monogamy of nonsignalling correlations

Aram Harrow (MIT) Simons Institute, 27 Feb 2014

based on joint work with Fernando Brandão (UCL) arXiv:1210.6367 + εunpublished

local	$p(x,y a,b) = q_A(x a) q_B(y b)$
LHV (local hidden variable)	$p(x,y a,b) = \Sigma_r \pi(r) q_A(x a,r) q_B(y b,r)$
quantum	$\begin{array}{l} p(x,y a,b) = \langle \psi \ A^{a}_{x} \otimes B^{b}_{y} \ \psi \rangle \\ \text{with } \Sigma_{x} \ A^{a}_{x} = \Sigma_{y} \ B^{b}_{y} = \mathbf{I} \end{array}$
non-signalling	$\begin{split} \boldsymbol{\Sigma}_{y} & \boldsymbol{p}(\boldsymbol{x}, \boldsymbol{y} \boldsymbol{a}, \boldsymbol{b}) = \boldsymbol{\Sigma}_{y} & \boldsymbol{p}(\boldsymbol{x}, \boldsymbol{y} \boldsymbol{a}, \boldsymbol{b}') \\ \boldsymbol{\Sigma}_{x} & \boldsymbol{p}(\boldsymbol{x}, \boldsymbol{y} \boldsymbol{a}, \boldsymbol{b}) = \boldsymbol{\Sigma}_{x} & \boldsymbol{p}(\boldsymbol{x}, \boldsymbol{y} \boldsymbol{a}', \boldsymbol{b}) \end{split}$

why study boxes?

Foundational: considering theories more general than quantum mechanics (e.g. Bell's Theorem)

Operational: behavior of quantum states under local measurement (e.g. this work)

Computational: corresponds to constraint-satisfaction problems and multi-prover proof systems.

why non-signalling?

Foundational: minimal assumption for plausible theory

Operational: yields well-defined "partial trace" $p(x|a) := \Sigma_y p(x,y|a,b)$ for any choice of b

Computational: yields efficient linear program

the dual picture: games

<u>Non-local games:</u>

Inputs chosen according to $\mu(a,b)$ Payoff function is V(x,y|a,b)The value of a game using strategy p is $\sum_{x,y,a,b} p(x,y|a,b) \mu(a,b) V(x,y|a,b).$

<u>Complexity:</u> classical (local or LHV) value is NP-hard quantum value has unknown complexity non-signalling value in P due to linear programming

monogamy

p(x,y|a,b) is k-extendable if there exists a NS box $q(x,y_1,...,y_k|a,b_1,...,b_k)$ with $q(x,y_i|a,b_i) = p(x,y_i|a,b_i)$ for each i

LHV correlations can be infinitely shared. This is an alternate definition.

<u>Applications</u>

 Non-shareability ≅ secrecy can be certified by Bell tests

2. Gives a hierarchy of approximations for LHV correlations running in time poly(|X| |Y|^k |A| |B|^k)

3. de Finetti theorems (i.e. k-extendable states \approx separable)

results

Theorem 1: If **p** is k-extendable and μ is a distribution on A, then there exists $q \in LHV$ such that $\max_{b} \mathbb{E}_{a \sim \mu} \| p(X, Y | a, b) - q(X, Y | a, b) \|_1 \leq \sqrt{\frac{2 \ln |X|}{k}}$

cf. Terhal-Doherty-Schwab quant-ph/0210053 If $k \ge |B|$ then $p \in LHV$.

Theorem 2: If $p(x_1,...,x_k|a_1,...,a_k)$ is symmetric, O<n<k, and $\mu = \mu_1 \otimes ... \otimes \mu_k$ then $\exists \nu$ such that

 $\mathbb{E}_{a_1,\dots,a_n \sim \mu} \| p(X_1,\dots,X_n | a_1,\dots,a_n) - \mathbb{E}_{q \sim \nu} q(X_1 | a_1) \cdots q(X_n | a_n) \|_1 \le \sqrt{\frac{2n^2 \ln |X|}{k-n}}$

 $\dots \leq \frac{n^2|A|}{l_2}$

cf. Christandl–Toner 0712.0916 with q independent of μ

proof idea of thm 1

consider extension $p(x,y_1,...,y_k|a,b_1,...,b_k)$

<u>case 1</u> p(x,y₁|a,b₁) ≈ p(x|a) · p(y₁|b₁)

"C'mon, c'mon - it's either one or the other."

