

Aram Harrow (MIT)
joint work with Elizabeth Crosson (Caltech)

MSR Faculty Summit 2016.7.15
arXiv:1601.03030 to appear FOCS 2016

adiabatic algorithm

[Farhi, Goldstone, Gutmann, Sipser '00]
Problem: Given $f:\{0,1\}^{n} \rightarrow \mathbb{Z}$, minimize $f(z)$.
Approach: apply $H(s)=(1-s) H_{x}+s H_{f}$

$$
H_{X}=-\sum_{i=1}^{n} \sigma_{x}^{(i)} \quad H_{f}=\sum_{z \in\{0,1\}^{n}} f(z)|z\rangle\langle z|
$$

equiv: $H(s)=(1-s)$ (hypercube Laplacian) $+s$ diag(f)

Adiabatic theorem:

Running for time poly $\left(1 / \min _{s}\left[\lambda_{1}(s)-\lambda_{0}(s)\right]\right)$ guarantees that we will end in the ground state of H_{1}.

Not discussed in this talk:

- noisy dynamics
- non-stoquastic Hamiltonians

QAO vs simulated annealing (SA)

Simulated annealing:

- Given state x repeatedly
- Choose random neighbor y
- With probability $\min (1, \exp ((f(x)-f(y)) / T)$

Farhi
Goldstone Gutmann
q-ph/0201013
replace x with y. Otherwise do nothing.

- Gradually lower T

Which problem features make QAO outperform classical?

possibilities for

adiabatic optimization

pessimistic: There is a classical simulator that runs in time s poly(time required by the adiabatic algorithm).
© Grover exhibits quadratic separation.
\oplus evidence in favor: QMC (for stoquastic Hamiltonians).
optimistic: Stoquastic adiabatic evolution is universal for quantum computing.
\circledast Would imply collapse of PH \& "approx counting = exact counting". (Proof uses QMC + post-selection.)
© Nothing rules out fast adiabatic algorithms for factoring or 3SAT.
intermediate: Exponential speedups (i.e. no simulation) but weaker than general-purpose QC.

* Oracle speedup for mostly adiabatic evolution (NSK '12)
© evidence in favor: QMC sometimes takes exponential time

quantum Monte Carlo (QMC)

stoquastic Hamiltonians: $H_{x y} \leq 0$ for $x \neq y$.

- implies $\rho=\frac{e^{-\beta H}}{\operatorname{tr} e^{-\beta H}}$ is entrywise nonnegative
- $\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|=\lim _{\beta \rightarrow \infty} \rho$ is too.
aside: H gapped $\rightarrow \mathrm{p}(\mathrm{z})=\left\langle\mathrm{z} \mid \psi_{0}\right\rangle^{2}$ has high conductance

$$
Z=\sum_{z \in\{0,1\}^{n}}\langle z|\left(e^{\frac{-\beta H}{L}}\right)^{L}|z\rangle=\sum_{z_{1}, \ldots, z_{L} \in\{0,1\}^{n}} \prod_{i=1}^{L} \underbrace{\left\langle z_{i}\right| e^{-\frac{\beta H}{L}}\left|z_{i+1}\right\rangle}_{\geq 0}
$$

can estimate by sampling from

$$
\pi\left(z_{1}, \ldots, z_{L}\right)=\frac{1}{Z} \prod_{i=1}^{L}\left\langle z_{i}\right| e^{-\frac{\beta H}{L}}\left|z_{i+1}\right\rangle=: \frac{1}{Z} \exp \left(-H_{\mathrm{cl}}\left(z_{1}, \ldots, z_{L}\right)\right)
$$

What is $H_{c l}$?

$$
\left\langle z_{i}\right| e^{-\frac{\beta H}{L}}\left|z_{i+1}\right\rangle \approx e^{\frac{-\beta H_{\mathrm{diag}}\left(z_{i}\right)}{L}}\left\langle z_{i}\right| e^{-\frac{\beta H_{\mathrm{off}}}{L}}\left|z_{i+1}\right\rangle
$$

e.g. 1-D transverse Ising model: $H=\Sigma_{i} Z_{i} Z_{i+1}-\Gamma \Sigma_{i} X_{i}$

2-D classical ferromagnetic Ising model

$$
\begin{aligned}
& \text { Vertical bonds: } \\
& \text { ferromagnetic } \\
& \text { energy } \approx \ln (\beta L / \Gamma) \text {, i.e. } \\
& \text { disagree prob } \approx \beta \Gamma / L \text {. } \\
& \text { Horizontal bonds: } \\
& =\beta H_{D} / L
\end{aligned}
$$

standard part of QMC

1. Use local moves (Glauber or Metropolis) to generate samples from $\pi\left(Z_{1}, \ldots, Z_{L}\right)$.
Run-time/accuracy tradeoff unknown in general.
2. Use sampling-to-counting equivalence to estimate Z or $\langle O\rangle=\operatorname{tr}\left[O e^{-\beta H}\right] / Z$.

