

Quantum Adiabatic Optimization

Quantum Monte Carlo

VS

Aram Harrow (MIT) joint work with Elizabeth Crosson (Caltech)

MSR Faculty Summit 2016.7.15

arXiv:1601.03030 to appear FOCS 2016

....

adiabatic algorithm[Farhi, Goldstone, Gutmann, Sipser '00]Problem: Given $f:\{0,1\}^n \rightarrow \mathbb{Z}$, minimize f(z).Approach: apply $H(s) = (1-s) H_X + s H_f$ $H_X = -\sum_{i=1}^n \sigma_x^{(i)}$ $H_f = \sum_{z \in \{0,1\}^n} f(z) |z\rangle \langle z|$

equiv: H(s) = (1-s) (hypercube Laplacian) + s diag(f)

Adiabatic theorem:

Running for time poly(1 / min_s [λ_1 (s)- λ_0 (s)]) guarantees that we will end in the ground state of H₁.

Not discussed in this talk:

- noisy dynamics
- non-stoquastic Hamiltonians

QAO vs simulated annealing (SA)

Simulated annealing:

- Given state x repeatedly
 - Choose random neighbor y
 - With probability min(1, exp((f(x)-f(y))/T) replace x with y. Otherwise do nothing.
- Gradually lower T

Farhi Goldstone Gutmann q-ph/0201013

Which problem features make QAO outperform classical?

possibilities for adiabatic optimization

pessimistic: There is a classical simulator that runs in time
≤ poly(time required by the adiabatic algorithm).

- Grover exhibits quadratic separation.
- evidence in favor: QMC (for stoquastic Hamiltonians).

optimistic: Stoquastic adiabatic evolution is universal for quantum computing.

- Would imply collapse of PH & "approx counting = exact counting". (Proof uses QMC + post-selection.)
- Solution Nothing rules out fast adiabatic algorithms for factoring or 3SAT.

intermediate: Exponential speedups (i.e. no simulation) but weaker than general-purpose QC.

- ③ Oracle speedup for mostly adiabatic evolution (NSK '12)
- evidence in favor: QMC sometimes takes exponential time

quantum Monte Carlo (QMC)

stoquastic Hamiltonians: $H_{xy} \leq 0$ for $x \neq y$.

• implies
$$\rho = \frac{e^{-\beta H}}{\operatorname{tr} e^{-\beta H}}$$
 is entrywise nonnegative
• $|\psi_0\rangle\langle\psi_0| = \lim_{\beta\to\infty}\rho$ is too.

aside: H gapped $\rightarrow p(z)=\langle z|\psi_0\rangle^2$ has high conductance

$$Z = \sum_{z \in \{0,1\}^n} \langle z | \left(e^{\frac{-\beta H}{L}} \right)^L | z \rangle = \sum_{z_1, \dots, z_L \in \{0,1\}^n} \prod_{i=1}^n \underbrace{\langle z_i | e^{-\frac{\beta H}{L}} | z_{i+1} \rangle}_{\geq 0}$$

can estimate by sampling from
$$\pi(z_1, \dots, z_L) = \frac{1}{Z} \prod_{i=1}^L \langle z_i | e^{-\frac{\beta H}{L}} | z_{i+1} \rangle =: \frac{1}{Z} \exp(-H_{cl}(z_1, \dots, z_L))$$

What is H_{cl}?

 $\langle z_i | e^{-\frac{\beta H}{L}} | z_{i+1} \rangle \approx e^{\frac{-\beta H_{\text{diag}}(z_i)}{L}} \langle z_i | e^{-\frac{\beta H_{\text{off}}}{L}} | z_{i+1} \rangle$ e.g. 1-D transverse Ising model: H = $\Sigma_i Z_i Z_{i+1} - \Gamma \Sigma_i X_i$ $\longrightarrow 2-D \text{ classical ferromagnetic Ising model}$

n

n

Vertical bonds: ferromagnetic energy $\approx \ln(\beta L/\Gamma)$, i.e. disagree prob $\approx \beta \Gamma/L$.

Horizontal bonds: = $\beta H_D / L$

standard part of QMC

- Use local moves (Glauber or Metropolis) to generate samples from π(z₁, ..., z_L). Run-time/accuracy tradeoff unknown in general.
- 2. Use sampling-to-counting equivalence to estimate Z or $\langle O \rangle$ =tr[O e^{- β H}]/Z.

Problem reduces to bounding mixing time (equiv. gap) of a classical Markov chain.

The Markov chain

can QMC simulate adiabatic evolution?

- Only if gap ≥ 1/poly(n).
 since we need β ≫ 1/gap for e^{-βH} ≈ |gs>(gs| and β ∝ # of imaginary time steps
- Only if we follow the adiabatic path.
 - Otherwise would solve NP-complete problems.
 - Technically useful as a "warm start" and to avoid unphysical/unlikely configurations.
- Even then there may be topological obstructions [Hastings-Freedman `13]

the path measure

[see also JSIBMTN 1603.01293]

random walk $z_1, ..., z_L$ on hypercube $\{0, 1\}^n$

- conditioned to return $(z_{L+1} = z_1)$
- alternatively can use open boundary conditions.
- typically $\approx \beta \Gamma n$ total jumps

Suppose that f(z) depends only on Hamming weight |z|.

- look only at Hamming weight: {0,1}ⁿ -> {0,1,...,n}.
- take n-> ∞ and $\{0,1,\dots,n\} \rightarrow [0,1]$.
- Brownian motion, or with closed B.C., "Brownian bridge"

with local Z fields -> Brownian motion with drift "Ornstein-Uhlenbeck bridge" $dx(t) = \theta (\mu - x(t)) dt + \sigma dB(t)$ $\theta = drift, \mu = mean, \sigma = diffusion$

local times of Brownian motion

Local time: $L^{x}(t)$ = amount of time Brownian motion B(t) spends at point x.

