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Entanglement

Original motivation for quantum computing [Feynman ‘82]


Nature isn't classical, dammit, and if 
you want to make a simulation of 

Nature, you'd better make it 
quantum mechanical, and by golly 

it's a wonderful problem, because it 
doesn't look so easy.


This talk: can we do better when a system is 
only lightly entangled?


N systems in product state à O(N) degrees of freedom

N entangled systems        à exp(N) degrees of freedom

Describes cost of simulating dynamics or even describing a state.




success story: quantum circuits


+ Complexity interpolates between linear and exponential.���
- Treating all gates as “potentially entangling” is too pessimistic.
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Classical simulation possible in time O(T)⋅exp(k), where

•  k = treewidth [Markov-Shi ‘05]

•  k = max # of gates crossing any single qubit ���

[Yoran-Short ’06, Jozsa ‘06]




success story: 1-D systems


H = H12 + H23 + … + Hn-1,n


Classically easy to minimize energy, calculate tr e-H/T, etc.


Quantumly QMA-complete to estimate ground-state energy���
(to precision 1/poly(n) for H with gap 1/poly(n)).


H12
 H23
 H34
 H45
 …
 Hn-1,n
n qudits


Extension to trees: 

[Caramanolis, Hayden, Sigler]


[Landau-Vazirani-Vidick, ‘13] ���
n qudits with gap λ and precision ε à ���
runtime exp(exp(d/λ)log(n)) poly(1/ε)


intuition:


spectral���
gap of H


exponential���
decay of���

correlations


entanglement ���
area law


efficient ���
MPS���

decsription

Hastings ‘03
 Brandão-Horodecki ‘12
 Verstraete-Cirac ‘05


Hastings ‘07, etc.




meta-strategy


1.  solve trivial special case���
(e.g. non-interacting theory)���



2.  treat corrections to theory���
as perturbations




partial success: stabilizer circuits


exact version:

Clifford gates on n qubits = {U s.t. UPU† is a Pauli for all Paulis P}

Generated by various single-qubit gates and CNOTs.���
���
[Gottesman-Knill ’98] Clifford circuits simulable in time Õ(nT).���
intuition: Paulis ≅ 𝔽2

2n,  Cliffords ≅ Sp2n(𝔽2)


interpolation theorem [Aaronson-Gottesman ‘04] ���
Circuits with k non-Clifford gates simulable in time Õ(nT exp(k)).


+ Can simulate some highly entangled computations including most 
quantum error-correction schemes.���
- Almost all single-qubit gates are non-Clifford gates.




partial success: high-degree graphs

Theorem [Brandão-Harrow, 1310.0017]

If H is a 2-local Hamiltonian on a D-regular graph of n 
qudits with H = 𝔼i»jHi,j and each ||Hi,j||≤1, then there 
exists a product state���
|ψ⟩ = |ψ1⟩  …  |ψn⟩ such that



λmin ≤ ⟨ψ|H|ψ⟩ ≤ λmin 

+ O(d2/3 / D1/3)


Corollary

The ground-state energy can be approximated to accuracy���
O(d2/3 / D1/3) in NP.


interpretation: quantum PCP [tomorrow] impossible unless D = O(d2) 




intuition from physics: ���
 mean-field approximation


used in limit of high degree, e.g.
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clustered approximation

Given a Hamiltonian H on a graph G with vertices ���
partitioned into m-qudit clusters (X1, …, Xn/m), can ���
approximateλmin to error���
with a state that has no ���
entanglement between clusters.


X1

X3
X2


X4
 X5


good approximation if


1.   expansion is o(1)

2.   degree is high

3.   entanglement satisfies���

 subvolume law


�(Xi) = Pr
(u,v)2E

(v 62 Xi|u 2 Xi)



proof sketch


Chain rule Lemma: ���
I(X:Y1…Yk) = I(X:Y1) + I(X:Y2|Y1) + … + I(X:Yk|Y1…Yk-1)���
à I(X:Yt|Y1…Yt-1) ≤ log(d)/k for some t≤k.


Decouple most pairs by conditioning: ���
Choose i, j1, …, jk at random from {1, …, n} ���
Then there exists t<k such that


E
i,j,j1,...,jt

I(Xi : Xj |Xj1 . . . Xjt) 
log(d)

k

mostly following [Raghavendra-Tan, SODA ‘12] ���



E
i,j

I(Xi : Xj)q  log(d)

k

Discarding systems j1,…,jt causes error ≤k/n and leaves a 
distribution q for which


E
i⇠j

I(Xi : Xj)q  n

D

log(d)

k



Does this work quantumly?

What changes?

😊 Chain rule, Pinsker, etc, still work.

😧 Can’t condition on quantum information.

😥 I(A:B|C)ρ ≈ 0 doesn’t imply ρ is approximately separable���
[Ibinson, Linden, Winter ‘08]


Key technique: informationally complete measurement ���
maps quantum states into probability distributions with 
poly(d) distortion.



d-3 || ρ – σ ||1 ≤ || M(ρ) – M(σ) ||1 ≤ || ρ - σ ||1 

classical

variational

distance


quantum���
trace

distance


quantum���
trace

distance




Proof of qPCP no-go


1.  Measure εn qudits and condition on outcomes.���
Incur error ε.���



2.  Most pairs of other qudits would have mutual 
information ���
≤ log(d) / εD if measured.���



3.  Thus their state is within distance d2(log(d) / εD)1/2 of 
product.���



4.  Witness is a global product state.  Total error is���
ε + d2(log(d) / εD)1/2.���
Choose ε to balance these terms.




NP vs QMA

Here is the QCD 

Hamiltonian.  Can you 
decribe the 

wavefunction of the 
proton in a way that will 
let me compute its mass?





