
Efficient Optimization of Multilayer Coatings for Ultrafast Optics
using Analytic Gradients of Dispersion

Jonathan R. Birge and Franz X. Kärtner

We develop a fully analytic method for computing gradients of dispersion
(to any order) for a dielectric multilayer coating, and demonstrate how
group delay gradients can be used to optimize the dispersion of such a
filter. The algorithm complexity is linear with the number of layers and
quadratic in dispersion order. To our knowledge, this is the first published
algorithm for computing exact analytic gradients of dispersion. We show
an approximation that speeds up the computation significantly, making
it linear in dispersion order. MATLAB and C code implementing the
algorithms are made available. c© 2007 Optical Society of America

OCIS codes: 310.6860, 310.0310, 320.0320

1. Introduction

Dispersion compensating dielectric mirrors1, 2 have played a critical role in the develop-
ment of mode-locked lasers, with state-of-the-art mirror pairs allowing for femtosecond
group delay control over nearly an octave of bandwidth.3 Such precise control of optical
phase has enabled pulses containing only a few optical cycles directly from an oscilla-
tor.4, 5 Furthermore, the compression or manipulation of pulses outside of the laser cavity
requires the design of mirrors with prescribed group delay dispersion over extremely
wide bandwidths.6 Thus, the synthesis of multilayer filters with prescribed phase prop-
erties has received increasing interest in the past decade or so.7, 8

When numerically optimizing a thin film structure, the majority of the computational
effort is dedicated to repeatedly computing the gradient of the merit function, and per-
haps also the merit function alone (such as during line searches with numerical deriva-
tives). Should the merit function include the spectral dispersion, one must be able to com-
pute the gradient of phase derivatives. While analytic methods have been published for
computing gradients of simple reflectivity,9 no work has been shown on analytically com-
puting gradients of dispersion. To our knowledge, this is the first published algorithm for
computing analytic gradients of dispersion, approximate or otherwise.

We recently demonstrated an inductive method10, 11 for computing analytic derivatives
of multilayer phase to any order. Here, we extend this method to computing the full
analytic gradient of such phase derivatives. To our knowledge, this is the first published

1

algorithm to compute the exact analytic gradient of dispersion. The method is O[nm2] in
terms of matrix multiplications, where n is the number of layers and m is the dispersion
order. Furthermore, we show an approximation that allows for the accurate computation
of dispersion gradients in only O[nm], with significant improvement in practice even for
m = 1 (group delay).

Computing analytic gradients is important for optimizing multilayer coatings for two
reasons. First, the use of analytic derivatives avoids the issues of numerical stability as-
sociated with finite differences, improving accuracy and convergence.12 Second, and per-
haps most importantly, computing gradients using finite differences results in a gradient
algorithm that scales as O[n2] in the number of layers, making it rather inefficient for
complicated mirror systems.

While the general scheme shown in this paper can be applied to the computation of
any order of dispersion, the implementation complexity increases for higher orders. For-
tunately, group delay alone can be used in a least squares optimization of dispersion, as
shown in Section 2. Thus, in this paper we only focus explicitly on gradients of group
delay.

Finally, we show an example gradient computation for a chirped mirror used in a mode-
locked laser cavity. We give relative timing results for the gradient with and without the
aforementioned approximation, and show the resulting difference in computed group
delay (GD) and group delay dispersion (GDD).

2. Optimization of Dispersion Using Group Delay Gradients

In most optical systems, zeroth- and first-order phase are irrelevant, representing a car-
rier phase-shift and overall time-shift, respectively. For this reason, group delay disper-
sion (GDD) or higher-order dispersion have been typically used to optimize the phase
response of filters. However, in the case where weighted least squares minimization is
used (at least for dispersion errors) the spectral group delay can be optimized directly by
automatically including an error minimizing constant delay as follows.