Problem reduces to bounding mixing time (equiv. gap) of a classical Markov chain.

The Markov chain

can QMC simulate adiabatic evolution?

- Only if gap $\geq 1 /$ poly (n). since we need $\beta \gg 1 / \mathrm{gap}$ for $e^{-\beta H} \approx|g s\rangle\langle g s|$ and $\beta \propto \#$ of imaginary time steps
- Only if we follow the adiabatic path.
- Otherwise would solve NP-complete problems.
- Technically useful as a "warm start" and to avoid unphysical/unlikely configurations.
- Even then there may be topological obstructions [Hastings-Freedman '13]

the path measure

random walk z_{1}, \ldots, z_{L} on hypercube $\{0,1\}^{\text {n }}$

- conditioned to return $\left(\mathbf{z}_{\mathrm{L}+1}=\mathbf{z}_{1}\right)$
- alternatively can use open boundary conditions.
- typically $\approx \beta$ 「n total jumps

Suppose that $f(z)$ depends only on Hamming weight $|z|$.

- look only at Hamming weight: $\{0,1\}^{n} \rightarrow\{0,1, \ldots, n\}$.
- take $n \rightarrow \infty$ and $\{0,1, \ldots, n\} \rightarrow[0,1]$.
- Brownian motion, or with closed B.C., "Brownian bridge"
with local Z fields ->
Brownian motion with drift
"Ornstein-Uhlenbeck bridge"
$d x(t)=\theta(\mu-x(t)) d t+\sigma d B(t)$
$\theta=$ drift, $\mu=$ mean, $\sigma=$ diffusion

local times of Brownian motion

Local time: $L^{x}(t)=$ amount of time Brownian motion $B(t)$ spends at point x.

Lévy's theorem: $\left\{L^{0}(t): t \geq 0\right\}$ and $\{S(t): t \geq 0\}$ have the same distribution, where $S(t)=$ suppossst $B(s)$.

In fact, $(S-B, S)={ }^{d}\left(|B|, L^{0}\right)$
Additionally, $S={ }^{\mathrm{d}}|\mathrm{B}|$.

local times of Brownian motion

Local time: $L^{x}(t)=$ amount of time Brownian motion $B([0, t])$ spends at point x.

Lévy's theorem: $(S-B, S)=^{d}\left(|B|, L^{0}\right)$
Proof: consider discrete r walk: $W(n)=X(1)+\ldots+X(n)$ with $X(t)= \pm 1$. Let $M(n)=\max (W(0), \ldots, W(n))$.

$M=\#$ of times $M-W$ remains at $0 \approx{ }^{\mathrm{d}} \mathrm{O}$ figure adapted from Brownian Motion by Mörters and Peres.

FGG 'O2

Hamming weight + spike

R '04 KC ' 15 BVD '16 JSIBMTN ‘16 f(|z|)

QMC and tunnelling

spike (width n^{a}, height n^{b})

imaginary time

ST = normalized spike time $\approx^{d}\left|\mathbb{N}\left(0, n^{a-1 / 2}\right)\right|$
proof using either Lévy's thm or quantum-classical correspondence.

Hamming weight
Feynman-Kac thm:
$\operatorname{Pr}\left[p a t h \mid\right.$ spike] $=\exp \left(-\beta S T n^{b}\right) \operatorname{Pr}[p a t h \mid n o$ spike]
\rightarrow if $a+b<1 / 2$ then typical paths don't notice the spike.

instantons on the cheap

spike (width n^{a}, height n^{b})

cf JSIBMTN'16

Hamming weight
steps to traverse spike $\approx n^{2 a}$
$\min S T=n^{2 a} / \beta \Gamma n$
Feynman-Kac \rightarrow prob reduced by \approx
$\therefore 2 a+b \leq 1$ is the theshold to cross the spike once.

canonical paths

Given Markov chain $P(x, y)$ with stationary distribution $\pi(x)$ and $Q(x, y)=P(x, y) \pi(y)=Q(y, x)$.

