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1 Introduction

Maximizing revenue is a fundamental problem in auction design. Auctioneers often run auctions to optimally
sell many items to many bidders. For this to be possible, we assume that prior information about the bidders’
values is known to the auctioneer. Ideally, the auctioneer knows the distributions from which the bidder’s
valuations for specific items are drawn, however in most cases the auctioneer only has samples from these
distributions. The auctioneer has two tasks: first, approximate the bidders’ distributions from the samples
provided, and second, use those approximate distributions to design an auction that has revenue close to
that of the optimal auction. A long line of research has tackled each of these two tasks separately, and
recently there have been efforts to solve the two problems when the bidders’ valuations are independent. In
this project, we are exploring the case when items’ values have a slight correlation in the form of a common
shift to the values. Such an assumption seems realistic, since it can be used to model auctions when a specific
type of item is sold (e.g. livestock, works of painting, cars). In that case, a bidders’ value for the items is
affected by how much they value the general category of items being sold.

Before we dive into the technical aspect of our research, we introduce some notation. Each bidder has a
binary p-dimensional feature vector x that is known to the auctioneer. This can be thought of as features
of the bidder that can be observed. We also have θ, a common p-dimensional vector for all items, which is
unknown. We are tackling the high-dimensional case, when p is large. To make this problem more structured,
we assume that θ is s-sparse, i.e. the number of non-zero components of θ is at most s. Finally, each item
has its own valuation distribution Fj supported on the interval [0, H]. We assume that the values drawn
from the F distributions are independent for each bidder and item.

Since we are tackling learning, we assume that we are given a history of q bidders in the form of pairs
(xi, vij). That is, we know that q bidders with feature vector xi had value for item j equal to vij . Knowing
this history, we are asked to sell the same m items to a new (or multiple new) bidder with feature vector
x (which might have not been observed before). The formal model for the value of a bidder with feature
vector xi for item j is, where εij ∼ Fj :

vij = 〈θ, xi〉+ εij

The remaining of this paper is organized as follows. Section 2 contains our estimation algorithm and
the proof that our empirical distribution is close to the true distribution. Sections 3 and 4 show how to use
our empirical estimation to design simple and almost-optimal mechanisms for a single and multiple bidders
respectively. In the appendices, we have included multiple other ideas that we have explored throughout the
semester. We would like to emphasize our efforts to extend the result of [BDHS15] to multiple bidders. This
result, although not directly related to our project, is another contribution of our work.

2 Estimating Bidder Distribution

From now on, we will consider the single bidder case. Extending to multiple bidders is possible and will be
covered in Section 4.

Our framework assumption is that we are selling a set of m items and the bidders valuations for these
items are not independent. In particular, we are considering that the bidder’s value for the ith item is equal
to a ‘base’ term that equals the preference of the bidder for the item plus some ‘error’ that can be thought
to cover other factors that affect the bidder’s valuation.

vj = 〈θ, x〉+ εj

As explained in the Introduction, θ is a common parameters for all the items and x is the feature vector of the
bidder. The error term εj is sampled from the error distribution Fj , which is considered to be independent
for each item.

Normalizing the Errors. Thus, we can see that our problem boils down to estimating the error
distributions and the shared θ vector. When estimating these parameters, we assume that the Fj distributions
have a mean value of 0.

To justify this assumption, consider the case when the error distributions are not 0-meaned. This will
create an offset which can be recovered by extending the θ and x vectors. The construction will be as follows.
Let µ ∈ Rm be the mean of the error distributions Fj . Let F ′j = Fj − µj be the centered error distribution
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that has a zero mean. We can also define a new vector θj for each item, equal to θ plus an extra coordinate
equal to µj . Then, if we extend the feature vector of each bidder x′ to have an extra coordinate with a value
of 1, we can verify that

〈θj , x′〉+ ε′j = 〈θ, x〉+ ε′j + µj = 〈θ, x〉+ εj

Using this assumption and by assuming that the samples we are given along with error distributions
satisfy some favorable conditions given in [Wai09], we can assume that using Sparse High-Dimensional
Linear Regression will recover our feature vector θ with some error.