Consider the portion of the merit function due to group delay, assuming weighted least
squares minimization:

zgd ≡ −
nk∑
i=1

wi

(
τg(ki)− τg0(ki) + τ ∗)2, (1)

with τg(k) the group delay of the filter under optimization, τg0(k) the ideal delay, wi the
weighting for the error evaluated at nk points. We’ve also introduced an arbitrary con-
stant group delay τ ∗ which will be chosen to minimize the error. To find τ ∗ we find the
stationary point of (1):

∂zgd

∂τ ∗ = −
∑

i

2wi [τg(ki)− τg0(ki) + τ ∗] = 0. (2)

2

Because of the squared error, the offset is easily isolated. Solving for τ ∗ gives

τ ∗ =
1

W

∑
i

wi

(
τg(ki)− τg0(ki)

)
, (3)

≡ τg − τg0, (4)

with W the weighting normalization
∑

i wi and where we’ve used an overbar to denote
the weighted mean. Thus, the delay offset which minimizes the squared error is simply
the difference between the weighted means of the actual and ideal group delays, an intu-
itive result. Substituting the above into (1) gives

zgd ≡ −
nk∑
i=1

wi

(
τg(ki)− τg0(ki) + τg − τg0

)2
. (5)

Taking the gradient of (5) with respect to the vector of layer thicknesses d yields

∇d zgd = −
∑

i

wi

(
τg(ki)− τg0(ki) + τg − τg0

) (
∇dτg(ki) +∇dτg

)
. (6)

This gradient can be used to optimize toward a desired spectral GDD (or whatever order
dispersion) by computing the associated ideal GD.

It should be noted that to the extent that the final design has a finite error, minimizing
GDD error is not generally the same as minimizing GD error. However, it can be argued
that for wide bandwidths, minimizing spectral GD error is preferable to minimizing GDD
error. In fact, ideally one would optimize for least magnitude squared error of complex
reflectivity (or transmission) modulo a zeroth- and first-order phase term, as that would
minimize error energy. However, this would require removing both an error minimizing
constant and linear term and thus require solving a two-dimensional system of equa-
tions at each optimization step. Furthermore, it would reintroduce the problem of phase
unwrapping. However, it is potentially worth pursuing in the future, especially given
recent work showing the ineffectiveness of GDD in optimizing chirped mirrors.13

3. Analytic Computation of Stack Phase Derivatives

Here, we briefly review the analytic computation of phase derivatives developed pre-
viously,11 including the so-called constant coupling approximation. We leave out most
details here, and only cover computation of first-order phase derivatives (group delay).
However, the method can be directly extended to any order of dispersion. Further details
and a discussion of the validity of the constant coupling approximation can be found in
Ref. 11.

3

(-1,0)TT

Γ

(n,0)T

(n,)T

1

Fig. 1. Diagram showing transfer matrix notation.

3.A. General Case

In this paper we will follow the convention established in the Ref. 11 and consider a
dielectric stack whose total transfer matrix is written as

T(k) =

(
T11(k) T12(k)

T ∗
12(k) T ∗

11(k)

)
. (7)

In our notation, T` refers to the transfer matrix of the `th layer, which is defined to in-
clude only the interface reflection between it and the previous medium and propagation
through the layer. We’ll write T(`2,`1) ≡ T`2 · · ·T`1+2T`1+1 to refer to the matrix that goes
from the end of layer `1 to the end of layer `2. The substrate can be handled as a final layer
with a thickness of zero.

For convenience, we depart from computing phase derivatives in terms of frequency, as
was done in Ref. 11, and use vacuum wavenumber, k = ω/c, instead. This simply avoids
having c appear in intermediate formulas, which will help when considering gradients.
This also more closely matches the way computation is done in practice, making it easier
to compare the results of this paper with the code provided.