Lévy's theorem: $\{L^{o}(t): t \ge 0\}$ and $\{S(t): t \ge 0\}$ have the same distribution, where $S(t) = \sup_{0 \le t \le 0} B(s)$.

In fact, (S-B, S) =^d (|B|, L⁰) Additionally, S =^d |B|.

local times of Brownian motion

Local time: $L^{x}(t) = amount of time Brownian motion B([0,t]) spends at point x.$

Lévy's theorem: $(S-B, S) =^d (|B|, L^0)$

Proof: consider discrete r walk: W(n) = X(1) + ... + X(n) with $X(t) = \pm 1$. Let M(n) = max(W(0), ..., W(n)).

by Mörters and Peres.

QMC and tunnelling

spike (width n^a height n^b)

ST = normalized spike time ≈^d |N(0, n^{a-1/2})|

proof using either Lévy's thm or quantum-classical correspondence.

Hamming weight

Feynman-Kac thm: Pr[path | spike] = exp(- β ST n^b) Pr[path | no spike] \rightarrow if a+b<1/2 then typical paths don't notice the spike.

instantons on the cheap

spike (width n^a height n^b)

a<1/2 2a+b<1

cf JSIBMTN'16

Hamming weight

steps to traverse spike $\approx n^{2a}$ min ST = $n^{2a} / \beta \Gamma n$ Feynman-Kac \rightarrow

prob reduced by $\approx \exp(-n^{2a+b-1})$

 $2a+b\leq 1$ is the theshold to cross the spike once.

canonical paths

Given Markov chain P(x,y) with stationary distribution $\pi(x)$ and $Q(x,y) = P(x,y) \pi(y) = Q(y,x)$. TFAE:

- P has a ≥1/poly(n) gap between the top two eigenvalues
- The conductance Φ is $\geq 1/poly(n)$. $\Phi = \min_{S} Q(S, S^{c}) / \pi(S) \pi(S^{c})$

conductance

 For any x,y there exists a path γ_{xy} from x -> y routing π(x) π(y) units of flow such that each edge e has load ≤ poly(n) Q(e). ("canonical paths/flows")

Heuristics analyze some plausible cut. Proofs analyze all cuts or construct paths.

canonical paths

open questions

- multidimensional / non-bit-symmetric tunneling.
 The a+b<1/2 approach generalizes to whenever
 - The unperturbed problem has good canonical paths.
 - The perturbation is small relative to the gap.
 What about the 2a+b < 1 scenario?
- Quantum state geometry vs QMC geometry.
 - Ground states of gapped Hamiltonian have high conductance.
 - When does this imply that paths in QMC do too?
- Poly-time simulation of AQC or exponential separation?

1-d canonical path

$X_{1,1}$	X _{2.1}	X _{3,1}	× _{4,1}	
X _{1,2}	× _{2,2}	× _{3,2}	× _{4,2}	
X _{1,3}	X _{2,3}	X _{3,3}	X _{4,3}	
X _{1,4}	× _{2,4}	× _{3,4}	× _{4,4}	
X _{1,5}	X _{2,5}	X _{3,5}	X _{4,5}	
Х _{1,6}	X _{2,6}	X _{3,6}	X _{4,6}	

	У _{1,1}	У _{2.1}	Х _{3,1}	× _{4,1}
İ.	Y _{1,2}	Y _{2,2}	X _{3,2}	X _{4,2}
4	У _{1,3}	У _{2,3}	X _{3,3}	X _{4,3}
	У _{1,4}	Y _{2,4}	X _{3,4}	X _{4,4}
	Y _{1,5}	X _{2,5}	X _{3,5}	X _{4,5}
K.	У _{1,6}	X _{2,6}	Х _{3,6}	X _{4,6}

energy penalty: ≤ 2 new jumps ≤ 1 term from H_D (L bonds each with weight 1/L.)

	У _{1,1}	У _{2.1}	У _{3,1}	У _{4,1}
	У _{1,2}	Y _{2,2}	У _{3,2}	Y _{4,2}
	У _{1,3}	У _{2,3}	У _{3,3}	Y _{4,3}
>	У _{1,4}	У _{2,4}	У _{3,4}	Y _{4,4}
	У _{1,5}	У _{2,5}	У _{3,5}	У _{4,5}
	У _{1,6}	Y _{2,6}	У _{3,6}	У _{4,6}

X_{2.1} **X**_{3,1} Y_{1,1} $X_{4,1}$ X_{1,2} X_{2,2} X_{3,2} X_{4,2} X_{1,3} X_{2,3} X_{3,3} X_{4,3} X_{2,4} X_{3,4} X_{1,4} X_{4,4} $x_{1,5} x_{2,5} x_{3,5}$ X_{4,5} x_{1,6} x_{2,6} x_{3,6} X_{4,6}

QMC on the spike

 $E'(z) = |z| + n^{\alpha} 1_{|z|=n/4}$

hamming weight

Quantum gap $\propto 1-n^{\alpha-1/2}$ for $\alpha < 1/2$ [Reichardt] or $n^{\alpha-1/2}$ for $\alpha > 1/2$. We show QMC works when $\alpha < 1/2$.

relate to spikeless Hamiltonian E(z) = |z| $\pi(z_{1,1}, ..., z_{n,L}) = \pi_0(z_{1,1}, ..., z_{1,L}) \cdot ... \cdot \pi_0(z_{n,1}, ..., z_{n,L})$ n decoupled 1-D Ising models. $\pi'(z) = C \pi(z) \exp(-n^{\alpha} [\# |z_i| = n/4] / L)$