Formally, we can recover an s-sparse vector θ̂ that satisfies

‖θ − θ̂‖2 ≤

√
s log p

q

⇒ ‖θ − θ̂‖1 ≤
√
s‖θ − θ̂‖2 ≤ s

√
log p

q

2.1 Estimation Algorithm

Our estimation algorithm is simple. We will use Sparse High Dimensional Regression to estimate the shared
θ vector. Then, we will use our empirical θ vector to obtain empirical error estimates and we will use these
to learn the error distribution.

Algorithm 1 Learning Optimal Multi-Item Auctions with Side Information

1: Given samples {(vij , xi)}
2: Estimate θ̂ using Sparse High-Dim Regression on vij ∼ xi
3: Compute residual errors ε̂ij = vij − 〈θ̂, xi〉
4: Estimate discretized empirical distributions F̂i from ε̂ij
5: For a new bidder with feature vector x, compute their value for item j from 〈θ̂, x〉+ F̂j

2.2 Analysis

In this subsection we show how to bound the Prokhorov distance between the empirical value distribution
for item j and the true value distribution for the same item. Intuitively, we want to bound the difference
between the two distributions in order to show that a good mechanism for the empirical distribution will
also behave approximately as well in the true distribution. More details are in presented in Section 3.

We emphasize that we want to bound the Prokhorov distance for each item j. Since we have m items,
we will try to estimate the distribution to an ε

m error.

Theorem 1. Let Dj = 〈θ, x〉+Fj and D̂j = 〈θ̂, x〉+ F̂j be the true and discretized empirical distribution of

the values of bidder x for item j. Then given at least q = O
(
m2s2 log p

ε2 + m3H(log 1/δ+logm)
ε2

)
samples

‖Dj − D̂j‖P ≤
ε

m
, w.p. ≥ 1− δ

m

Proof. We use a hybrid argument. We will define an intermediate distribution D̃j . Then we will bound
the Prokhorov distance between two adjacent distributions using Lemmas 1 and 2, which will bound the
distance between Dj and D̂j using the triangle inequality. The intermediate distribution is

D̃j = 〈θ̂, x〉+ Fj

We will show that ‖Dj − D̃j‖P ≤ ε
2m and ‖D̃j − D̂j‖P ≤ ε

2m . Thus, by the triangle inequality we can
conclude that

‖Dj − D̂j‖P ≤ ‖Dj − D̃j‖P + ‖D̃j − D̂j‖P

≤ ε

2m
+

ε

2m
=

ε

m
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Lemma 1. Let Dj = 〈θ, x〉+ Fj and D̃j = 〈θ̂, x〉+ Fj. Then given at least q samples guarantees that

‖Dj − D̃j‖P ≤
ε

2m

Proof. The difference between the two distributions is their base terms 〈θ, x〉 and 〈θ̂, x〉. Their `1 difference
is from our use of LASSO from [Wai09]

|〈θ, x〉 − 〈θ̂, x〉| = |〈θ − θ̂, x〉|

≤ ‖θ − θ̂‖1

≤ s

√
log p

q

≤ s
√

log p
4m2s2 log p

ε2

=
ε

2m

Hence the Prokhorov distance of the two distributions is at most ε
2m , since we can always couple their

samples such that their `1 distance is at most ε
2m .

Lemma 2. Let tsse34rujD̃j = 〈θ̂, x〉+ Fj and D̂j = 〈θ̂, x〉+ F̂j. Then

‖D̃j − D̂j‖P ≤
ε

2m
, w.p. ≥ 1− δ

m

Proof. We extend the proof of Lemma 10 from [BCD20]. We will define the η-rounding procedure, where

we replace each element x of a distribution by
⌊
x
η

⌋
· η.

