(\rho-\sigma)\right\|_{1} \leq \sqrt{\frac{2 \ln |X|}{k}}
$$

Would yield alternate proofs of recent results of Vidick:

- NP-hardness of entangled quantum games with 4 players
- NEXP \subseteq MIP*

Proof would require strategies that work for quantum states but not general non-signalling distributions.

application: BellQMA(m)

3-SAT on n variables is believed to require a proof of size $\Omega(n)$ bits or qubits according to the ETH (Exp. Time Hypothesis)

Chen-Drucker 1011.0716 (building on Aaronson et al 0804.0802) gave a 3-SAT proof using $m=n^{1 / 2}$ polylog(n) states each with $O(\log (n))$ qubits (promised to be not entangled with each other).

Verifier uses local measurements and classical post-processing.

Our Theorem 2' can simulate this with a $\mathrm{m}^{2} \log (\mathrm{n})$-qubit proof. Implies $m \geq(n / \log (n))^{1 / 2}$ or else ETH is false.

other applications

© tomography
Can do "pretty good tomography" on symmetric states instead of on product states.
© polynomial optimization using SDP hierarchies Can optimize certain polynomials over n-dim hypersphere using $O(\log n)$ rounds.
Suggests route to algorithms for unique games and small-set expansion.
(8) multi-partite separability testing can efficiently estimate 1-LOCC distance to Sep

open questions

1. Switch quantifiers and find a separable approximation (a) independent of the distribution on measurements (b) with error depending on the size of the output.
2. We know the non-signalling version of this is false. Can we find a simple counter-example?
3. Can one proof of size $O\left(m^{2}\right)$ simulate two proofs of size m ? i.e. is $\mathrm{QMA}=\mathrm{QMA}(2)$?
4. Better de Finetti theorems, perhaps combining with the exponential de Finetti theorems or the post-selection principle.
5. Unify ε-nets and information theory approaches.