<u>case 2</u> p(x,y₂|y₁,a,b₁,b₂) has less mutual information

proof sketch of thm 1

 $\log |X| \ge I(X : Y_1, \dots, Y_k)$ = $I(X : Y_1) + I(X : Y_2|Y_1) + \dots + I(X : Y_k|Y_1, \dots, Y_{k-1})$

. for some j we have $I(X:Y_j|Y_1,\ldots,Y_{j-1}) \leq \frac{\log |X|}{k}$

 Y_1 , ..., Y_{j-1} constitute a "hidden variable" which we can condition on to leave X, Y_i nearly decoupled.

Trace norm bound follows from Pinsker's inequality.

what about the inputs?

$$\log |X| \ge \max_{b_1, \dots, b_k} I(X : Y_1, \dots, Y_k | A, b_1, \dots, b_k)$$

=
$$\max_{b_1, \dots, b_{k-1}} (I(X : Y_1 | A, b_1) + I(X : Y_2 | A, b_1, b_2, Y_1) + \dots + I(X : Y_{k-1} | A, b_1, \dots, b_{k-1}, Y_1, \dots, Y_{k-2}) + I(X : Y_k | A, b_1, \dots, b_k, Y_1, \dots, Y_{k-1})$$

Apply Pinsker here to show that this is $\gtrsim || p(X,Y_k \mid A,b_k) - LHV ||_1^2$

then repeat for Y_{k-1} , ..., Y_1

interlude: Nash equilibria

<u>Non-cooperative games:</u> Players choose strategies $p^A \in \Delta_m$, $p^B \in \Delta_n$. Receive values $\langle V_A, p^A \otimes p^B \rangle$ and $\langle V_B, p^A \otimes p^B \rangle$.

Nash equilibrium: neither player can improve own value ε -approximate Nash: cannot improve value by > ε

<u>Correlated equilibria:</u> Players follow joint strategy $p^{AB} \in \Delta_{mn}$. Receive values $\langle V_{A'}, p^{AB} \rangle$ and $\langle V_{B'}, p^{AB} \rangle$.

Cannot improve value by unilateral change.

• Can find in poly(m,n) time with linear programming (LP).

• Nash equilibrium = correlated equilibrum with $p = p^A \otimes p^B$

finding (approximate) Nash eq

<u>Known complexity:</u> Finding exact Nash eq. is PPAD complete. Optimizing over exact Nash eq is NP-complete.

Algorithm for ε -approx Nash in time $\exp(\log(m)\log(n)/\varepsilon^2)$ based on enumerating over nets for Δ_m , Δ_n . Planted clique reduces to optimizing over ε -approx Nash.

<u>New result</u>: Another algorithm for finding ε -approximate Nash with the same run-time.

(uses k-extendable distributions)

algorithm for approx Nash

Search over $p^{AB_1...B_k} \in \Delta_{mn^k}$ such that the A:B_i marginal is a correlated equilibrium conditioned on any values for B₁, ..., B_{i-1}.

LP, so runs in time poly(mn^k)

<u>Claim</u>: Most conditional distributions are \approx product.

<u>Proof</u>: $\mathbb{E}_i I(A:B_i|B_{<i}) \le \log(m)/k$. $k = \log(m)/\varepsilon^2$ suffices.

application: free games

free games: $\mu = \mu_A \otimes \mu_B$

Corollary:

The classical value of a free game can be approximated by optimizing over k-extendable non-signaling strategies.

run-time is polynomial in $|X||A|\exp\left(rac{\log(|X|)\log(|B||Y|)}{\epsilon^2}
ight)$

(independently proved by Aaronson, Impagliazzo, Moshkovitz)

Corollary:

From known hardness results for free games, implies that estimating the value of entangled games with \sqrt{n} players and answer alphabets of size $\exp(\sqrt{n})$ is at least as hard as 3-SAT instances of length n.