Using this rounding procedure, we will have the following distributions

• Fj : The true distribution of the valuation errors for item j

• F̃j : The distribution obtained after ε
m -rounding each element of the support of Fj

• F̂j : The uniform distribution over the ε
m -rounded samples ε̂ij .

Since the support of F̃j has size mH
ε , we know that with N = O

(
m3H(log 1/δ+logm)

ε3

)
samples we will

achieve

‖F̃j − F̂j‖TV ≤
ε

2m
, w.p. ≥ 1− δ

m

Now, we will show that with the same number of samples we can create a Prokhorov coupling between
Fj and F̂j . In particular, we can create a coupling γ1 between Fj and F̃j such that their samples are at

most ε
2m away in absolute value. Additionally, there exists a coupling γ2 between F̃j and F̂j such that

their samples are equal with probability ≥ 1− ε
2m with probability ≥ 1− δ

m . Hence, by composing the two

couplings together, we know that there exists a coupling γ between Fj and F̂j such that samples from the
two distributions are within ε

2m absolute value with probability at least 1− ε
2m . Thus, this means that with

probability ≥ 1− δ
m , ‖Fj − F̂j‖P ≤ ε

2m .
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3 A (6 + ε)-Approximate Mechanism for One Bidder

The celebrated work of [BILW14] has provided a simple and optimal mechanism for selling multiple items
to a single bidder with independent valuations. This mechanism is choosing the best of selling each item
separately (denoted as SRev) or bundling them all together (denoted as BRev). Since there is a single
bidder, to maintain incentive compatibility both mechanisms will post prices for the items or the bundle.
Let Rev(D) be the revenue achieved from such a simple mechanism when run for valuations drawn from
distribution D. Then

Rev(D) ≥ 1

6
OPT (D)

In this section we show that we can modify the above mechanism for the empirical valuation distribution
to get an approximately-optimal one for the true distribution. To do this, we will use discounting.

Definition 1. Let M be an SRev mechanism with 1 bidder and m items, with rj be the posted price for
each item j. Define the δ-discounted SRev mechanismMδ that sells the same m items by reducing all posted
prices by δ. That is rδj = rj − δ.

Definition 2. Let M be BRev mechanism with 1 bidder and m items, with R be the posted price for the
bundle. Define the δ-discounted BRev mechanism Mδ for the same m items to be the mechanism with the
bundle posted price reduced by δ. That is Rδ = R− δ.

Theorem 2. Let D, D̂ be the true and empirical valuation distributions for all bidders respectively such that
the Prokhorov distance between Di and D̂i is at most ε

m . Consider the optimal Rev mechanism M̂ for D̂.

Let M̂ε be the mechanism obtained when discounting

• The SRev part of M̂ by ε
m

• The BREV part of M̂ by ε

Then

Rev(D,M̂ε) ≥
1

6
OPT (D)− 2ε

To prove the above theorem, we make use of the following key lemma.

Figure 1: The constructive proof of Lemma 3. We couple the valuations of the bidders from P,Q and modify
the mechanism for P (left) such that only ε from the revenue is lost for Q (right).

Lemma 3. Let P,Q be two valuation distributions of a single bidder for m items, such that the valuation
distribution for item j satisfies

‖Pj −Qj‖P ≤
ε

m

Let MP be the optimal Rev mechanism for P . If MP
ε is the discounted mechanism obtained as in Theorem

2, then
Rev(Q,MP

ε ) ≥ Rev(P )− ε
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Proof. From the Prokhorov distance of the valuation distributions, we can couple the sampled bidders’ values
from P and Q such that they are all within ε

m with probability ≥ 1− ε. In that case, compare the execution
of the mechanism MP

ε with values drawn from Q and the execution of MP with values drawn from P .
We can see that in the SRev mechanism, if a bidder buys a specific item in MP , then their coupled

bidder will also buy that specific item in MP
ε . This is because the price of the item has reduced by ε

m ,
whereas the value of the bidder for that item has reduced less than that.