In our notation, the transfer matrix operates on a vector whose components are the
forward and reverse propagating wave amplitudes, respectively.14 For reasons that will
become clear later, we will write the matrix for the `th layer as the product of a full matrix
D`, which handles the transfer across the interface, followed by a diagonal matrix P` that
propagates through the layer:

T` ≡ P` D` (8)

=

(
e−iñ`(k)d`k 0

0 eiñ`(k)d`k

)
× 1

2

(
1 + p`(k) 1− p`(k)

1− p`(k) 1 + p`(k)

)
, (9)

where ñ`(k) ≡ n`(k) cos θ` is the effective index (which takes into account the propagation

4

angle θ` of the wave) and p`(k) is the ratio

p`(k) ≡

ñ`−1(k)

ñ`(k)
TE polarization,

ñ`−1(k)n2
` (k)

ñ`(k)n2
`−1(k)

TM polarization.
(10)

The complex transmission and reflection coefficients are given from the elements of the
transfer matrix (8) by

Γ(k) = −T ∗
12(k)

T ∗
11(k)

, (11)

T (k) = T11(k)− |T12(k)|2

T ∗
11(k)

, (12)

respectively.
To determine the mth frequency derivative of phase (either in reflection or transmis-

sion) one must know the zeroth through mth derivatives of the elements of the transfer
matrix. As discussed in Ref. 11, this can be done in O[nm2] operations by inductively com-
puting the matrices T(`,0) for ` from one to n. In the case of group delay, for example, this
means repeatedly computing matrices of the form

T(`,0) = T`T(`−1,0), (13)
∂T(`,0)

∂k
=

∂T`

∂k
T(`−1,0) + T`

∂T(`−1,0)

∂k
. (14)

3.B. Constant Coupling Approximation

Assuming p′
`(k) → 0 yields a significant decrease in complexity for computing dispersion,

from O[m2] to O[m], as experimentally verified in Table 1 of Ref. 11. This implies that we
neglect the derivatives of the D`(k) matrices that couple between forward and backward
waves, hence the name. The reason why this is more efficient can be seen by considering
the derivative of (8) under the approximation,

T′
`(k) ≈ P′

` D` (15)

=

(
−id`

[
ñ`(k) + kñ′

`(k)
]

0

0 id`

[
ñ`(k) + kñ′

`(k)
])P′

` D` (16)

≡ −id`

[
ñ`(k) + kñ′

`(k)
]
σ3T`(k). (17)

For convenience, we have used the Pauli matrix

σ3 ≡

(
+1 0

0 −1

)
, (18)

though there is obviously no implied connection between the present application and
spinors except where the commutation relations may prove useful (e.g two such deriva-
tive approximations in succession cancel to a scalar). The reason for the simple form is

5

that P` is diagonal, and so taking the derivative of it is equivalent to left multiplying it
with another diagonal matrix. Since the symmetry of transfer matrices is such that we
only need to keep track of one row, left multiplication by a diagonal matrix is computa-
tionally equivalent to a single scalar multiplication (though it still does not commute, of
course, so it cannot be lumped with other scalars). The net result is that the first derivative
matrix can be computed using only one matrix multiplication instead of two.

4. Gradients of T(k)

At the core of computing the gradient of group delay is the problem of computing the
gradients of T(n,0)(k) and T′

(n,0)(k) with respect to the n layer thicknesses, denoted as d`.
To begin with, we factor the total transfer matrix to isolate the `th layer:

T = T(n,`) T` T(`−1,0). (19)

The `th gradient element is then simply

∂T

∂d`

= T(n,`)
∂T`

∂d`

T(`−1,0) (20)

= −ikñ`T(n,`) σ3 T(`,0), (21)

where we have used (8) to compute the derivative.
Inspection of (21) immediately suggests the general method for computing the gradi-

ents: If we precompute all the front matrices T(`,0) as well as the back matrices T(n,`) for
each layer `, then the gradients can be computed trivially in n matrix multiplications. (The
multiplication by the Pauli matrix σ3 is not counted as it is computationally equivalent to
a scalar multiplication, as explained in the previous section.) More importantly, the front
matrices can be computed in n matrix multiplications by simply computing them induc-
tively as shown in Section 3. The same is true of the back matrices, though there are some
complications that will be covered in Section 5.C. The entire gradient can thus be com-
puted in O[n] matrix multiplications, a significant improvement over the O[n2] operations
required for a naı̈ve finite difference gradient.

