Quantum Information Theory in Quantum Hamiltonian Complexity

Aram Harrow (MIT)
Simons Institute
16 Jan 2014

Entanglement

Original motivation for quantum computing [Feynman '82]

Describes cost of simulating dynamics or even describing a state.
This talk: can we do better when a system is only lightly entangled?

success story: quantum circuits

T gates

Classical simulation possible in time $O(T) \cdot \exp (k)$, where

- $k=$ treewidth [Markov-Shi '05]
- $k=$ max \# of gates crossing any single qubit [Yoran-Short '06, Jozsa '06]
+ Complexity interpolates between linear and exponential.
- Treating all gates as "potentially entangling" is too pessimistic.

success story: 1-D systems

Classically easy to minimize energy, calculate $\operatorname{tr} \mathrm{e}^{-\mathrm{H} / \mathrm{T}}$, etc.
Quantumly QMA-complete to estimate ground-state energy (to precision 1/poly(n) for H with gap 1/poly(n)).
[Landau-Vazirani-Vidick, '13]
n qudits with gap λ and precision $\varepsilon \rightarrow$ runtime $\exp (\exp (d / \lambda) \log (n))$ poly $(1 / \varepsilon)$

Extension to trees:
[Caramanolis, Hayden, Sigler]
intuition: Hastings '07, etc.

Hastings '03

meta-strategy

1. solve trivial special case (e.g. non-interacting theory)
2. treat corrections to theory as perturbations

YOU'RE TRYING TO PREDCTTHE BEHAVIOR OF <COMPLCATED SYSTEM>? JUST MODEL IT AS A <SIMPLE OBJECTㄱ, AND THEN ADD SOME SECONDARY TERMS TO ACCOUNT FOR
<COMPLICATIONS I JUST THOUGHT OF>.
EASY, RIGHT?
SO, WHY DOES 〈YOUR FIELD> NEED
A WHOLE JOURNAL, ANYWAY?

LIBERAL-ARIS MAJORS MAY BE ANNOYING SOUETMES, BUT THERE'S NOTHING MORE OBNOXIOUS THAN A PHYSICIST FIRST ENCOUNTERING A NEW SUBJECT.

partial success: stabilizer circuits

exact version:

Clifford gates on n qubits = \{U s.t. UPUt is a Pauli for all Paulis P\} Generated by various single-qubit gates and CNOTs.
[Gottesman-Knill '98] Clifford circuits simulable in time Õ(nT). intuition: Paulis $\cong \mathbb{F}_{2}{ }^{2 n}$, Cliffords $\cong \operatorname{Sp}_{2 n}\left(\mathbb{F}_{2}\right)$
interpolation theorem [Aaronson-Gottesman '04] Circuits with k non-Clifford gates simulable in time $\widetilde{O}(n T \exp (k))$.

+ Can simulate some highly entangled computations including most quantum error-correction schemes.
- Almost all single-qubit gates are non-Clifford gates.

partial success: high-degree graphs

Theorem [Brandão-Harrow, 1310.0017]
If H is a 2-local Hamiltonian on a D-regular graph of n qudits with $H=\mathbb{E}_{i \sim j} H_{i, j}$ and each $\left\|H_{i, j}\right\| \leq 1$, then there exists a product state

$$
|\psi\rangle=\left|\psi_{1}\right\rangle \otimes \ldots \otimes\left|\psi_{n}\right\rangle \text { such that }
$$

$$
\lambda_{\min } \leq\langle\psi| H|\psi\rangle \leq \lambda_{\min }+O\left(d^{2 / 3} / D^{1 / 3}\right)
$$

Corollary

The ground-state energy can be approximated to accuracy $O\left(d^{2 / 3} / D^{1 / 3}\right)$ in NP.
interpretation: quantum PCP [tomorrow] impossible unless $D=O\left(d^{2}\right)$

intuition from physics: mean-field approximation $\infty-D$

used in limit of high degree, e.g.