When it comes to the BRev mechanism, the total value of the bidder for the bundle (assuming an additive
valuation) has decreased by at most m · εm = ε for the bidder inMP

ε . Thus, by reducing the posted price by
ε we again guarantee that if the bundle is purchased in MP , it is also purchased in MP

ε , for at most ε less.
Hence the required inequality holds, since changing the distribution can only cost us an ε quantity from

the revenue.

We now use Lemma 3 twice to prove Theorem 2.

Proof of Theorem 2. Let M̂ be the Rev mechanism constructed for the valuation distribution D̂. From
Lemma 3 we know that

Rev(D,M̂ε) ≥ Rev(D̂)− ε

Additionally, letM be the optimal Rev mechanism constructed for the valuation distribution D. Lemma
4 implies that

Rev(D̂) ≥ Rev(D̂,Mε) ≥ Rev(D)− ε

Combining the two above inequalities we get

Rev(D,M̂ε) ≥ Rev(D̂)− ε ≥ Rev(D)− 2ε ≥ 1

6
OPT (D)− 2ε

4 Extending to Multiple Bidders

4.1 Estimating Bidder Valuations

In this subsection we briefly argue that our current estimation algorithm as presented in Algorithm 1 can
estimate with the same guarantees the valuation distributions for many bidders. Indeed, the error distribu-
tions Fj only depend on the number of items and the shared vector θ is common among all bidders. Thus,
estimating Fj and θ using enough samples will provide us with an accurate empirical valuation distribution
for each new bidder that arrives as presented in Theorem 1.

We will use this insight to extend the results of the previous section to the scenario when we are selling
to multiple bidders that arrive, each of which has an individual feature vector. We do note that we in order
to get a good approximate revenue, we need to estimate each bidder’s valuation distribution to a Prokhorov
distance of ε

nm . This increases the number of required samples by a polynomial factor in the number of
bidders.

4.2 A (8 + ε)-Approximate Mechanism for Multiple Bidders

The celebrated work of [CDW16] has provided a simple mechanism that obtains an 8-approximation of
the optimal revenue when selling multiple independent items to many bidders. This mechanism has two
components which we will denote as SRev and BV CG, following standard notation introduced in [CDW16].

The components. SRev is the mechanism that sells each item separately using second-price auctions
with reserve prices. From Myerson’s seminal work [Mye81] we know that such mechanism is optimal when
selling a single item.

BV CG is defined as a VCG auction with entry fees. In particular, each bidder is given a personalized
entry fee that is only dependent on the bids of the other bidders. They then have to pay this entry fee to be
eligible to participate in separate VCG auctions for each item.
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Formally, Cai et al. [CDW16] showed that the best of SRev and BV CG mechanisms provide at least
an eight of the optimal revenue when selling to independent items to multiple bidders. What is left is to
decide the optimal entry fees and reserve prices for our learned valuation distribution. From now on, we will
refer to this simple and approximately optimal mechanism as Rev and to the optimal mechanism as OPT .
A similar line of reasoning as in Section 3 is presented, where we will discount the optimal Rev mechanism
for D̂ and show that it is almost optimal when selling to the true valuation distribution D.

We know that for any valuation distribution D that is a product of independent distributions for each
bidder, we can obtain

Rev(D) ≥ 1

8
OPT (D)

Let us first define the discounting procedures for SRev and BV CG mechanisms.

Definition 3. Let M be an SRev mechanism with n bidders and m items, with rj be the reserve price
for each item j. Define the δ-discounted SRev mechanism Mδ that sells m items to n bidders to be the
mechanism with reserve prices reduced by δ. That is rδj = rj − δ.

Definition 4. Let M be a BV CG mechanism with n bidders and m items, with ei be the personalized entry
fee computed after each bidder submits their bids. Define the δ-discounted BV CG mechanism Mδ that sells
m items to n bidders to be the mechanism with entry fees reduced by δ. That is eδi = ei − δ.

We are now ready to state our almost-8-approximate mechanism.