application: de Finetti theorems for local measurements

Theorem 1': If ρ^{AB} is k-extendable and μ is a distribution over quantum operations mapping A to A', then there exists a separable state σ such that $\frac{2\ln|A'|}{2\ln|A'|}$

$$\max_{M_B} \mathbb{E}_{M_A \sim \mu} \| (M_A \otimes M_B) (\rho - \sigma) \|_1 \le \sqrt{2}$$

Theorem 2': If ρ is a symmetric state on $A_1...A_k$ then there exists a measure ν on single-particle states such that $\max_{M_2,...,M_n} \left\| (\operatorname{id} \otimes M_2 \otimes \ldots \otimes M_n) (\rho^{A_1...A_n} - \mathop{\mathbb{E}}_{\sigma \sim \nu} \sigma^{\otimes n} \right\|_1 \leq \sqrt{\frac{2n^2 \ln |A|}{k-n}}$

improvements on Brandão-Christandl-Yard 1010.1750 1) A' dependence. 2) multipartite. 3) explicit. 4) simpler proof

ε -nets vs. info theory

Problem	ε -nets	info theory
approx Nash	LMM '03	H. `14
max _{p∈∆} p [⊤] Ap		
free games	AIM `14	Brandão-H '13
max _{ρ∈Sep} tr[Mρ] QMA(2)	Shi-Wu `11 Brandão `14	BCY '10 Brandão-H '12 BKS '13

general games?

Theorem 1: If **p** is k-extendable and μ is a distribution on A, then there exists $q \in LHV$ such that $\max_{b} \mathbb{E}_{a \sim \mu} \| p(X, Y | a, b) - q(X, Y | a, b) \|_1 \leq \sqrt{\frac{2 \ln |X|}{k}}$

Can we remove the dependence of q on μ ?

<u>Conjecture</u>: $p \in k\text{-ext} \Rightarrow \exists q \in LHV$ such that $\max_{a,b} \|p(X,Y|a,b) - q(X,Y|a,b)\|_1 \le \sqrt{\frac{2\ln|X|}{k}}$

would imply that non-signalling games (in P) can be used to approximate the classical value of games (NP-hard)

• (probably) FALSE

general quantum games

Conjecture: If ρ^{AB} is k-extendable, then there exists a separable state σ such that

 $\max_{M_A:A\to X} \max_{M_B:B\to Y} \| (M_A \otimes M_B)(\rho - \sigma) \|_1 \le \sqrt{\frac{2\ln|X|}{k}}$

Would yield alternate proofs of recent results of Vidick:

- NP-hardness of entangled quantum games with 4 players
- NEXP⊆MIP^{*}

Proof would require strategies that work for quantum states but not general non-signalling distributions.

application: BellQMA(m)

3-SAT on n variables is believed to require a proof of size $\Omega(n)$ bits or qubits according to the ETH (Exp. Time Hypothesis)

<u>Chen-Drucker 1011.0716</u> (building on Aaronson et al 0804.0802) gave a 3-SAT proof using $m = n^{1/2}$ polylog(n) states each with O(log(n)) qubits (promised to be not entangled with each other).

Verifier uses local measurements and classical post-processing.

Our Theorem 2' can simulate this with a $m^2 log(n)$ -qubit proof. Implies m $\geq (n/log(n))^{1/2}$ or else ETH is false.

other applications

tomography

Can do "pretty good tomography" on symmetric states instead of on product states.

- Polynomial optimization using SDP hierarchies Can optimize certain polynomials over n-dim hypersphere using O(log n) rounds. Suggests route to algorithms for unique games and small-set expansion.
- multi-partite separability testing can efficiently estimate 1-LOCC distance to Sep

open questions

- Switch quantifiers and find a separable approximation

 (a) independent of the distribution on measurements
 (b) with error depending on the size of the output.
- 2. We know the non-signalling version of this is false. Can we find a simple counter-example?
- 3. Can one proof of size O(m²) simulate two proofs of size m? i.e. is QMA = QMA(2)?
- 4. Better de Finetti theorems, perhaps combining with the exponential de Finetti theorems or the post-selection principle.
- 5. Unify ε -nets and information theory approaches.