1-D

Bethe
lattice
:=
Cayley graph

clustered approximation

Given a Hamiltonian H on a graph G with vertices partitioned into m-qudit clusters ($X_{1}, \ldots, X_{n / m}$), can approximate $\lambda_{\text {min }}$ to error $9\left(d^{2} \underset{i}{\mathbb{E}}\left[\Phi\left(X_{i}\right)\right] \frac{1}{D} \frac{\mathbb{D}_{i}}{\mathbb{E}_{i}} \frac{S\left(X_{i}\right)_{\psi_{0}}}{m}\right)^{1 / 3}$
with a state that has no
entanglement between clusters.

good approximation if
expansion is o(1) degree is high entanglement satisfies subvolume law

proof sketch

mostly following [Raghavendra-Tan, SODA `12]

Chain rule Lemma:
$I\left(X: Y_{1} \ldots Y_{k}\right)=I\left(X: Y_{1}\right)+I\left(X: Y_{2} \mid Y_{1}\right)+\ldots+I\left(X: Y_{k} \mid Y_{1} \ldots Y_{k-1}\right)$
$\rightarrow I\left(X: Y_{t} \mid Y_{1} \ldots Y_{t-1}\right) \leq \log (d) / k$ for some $t \leq k$.
Decouple most pairs by conditioning:
Choose $\mathrm{i}, \mathrm{j}_{1}, \ldots, \mathrm{j}_{\mathrm{k}}$ at random from $\{1, \ldots, n\}$
Then there exists $t<k$ such that

$$
\begin{aligned}
& \text { Then there exIsts } \mathrm{t} \text { K such that } \\
& \underset{i, j, j_{1}, \ldots, j_{t}}{\mathbb{E}} I\left(X_{i}: X_{j} \mid X_{j_{1}} \ldots X_{j_{t}}\right) \leq \frac{\log (d)}{k}
\end{aligned}
$$

Discarding systems j_{1}, \ldots, j_{+}causes error $\leq k / n$ and leaves a distribution q for which

$$
\underset{i, j}{\mathbb{E}} I\left(X_{i}: X_{j}\right)_{q} \leq \frac{\log (d)}{k} \quad \underset{i \sim j}{\mathbb{E}} I\left(X_{i}: X_{j}\right)_{q} \leq \frac{n}{D} \frac{\log (d)}{k}
$$

Does this work quantumly?

What changes?
Chain rule, Pinsker, etc, still work.
-3 Can't condition on quantum information.
: $\mathrm{I}(\mathrm{A}: \mathrm{B} \mid \mathrm{C})_{\rho} \approx 0$ doesn't imply ρ is approximately separable [Ibinson, Linden, Winter '08]

Key technique: informationally complete measurement maps quantum states into probability distributions with poly(d) distortion.

Proof of qPCP no-go

1. Measure $\varepsilon \mathrm{n}$ qudits and condition on outcomes. Incur error ε.
2. Most pairs of other qudits would have mutual information $\leq \log (\mathrm{d}) / \varepsilon D$ if measured.
3. Thus their state is within distance $d^{2}(\log (d) / \varepsilon D)^{1 / 2}$ of product.
4. Witness is a global product state. Total error is $\varepsilon+d^{2}(\log (d) / \varepsilon D)^{1 / 2}$. Choose ε to balance these terms.

NP vs QMA

Can you give me some description I can use to get a 0.1% accurate estimate using fewer than 10^{50} steps?

better approximation?

- There is no guaranteed way to improve the approximation with a larger witness.

Approximation quality depends on:

- degree (fixed)
- average expansion (can change, but might always be high)
- average entropy (can change, but might always be high)

SDP hierarchy:

variables $=$ \{density matrices for all sets of $\leq k$ qubits\} constraints = overlap compatibility + global PSD constraint (tomorrow)
Can prove this finds a good product state when $k \gg$ poly(threshold rank). Clearly converges to the true ground state energy as $k \rightarrow n$.

SDP relaxation s true ground state energy \leq variational bounds improves with K

quantifying entanglement

 bipartite pure states - the nice case$$
\begin{aligned}
|\psi\rangle & =\sum_{i=1}^{d} \sum_{j=1}^{d} c_{i, j}|i\rangle \otimes|j\rangle \\
& =\sum_{i=1}^{d} \sqrt{\lambda_{i}}\left|a_{i}\right\rangle \otimes\left|b_{i}\right\rangle
\end{aligned}
$$

- $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{d} \geq 0$ determine equivalence under local unitaries
- LOCC can modify λ according to majorization partial order
- entanglement can be quantified by [Rènyi] entropies of λ
- asymptotic entanglement determined by $H(\lambda)=S\left(\psi^{A}\right)=S\left(\psi^{B}\right)$ "entropy of entanglement" \rightarrow entanglement as resource [Bennett, Bernstein, Popescu, Schumacher '95]

mixed / multipartite

mixed-state and/or multipartite entanglement measures form a zoo

- relating to pure bipartite entanglement (formation/distillation)
- distance to separable states (relative entropy of entanglement, squashed ent.)
- easy to compute but not operational (log negativity, concurrence)
- operational but hard to compute (distillable key, geometric measure, tensor rank)
- not really measuring entanglement (ent. of purification, ent. of assistance)
- regularized versions of most of the above

Generally "entropic" i.e. match on pure states. Hopefully convex, continuous, monotonic, etc.