Theorem 3. Let D, D̂ be the true and empirical valuation distributions for all bidders respectively such that
the Prokhorov distance between Dij and D̂ij is at most ε

nm . Consider the optimal Rev mechanism M̂ for

D̂. Let M̂ε be the mechanism obtained when discounting

• The SRev part of M̂ by ε
nm

• The BV CG part of M̂ by ε
n

Then

Rev(D,M̂ε) ≥
1

8
OPT (D)− 2ε

The proof follows by extending section 3. The key lemma is the following.

Lemma 4. Let P,Q be two valuation distributions of n bidders for m items, such that the valuation distri-
bution of bidder i for item j satisfies

‖Pij −Qij‖P ≤
ε

nm

Let MP be the optimal Rev mechanism for P . If MP
ε is the discounted mechanism obtained as in Theorem

3, then
Rev(Q,MP

ε ) ≥ Rev(P )− ε

Proof. From the Prokhorov distance of the valuation distributions, we can couple the sampled bidders’ values
from P and Q such that they are all within ε

nm with probability ≥ 1−ε. In that case, compare the execution
of the mechanism MP

ε with values drawn from Q and the execution of MP with values drawn from P .
We can see that in the SRev mechanism, due to the IC property, the bidders will still report their true

values. Thus, any item allocated in MP is also allocated in MP
ε . The only difference is that the reserve

prices have decreased. This might decrease the revenue per item by at most ε
nm . Thus, the total revenue

loss is at most ε
n .

When it comes to the BV CG mechanism, the bidders will still report their true values. Additionally, if
a bidder pays the entry fee in MP , then it is because their expected utility from the auction is higher than
the entry fee. However, their expected utility can at most decrease by ε

nm per item, thus for a total of ε
n .

By decreasing the entry fee by this quantity, we are guaranteeing that any bidder that pays the entry fee in
MP , their coupled bidder will also pay the entry fee in MP

ε .
Then, the subset of bidders entering the MP

ε mechanism is larger than or equal to the bidders entering
MP . Their bids have now at most decreased again by ε

nm , thus the total revenue loss is at most ε
n as with

SRev. However, the largest loss is from the entry fees, which can be up to ε
n per bidder, thus at most

ε+ o(ε).
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We now proceed to proving Theorem 3 by applying Lemma 4 twice.

Proof of Theorem 3. Let M̂ be the Rev mechanism constructed for the valuation distribution D̂. From
Lemma 4 we know that

Rev(D,M̂ε) ≥ Rev(D̂)− ε

Additionally, letM be the optimal Rev mechanism constructed for the valuation distribution D. Lemma
4 implies that

Rev(D̂) ≥ Rev(D̂,Mε) ≥ Rev(D)− ε

Combining the two above inequalities we get

Rev(D,M̂ε) ≥ Rev(D̂)− ε ≥ Rev(D)− 2ε ≥ 1

8
OPT (D)− 2ε
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A Contextual Mechanism Design

A.1 Classification Problem

In this last section, we are trying to generalize the above results to arbitrary classes of auctions. In particular,
given the context x of our bidder, we would like to employ the best mechanism among a particular class of
mechanisms.

In class, we saw how to learn optimal auctions by using the Empirical Revenue Maximization rule. This
framework would essentially choose the best mechanism h from a class of mechanisms H that obtained the
highest empirical revenue. We cannot directly apply the ideas to our setting, since we have a different context
for each bidder in the training set.

To take into account the extra information, we will use ideas from the contextual bandit problem. Formally,
fix a space of mechanisms H. What we are trying to find, is the best mechanism for each bidder context,
namely a policy π : [0, 1]p → H. Given a p-dimensional vector x ∈ [0, 1]p, this policy should give the
mechanism h = π(x) that we should employ if we are selling to a bidder with feature vector x.

We now adopt the Empirical Revenue Maximization framework for our policy example. Define R(π, xi, vi)
to be the revenue of policy π when employed for a bidder with feature vector xi. This revenue can be
computed as we have access to the true valuations of the bidder.

Then, when a new bidder comes, we will choose the policy π∗ that achieves the highest empirical revenue.