Greetings! The 
proton is the 
ground state 
of the u, u and 
d quarks.!

Can you give me some 
description I can use to 

get a 0.1% accurate 
estimate using fewer 

than 1050 steps?




No.!
I can, however, 
give you many 
protons, whose 
mass you can 
measure.!



better approximation?


Approximation quality depends on:

•  degree  (fixed)

•  average expansion (can change, but might always be high)

•  average entropy (can change, but might always be high)


improves with k
 need better ansatz, eg MPS

SDP relaxation ≤ true ground state energy ≤ variational bounds


- There is no guaranteed way to improve the approximation 
with a larger witness.


Can prove this finds a good product state when k ≫ poly(threshold rank).���
Clearly converges to the true ground state energy as kàn.


SDP hierarchy:

variables = {density matrices for all sets of ≤k qubits}

constraints = overlap compatibility + global PSD constraint (tomorrow)




quantifying entanglement

bipartite pure states – the nice case




•  λ1  ≥ λ2 ≥ … ≥ λd ≥ 0 determine equivalence under local unitaries

•  LOCC can modify λ according to majorization partial order

•  entanglement can be quantified by [Rènyi] entropies of λ


•  asymptotic entanglement determined by H(λ) = S(ψA) = S(ψB)���
“entropy of entanglement”  à entanglement as resource���
[Bennett, Bernstein, Popescu, Schumacher ‘95]
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mixed / multipartite

mixed-state and/or multipartite entanglement measures form a zoo

•  relating to pure bipartite entanglement (formation/distillation)

•  distance to separable states (relative entropy of entanglement, squashed ent.)

•  easy to compute but not operational (log negativity, concurrence)

•  operational but hard to compute (distillable key, geometric measure, tensor rank) 

•  not really measuring entanglement (ent. of purification, ent. of assistance)

•  regularized versions of most of the above


Brandão-Christandl-Yard ‘10
 Christandl ‘06


Generally “entropic” i.e. match on pure states.

Hopefully convex, continuous, monotonic, etc.




conditional mutual information ���
and Markov states


I(A:B|C) = H(A|C) + H(B|C) – H(AB|C)


= H(AC) + H(BC) – H(ABC) – H(C)


= ∑c p(C=c) I(A:B)p(⋅, ⋅|C=c)            only true classically! ���

≥ 0 
 
 
 
   still true quantumly


Classical

TFAE:

•  I(A:B|C)=0

•  p(a,b,c) = p1(c) p2(a|c) p3(b|c)

•  p = exp(HAC + HBC) for some HAC, HBC���

    [Hammersley-Clifford]

•  A & B can be reconstructed from C


Quantum


I(A:B|C)=0


⇢ABC =
X

i

pi↵
ACA,i ⌦ �BCB,i

C ⇠=
M

i

CA,i ⌦ CB,i

ρAB is separable


[Hayden, Jozsa, ���
Petz, Winter ‘04]




conditional mutual information

I(A:B|C)=0  ⇔ ρ is a Markov state 

I(A:B|C)=ε ⇔ ρ is an approximate Markov state?


I(A:B|C)p = minq Markov D(p || q)


Classical


I(A:B|C) small à can ���
approximately reconstruct ���
A,B from C.


Quantum


I(A:B|C)ρ ≤ minσ Markov D(ρ||σ)


I(A:B|C) can be ≪ RHS���
[Ibinson, Linden, Winter ’06]


ρAB can be far from separable���
in trace distance but not 1-LOCC���
distance. [Brandão,Christandl,Yard ‘10]


approximate reconstruction? [Winter]


application to Hamiltonians?

[Poulin, Hastings ‘10]  [Brown, Poulin ‘12]




approximate quantum Markov 
state


three possible definitions


1. I(A:B|C)ρ ≤ small


2. minσ Markov D(ρ||σ) ≤ small


3. reconstruction: ���
There exists a map T:CàBC 
such that T(ρAC) ≈ ρABC


ρAB is ���
≈ k-extendable
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dynamics


Can we simulate lightly entangled dynamics?

i.e. given the promise that entanglement is always “≤ k” is there���
a simulation that runs with overhead exp(k)?


Time evolution of quantum systems

d⇢

dt
= �i(H⇢� ⇢H) + noise terms that are linear in ⇢

noise per gate


0
 1

ideal���
QC


10-2-ish


FTQC���
possible


≈0.3
 classical���
simulation ���
possible
?
 ?




open question

If exponential quantum speedup/hardness is due to ���
entanglement, then can we make this quantitative?


Answer may include:

•  saving the theory of entanglement measures from itself

•  new classical ways to describe quantum states (e.g. MPS)

•  conditional mutual information

•  the right definition of “approximate quantum Markov states”