5. Gradients of T′(k)

5.A. General Method

The scheme outlined in the previous section can be applied in a straightforward way
to find gradients of any order wavenumber derivative, albeit with significant growth in
complexity as higher derivatives are used. As justified in Section 2, we will simply demon-
strate the method for the first wavenumber derivative used to compute GD. Taking the k

derivative of (19), the matrix product rule gives us the following decomposition:

T′(k) = T′
(n,`) T` T(`−1,0) + T(n,`) T

′
` T(`−1,0) + T(n,`) T` T

′
(`−1,0). (22)

6

The `th gradient element is then

∂T′(k)

∂d`

= −ikñ`T
′
(n,`) σ3 T(`,0) + T(n,`)

∂T′
`

∂d`

T(`−1,0) − ikñ`T(n,`) σ3 T′
(`,0), (23)

where we’ve applied the result in (21) to simplify the outer two terms. From the definition
of T` in (8) we obtain

∂T′(k)

∂d`

= −ikñ`

[
T′

(n,`) σ3 T(`,0) + T(n,`) σ3 T′
(`,0)

]
+

1

2p
T(n,`)

(
2p(d`kñ + i)(ñ + kñ′)− ikñp′ −ikñp′e−i2d`kñ

ikñp′ei2d`kñ 2p(d`kñ− i)(ñ + kñ′) + ikñp′

)
T(`,0), (24)

where all primes refer to wavenumber derivatives and we’ve dropped some of the unam-
biguous ` subscripts for convenience. In arriving at the above, we solved for the matrix
which takes the simultaneous wavenumber and layer thickness derivative of T`.

The front and back derivative matrices, T′
(`,0) and T′

(n,`) respectively, are found using
the exact methods of Section 3. The front matrices are available directly as they are the
intermediate results of computing T′. The back derivative matrices require extra compu-
tation, however, and can be found by proceeding through the stack in reverse, doing right
multiplications in lieu of left multiplications. (In the case where the constant coupling ap-
proximation is used, there is a more efficient way to compute the back matrices, discussed
in Section 5.C.)

Higher order dispersion terms beyond what we’ve shown here can be computed sim-
ilarly, and the computation of the front and back matrices will scale as O[nm2], as per
Section 3. However, the number of matrix multiplications required for the final matrices
[e.g. equation (24)] grows exponentially, as O[3m], and the complexity of the elements in
each matrix increases considerably. Thus, higher order dispersion quickly becomes infea-
sible with this method, and even the m = 1 case (for group delay) is rather complex, as
can be seen from (24). In the next section, we will show how to use the constant coupling
approximation to greatly simplify the gradient computation, significantly speeding up
low order dispersion and enabling the gradient computation of higher order dispersion.

5.B. Constant Coupling Approximation

We have already seen how the assumption that D′
`(k) → 0 greatly speeds up the computa-

tion of the front and back matrices, as needed for (24). However, it also greatly simplifies
the final terms in (24). Under the constant coupling approximation, the off diagonal terms
in the last product term vanish, leaving a trivial scalar multiplication in lieu of a matrix

7

product. Thus, equation (24) becomes

∂T′(k)

∂d`

= −ikñ`

[
T′

(n,`)σ3T(`,0) + T(n,`)σ3T
′
(`,0)

]
+

i(ñ + kñ′)

2p
T(n,`)σ3T(`,0) + d`kñ(ñ + kñ′)T, (25)

where the third term is a scalar multiplication of the zeroth-order gradient element from
(24), and the last term is just a scaling of the total transfer matrix.