Algorithm 2 Choosing the Optimal Auction with Context

1: Given mechanisms H and policies π : [0, 1]d → H
2: Given samples {(vij , xi)}i∈[q]
3: For a new bidder with feature vector x choose policy π∗

4:

π∗ = arg max
π

1

q

∑
i∈[q]

R(π, xi)

5: Use mechanism π∗(x)
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B Extending [BDHS15] to Multiple Bidders

This section was part of our effort to extend optimally pricing items from base-value distributions when
multiple bidders are interested in them.

Even though this is not entirely relevant to our project, we initially thought that our valuation distribution
is base-value and such results can be used to get approximately-optimal mechanisms.

B.1 Semi-Independent Setting

The way [BDHS15] proves that Simple vs Optimal mechanisms exist for base-value distributions was by first
extending the [BILW14] result to semi-independent distributions. These are distributions when either the
items are fully independent, or they are identical. Their extension was by following the original proof of
[BILW14] and tweaking some terms in a summation to make it valid.

What we propose is a similar extension. We instead use the seminal work of [CDW16] that extended
Simple vs Optimal mechanisms to many bidders. Then we will follow their proof but modify their summations
such that they group identical items together. Although details have to be checked, we believe that such an
extension is possible and thus we can prove that if D is a semi-independent valuation distribution then

Rev(D) ≥ 1

8
OPT (D)

B.2 Remaining Reduction

In this subsection, we assume that we have proved the extension of the multi-bidder Simple vs Optimal
mechanism from [CDW16] to the semi-independent setting. In particular, we have proved the following
theorem for multiple additive bidders.

Theorem 4. Let D be a semi-independent distribution of valuations for m items and n additive bidders.
Then

max{BV CG(D), SREV (D)} ≥ 1

8
REV (D)

In this subsection we will prove that if we have n additive bidders whose values for each item are drawn
from independent base-value distributions of valuations, we have

max{BV CG(D), SREV (D)} ≥ 1

16
REV (D)

Note that we are assuming that the value of each bidder i for item j is equal to bi + eij , where the bi
and eij are independent. This is not quite the case for our problem, since the 〈θ, xi〉 are not necessarily
independent, due to the use of the common θ parameter.

Regardless, define a new distribution D′ with 2m items: B1, . . . , Bm and V1, . . . , Vm. Each bidder i will
have value bi for all items B and value eij for item Vj .

It is easy to see that REV (D) ≤ REV (D′). This is because we can always define a mechanism on D′ that
bundles item Bi with Vi and then apply the optimal mechanism from D. This will give exactly REV (D).

Note that we are now in the semi-independent setting. This is because items B1, . . . , Bm are similar,
whereas the V items and any B item are independent. From Theorem 2 we conclude that

1

8
REV (D) ≤ max{BV CG(D′), SREV (D′)}

Take the SREV (D′) term. Selling item Bi and Vi separately will result in revenue equal to SREV (Bi) +
SREV (Vi). However, if we sell these two items as a bundle, we will always get at least half the revenue by
selling the one with highest expected revenue and giving the other one ‘for free’. Hence by summing over all
pairs (Bi, Vi) we get the desired result.

SREV (Bi) + SREV (Vi) ≤ 2BREV (Bi, Vi) = 2SREV (Bi + Si)

⇒ SREV (D′) ≤ 2SREV (D)

Take now the BV CG(D′) term. Consider the optimal BVCG mechanism, where each bidder i pays entry
fee ei and enters a VCG auction for each item independently. We know that the VCG

11



C Known Base Improvements

This section was an effort of ours to improve the 12-Approximation result of [BDHS15] if the base value is
known instead of drawn from a distribution. This again turned out not to be very relevant to our project,
since knowing the base value (the value of 〈θ, x〉) makes the valuations for the items almost independent.

C.1 Better Than 12-Approximation

Looking back to the proof of [BDHS15] of the 12-approximation mechanism, we can see that the extra factor
of 2 comes from the following inequality

SRev(Bi) + SRev(Vi) ≤ 2BRev(Bi + Vi)

We provide a short proof of the above statement.