TFAE:

- P has a $\geq 1 /$ poly(n) gap between the top two eigenvalues
- The conductance Φ is $\geq 1 /$ poly (n).
conductance $\Phi=\min _{\mathrm{S}} \mathrm{Q}\left(\mathrm{S}, \mathrm{S}^{\mathrm{c}}\right) / \pi(\mathrm{S}) \pi\left(\mathrm{S}^{\mathrm{c}}\right)$
- For any x, y there exists a path $\gamma_{x y}$ from $x \rightarrow$ y routing $\pi(x) \pi(y)$ units of flow such that each edge e has load \leq poly(n) $Q(e)$. ("canonical paths/flows")
Heuristics analyze some plausible cut.
Proofs analyze all cuts or construct paths.

open questions

- multidimensional / non-bit-symmetric tunneling. The $a+b<1 / 2$ approach generalizes to whenever
- The unperturbed problem has good canonical paths.
- The perturbation is small relative to the gap.

What about the $2 a+b<1$ scenario?

- Quantum state geometry vs QMC geometry.
- Ground states of gapped Hamiltonian have high conductance.
- When does this imply that paths in QMC do too?
- Poly-time simulation of AQC or exponential separation?

1-d canonical path

$x_{1,1}$	$x_{2,1}$	$x_{3,1}$	$x_{4,1}$
$x_{1,2}$	$x_{2,2}$	$x_{3,2}$	$x_{4,2}$
$x_{1,3}$	$x_{2,3}$	$x_{3,3}$	$x_{4,3}$
$x_{1,4}$	$x_{2,4}$	$x_{3,4}$	$x_{4,4}$
$x_{1,5}$	$x_{2,5}$	$x_{3,5}$	$x_{4,5}$
$x_{1,6}$	$x_{2,6}$	$x_{3,6}$	$x_{4,6}$

$\begin{array}{llll}y_{1,1} & y_{2.1} & x_{3,1} & x_{4,1}\end{array}$ energy penalty:
$\begin{array}{llll}y_{1,2} & y_{2,2} & x_{3,2} & x_{4,2}\end{array} \quad \leq 2$ new jumps
$\begin{array}{llll}y_{1,3} & y_{2,3} & x_{3,3} & x_{4,3}\end{array}$
≤ 1 term from H_{D}
(L bonds each
$\begin{array}{llll}y_{1,5} & x_{2,5} & x_{3,5} & x_{4,5} \\ y_{1,6} & x_{2,6} & x_{3,6} & x_{4,6}\end{array}$ with weight $1 / L$.)

$y_{1,1}$	$x_{2,1}$	$x_{3,1}$	$x_{4,1}$
$x_{1,2}$	$x_{2,2}$	$x_{3,2}$	$x_{4,2}$
$x_{1,3}$	$x_{2,3}$	$x_{3,3}$	$x_{4,3}$
$x_{1,4}$	$x_{2,4}$	$x_{3,4}$	$x_{4,4}$
$x_{1,5}$	$x_{2,5}$	$x_{3,5}$	$x_{4,5}$
$x_{1,6}$	$x_{2,6}$	$x_{3,6}$	$x_{4,6}$

$\cdots |$| $y_{1,1}$ | $y_{2,1}$ | $y_{3,1}$ | $y_{4,1}$ |
| :--- | :--- | :--- | :--- |
| $y_{1,2}$ | $y_{2,2}$ | $y_{3,2}$ | $y_{4,2}$ |
| $y_{1,3}$ | $y_{2,3}$ | $y_{3,3}$ | $y_{4,3}$ |
| $y_{1,4}$ | $y_{2,4}$ | $y_{3,4}$ | $y_{4,4}$ |
| $y_{1,5}$ | $y_{2,5}$ | $y_{3,5}$ | $y_{4,5}$ |
| $y_{1,6}$ | $y_{2,6}$ | $y_{3,6}$ | $y_{4,6}$ |

QMC on the spike

$$
E^{\prime}(z)=|z|+n^{\alpha} 1_{|z|=n / 4}
$$

Quantum gap $\propto 1-n^{\alpha-1 / 2}$ for $\alpha<1 / 2$ [Reichardt] or $n^{\alpha-1 / 2}$ for $\alpha>1 / 2$.
We show QMC works when $\alpha<1 / 2$.
relate to spikeless Hamiltonian
$E(z)=|z|$
$\pi\left(z_{1,1}, \ldots, z_{n, L}\right)=\pi_{0}\left(z_{1,1}, \ldots, z_{1, L}\right) \cdot \ldots \cdot \pi_{0}\left(z_{n, 1,} \ldots, z_{n, L}\right)$
n decoupled 1-D Ising models.
$\pi^{\prime}(\mathbf{z})=C \pi(z) \exp \left(-n^{\alpha}\left[\#\left|z_{i}\right|=n / 4\right] / L\right)$