In general, the simplification afforded by the constant coupling approximation not only
takes the front and back matrix computation from O[nm2] to O[nm], but also makes the
final matrix expression [e.g. (25)] scale as O[2m] instead of O[3m], as all terms consist of
only two full matrices. In the specific case of group delay, the total speedup in practice is
roughly a factor of two, assuming n is large enough such that the computation of front
and back matrices dominate.11

Finally, the approximation makes it reasonable to compute GDD gradients, affording a
speed-up of roughly a factor of four. Taking another k derivative of (25) and combining
like terms gives

∂T′′(k)

∂d`

= −i[(n + kn′)/2p− n]
[
T′

(n,`)σ3T(`,0) + T(n,`)σ3T
′
(`,0)

]
−

2ikn
[
T′

(n,`)σ3T
′
(`,0) + T′′

(n,`)σ3T(`,0) + T(n,`)σ3T
′′
(`,0)

]
+

in′

2p
T(n,`)σ3T(`,0) + (d`ñ

2 + 2d`nn′k)T + d`nk(ñ + ñ′k)T′. (26)

The individual terms above are all derived in Ref. 11. While it is certainly possible to
compute GDD gradients without the constant coupling approximation, the final gradient
terms become extremely cumbersome. Fortunately, given the accuracy of the constant
coupling approximation for GDD, as demonstrated in Fig. 3, there is little reason to use
exact GDD computations except perhaps as a final refinement step.

5.C. Efficient Computation of Back Derivative Matrices

An element of extending the constant coupling method of Section 3.B to gradients that
is not straightforward is the issue of efficiently handling the back matrices, T(n,`), which
take the fields from the interior of the stack to the end. The efficiency of the constant
coupling approximation hinges on the fact that we build the full matrix from successive
left multiplications of PD layers, as in (8). Were we to simply compute the matrices by
using right multiplications and working our way backwards from the end, therefore, the
constant coupling approximation would not yield any advantage.

The way around this is to actually compute the back matrices as the “front” matrices for
the reversed stack. This can be done without having to recompute any of the individual

8

transfer matrices by using the reversal theorem of transfer matrices15

TR =
T†

|T|
, (27)

where TR denotes the transfer matrix for the reversed stack. In terms of a specific layer,
we must also take into account the fact that the propagation must occur after the bound-
ary. With this in mind, we can write a single layer of the reversed stack in terms of the
components of the original stack,

TR
n−`+1 = P†

`

D†
`−1

|D`−1|
. (28)

Note that the propagation matrix is once again exposed on the left side as in (15).
If we were to have to compute all of the determinants arising from (28), the extra com-

plexity would mitigate any advantage of the constant coupling approximation. Fortu-
nately, however, we can safely ignore the determinants as they cancel in the end. To see
how, consider the computation for T(n,`) in terms of the reverse stack,

T(n,`) =

(
TR

(`,0)

)†∣∣∣TR
(`,0)

∣∣∣ (29)

=

[
D†

`−1

|D`−1|

(
P†

`−1
D†

`

|D`|

)
· · ·
(
P†

n−1
D†

n

|Dn|

)]†
∣∣∣∣ D†

`−1

|D`−1|

(
P†

`−1
D†

`

|D`|

)
· · ·
(
P†

n−1
D†

n

|Dn|

)∣∣∣∣ . (30)

The groups in parentheses represent the individual layer matrices of the reversed stack.
Moving the determinants in the denominator outside the surrounding determinant yields
the product of the squared determinants (since we are dealing with 2×2 matrices), giving
us

T(n,`) =

[D†
`−1(P

†
`−1D

†
`)···(P

†
n−1D

†
n)]

†

|D`−1||D`||Dn|

|D†
`−1(P

†
`−1D

†
`)···(P

†
n−1D

†
n)|

(|D`−1||D`||Dn|)2

. (31)

The determinants then all cancel (the determinant of a propagation matrix is one) yielding
a very simple and direct way to go from the individual layer matrices to the back matrices,

T(n,`) =
[
D†

`−1

(
P†

`−1D
†
`

)
· · ·
(
P†

n−1D
†
n

)]†
(32)

This expression has two advantages. First, and most importantly, it allows us to us to
build up the back matrices using successive left multiplications of PD matrix pairs, en-
abling the use of the fast approximate algorithm discussed in Section 3.B to find the k

derivatives of (32). Second, everything on the right hand side of (32) has already been
computed in finding the front matrices, T(`,0). Consult the code referenced in Section 9 for
further details and a demonstration.