Claim. When selling two items with independent values, optimally selling them together as a bundle obtains
at least half the revenue of selling them separately.

Proof. Let the two items be A,B. Selling them separately can give maximum revenue by setting prices α, β
that maximize α · pA and β · pB . Here pA is the probability that the bidder has value ≥ α and similarly for
pB .

Thus, the total revenue of selling separately is αpA+βpB . Intuitively, we will achieve the above inequality
by selling the item with the most revenue and giving away the other item with it, ‘for free’. Without loss
of generality, assume that αpA ≥ βpB . Then one way to sell the bundle is to price both items at α. If the
bidder buys A, then they will buy the bundle as well. Hence the probability that a bidder purchases the
bundle is ≥ pA. As a result, the revenue of the optimal bundling mechanism is

BRev(A+B) ≥ αpA ≥
1

2
· 2αpA ≥

1

2
(αpA + βpB) =

1

2
(SRev(A) + SRev(B))

In our case, one of the items has a very simple valuation distribution. Its value is equal to a scalar with
certainty. The question here is whether we can obtain a better-than-2 approximation by bundling the items
together. Since we cannot hope to improve the 6-approximation of the semi-independent items, this seems
to be the only part that we can improve for our constant base-value distributions.

Formal Setup. We have two items to sell, item A with value always equal to α ≥ 0. Item B has value
according to the CDF F . The optimal way of selling the two items separately is to sell A with price α
and sell B at price β, the one that maximizes the expression β(1 − F (β)). Hence the maximum revenue
achievable by selling separately is equal to

OPT := α+ max
β

β(1− F (β))

When we bundle together, we are effectively selling a new item C whose value distribution has been shifted
α upwards. Hence selling at a value of α+β will be purchased with probability 1−F (β). Hence the optimal
revenue of bundling together is

REV := max
β

(α+ β)(1− F (β))

As a result, our goal is to verify whether or not min REV
OPT ≥

1
2 .

Non-Example. Consider the following example. The value of item A is α = 1 and the value of B is
drawn from the following distribution

β =

{
ε w.p. 1− ε
1
ε w.p. ε
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Here, you can think of ε as a positive constant very close to 0, certainly < 1. Hence OPT = 1 + 1 = 2
and

REV = max

{
(1 + ε),

(
1 +

1

ε

)
ε

}
= 1 + ε

As a result, the ratio of selling separately and selling as a bundle is arbitrarily close to 1
2 . We believe that

this is because the distribution of β is non-regular. If we restrict the valuations of β to regular distributions,
we might be able to get something better than 1

2 . As an example, we offer a proof that if β comes from the
exponential distribution, then the ratio is 1

1+e .

Example. Consider the following example. The value of item A is α and the value of B is drawn from
the exponential distribution with parameter λ, i.e. β ≤ x with probability 1− e−λx.

OPT = α+ max
β

β · e−λβ β=1/λ
====== α+

1

eλ

And for the other term

REV = max
β

(α+ β)e−λβ
α+β=1/λ

========
1

λ
eαλ−1 =

eαλ

eλ

The ratio of the two terms is equal to

REV

OPT
=

eαλ

eαλ+ 1
≥ e−1/e ≈ 0.692

C.2 Using SDPs

Now the problem boils down to finding the worst distribution of β that will minimize our ratio of REV/OPT .
We adopt the framework of [DZ20] where they used a specific relaxation of SDPs to find the worst regular
distribution for a specific pricing strategy. We would like to use a similar framework, where our program
will have the following form.

α∗ρ = min
F, OPT, REV, p∗, p∗∗, α

REV

OPT

s.t. F is regular

x(1− F (x)) ≤ OPT
p∗(1− F (p∗)) ≥ OPT
(α+ x)(1− F (x)) ≤ REV
(α+ p∗∗)(1− F (p∗∗)) ≥ REV
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