Measure	$E_{s q}[6]$	$\mid E_{D}[18,19]$	K_{D} [20,21]	$\mid E_{C}[18,22]$	$E_{F}[18]$	$\mid E_{R}[23]$	$\mid E_{R}^{\infty}$ [24]	$E_{N}[25]$
normalisation	y	y	y	y	y	y	y	y
faithfulness	y Cor. 1	n [14]	?	y [26]	y	y	y [27]	n
LOCC monotonicity ${ }^{\text {a }}$	y	y	y	y	y	y	y	y [28]
asymptotic continuity	y [29]	?	?	?	y	$y[30]$	y [9]	n[9]
convexity	y	?	?	?	y	y	y [31]	n
strong superadditivity	y	y	y	?	n [32, 33]	n [34]	?	?
subadditivity	y	?	?	y	y	y	y	y
monogamy	y [11]	?	?	n [10]	n [10]	n [10]	n [10]	?

Brandão-Christandl-Yard '10

Christandl `06

conditional mutual information

and Markov states

$$
\begin{aligned}
I(A: B \mid C) & =H(A \mid C)+H(B \mid C)-H(A B \mid C) \\
& =H(A C)+H(B C)-H(A B C)-H(C) \\
& \left.=\Sigma_{c} p(C=c) I(A: B)_{p(,} \mid C=c\right) \\
& \geq 0
\end{aligned}
$$

only true classically!

still true quantumly
Classical
Quantum

TFAE:

- $I(A: B \mid C)=0$
- $p(a, b, c)=p_{1}(c) p_{2}(a \mid c) p_{3}(b \mid c)$
- $p=\exp \left(H_{A C}+H_{B C}\right)$ for some $H_{A C}, H_{B C}$ [Hammersley-Clifford]
- $A \& B$ can be reconstructed from C

$$
\begin{gathered}
\mathrm{I}(\mathrm{~A}: \mathrm{B} \mid \mathrm{C})=0 \\
C \cong \bigoplus_{i} C_{A, i} \otimes C_{B, i} \\
\rho^{A B C}=\sum_{i} p_{i} \alpha^{A C_{A, i}} \otimes \beta^{B C_{B, i}} \\
\rho^{A B} \text { is setz, Winter '04] }
\end{gathered}
$$

conditional mutual information

$$
\begin{aligned}
& I(A: B \mid C)=0 \Leftrightarrow \rho \text { is a Markov state } \\
& I(A: B \mid C)=\varepsilon \Leftrightarrow \rho \text { is an approximate Markov state? }
\end{aligned}
$$

Classical
$I(A: B \mid C)_{p}=\min _{q}$ Markov $D(p \| q)$
$\mathrm{I}(\mathrm{A}: \mathrm{B} \mid \mathrm{C})$ small \rightarrow can approximately reconstruct A,B from C.

Quantum

$\mathrm{I}(\mathrm{A}: \mathrm{B} \mid C)_{\rho} \leq \min _{\sigma \text { Markov }} \mathrm{D}(\rho \| \sigma)$
I(A:B|C) can be << RHS [Ibinson, Linden, Winter '06]
$\rho^{A B}$ can be far from separable in trace distance but not 1-LOCC distance. [Brandão,Christandl,Yard '10] approximate reconstruction? [Winter] application to Hamiltonians? [Poulin, Hastings '10] [Brown, Poulin '12]

approximate quantum Markov state

three possible definitions

1. $\mathrm{I}(\mathrm{A}: \mathrm{B} \mid \mathrm{C})_{\rho} \leq$ small
2. $\min _{\sigma \text { Markov }} D(\rho \| \sigma) \leq$ small
3. reconstruction:

There exists a map $T: C \rightarrow B C$ such that $T\left(\rho^{A C}\right) \approx \rho^{A B C}$

```
\rhoAB}\mathrm{ is
\(\approx\) k-extendable
```


dynamics

Time evolution of quantum systems
$\frac{d \rho}{d t}=-i(H \rho-\rho H)+$ noise terms that are linear in ρ
Can we simulate lightly entangled dynamics?
i.e. given the promise that entanglement is always " $\leq k$ " is there a simulation that runs with overhead $\exp (k)$?

open question

If exponential quantum speedup/hardness is due to entanglement, then can we make this quantitative?

Answer may include:

- saving the theory of entanglement measures from itself
- new classical ways to describe quantum states (e.g. MPS)
- conditional mutual information
- the right definition of "approximate quantum Markov states"