9

6. Dispersion Gradients from Matrix Gradients

Having computed gradients of the full transfer matrix and its k derivatives, the final step
in any optimization will be the translation of those values into gradients of dispersion for
use in the merit function gradient computation. For reference, we provide formulas for
the case of reflection group delay:

Γ′(k) =
T12T

′
11 − T ′

12T11

T 2
11

, (33)

φ′(k) =
=[Γ′]<[Γ]−<[Γ′]=[Γ]

|Γ|2
, (34)

∇Γ(k) = − 1

T11

(Γ∇T11 +∇T12), (35)

∇ |Γ(k)|2 = 2 (<[∇Γ]<[Γ] + =[∇Γ]=[Γ]) , (36)

∇Γ′(k) =
1

T 2
12

[∇T12T
′
11 +∇T11T

′
12 + Γ(2∇T11T

′
11 − T11∇T ′

11 − T11∇T ′
12)] , (37)

∇φ(k) =
=[∇Γ]<[Γ]−<[∇Γ]=[Γ]

|Γ|2
, (38)

∇φ′(k) =
1

|Γ|2

[
=[∇Γ′]<[Γ]−<[∇Γ′]=[Γ]−∇φ

(
<[Γ′]<[Γ]−=[Γ′]=[Γ]

)
+

φ′∇ |Γ|2

2

]
.

(39)

In the above, all gradients are with respect to the layer thicknesses, and all primes refer to
k derivatives.

7. Algorithm Overview

Here we summarize the overall dispersion gradient algorithm. The general steps are:

1. Precompute all individual layer transfer matrices P` and D` and their derivatives
with respect to k, .

2. Iteratively compute front transfer matrices T(`,0) and their derivatives for
n− 1 > ` > 1, as demonstrated in Section 3 and Ref. 11.

3. Compute back transfer matrices T(n,`) and derivatives by repeating Step 2 for the
reversed stack and then taking the hermitian transpose, as shown in (32) and ex-
plained in Section 5.C.

4. Loop through all layers, computing matrix gradient elements of∇T and∇T′ as per
the exact expression (21) or the approximate expression (25).

5. Translate matrix gradients into reflectivity and group delay gradients as done in
Section 6.

10

6. Finally, compute merit function gradients from the matrix gradients found in step 5,
using the results from Section 2 when group delay error is part of the merit function.

8. Example Gradient Computation

To demonstrate the efficacy of the constant coupling approximate gradient algorithm, we
have computed the gradient of group delay at a central wavelength for a typical chirped
mirror. For reference, the chirped mirror spectral GD and GDD are plotted in Figures 2
and 3, respectively. The gradient of group delay at 800 nm is shown with and without
the constant coupling approximation in Figure 4, illustrating how close the approximate
version is to the exact computation.

When computing the gradient at 256 wavelengths, the constant coupling gradient was
empirically found to be 63% faster than the exact gradient algorithm, demonstrating that
computational savings in the gradient extend from the algorithms given in Ref. 11. We
thus estimate that our GD gradient method is roughly four times faster than computing
gradients using GDD.

Note that the gradient itself is exact (i.e. it is an exact analytic gradient of an approxi-
mate group delay) so using the approximation should not affect the convergence rate, but
may have a small effect on the final solution. We expect that, on average, optimizations
will be made correspondingly faster. Should final group delay error be so small that the
constant coupling approximation error is no longer negligible, a few refinement steps can
be performed at the end with the exact gradient to converge at the exact solution.

9. MATLAB and C Code

To simplify use of these algorithms, we have provided MATLAB and C code of both the
GD gradient algorithms discussed in this paper, as well as the GD and GDD algorithms
from Ref. 11. The C codes are written as MATLAB MEX functions to enable their use
in optimization routines within MATLAB, though each function is available as a stand-
alone for use in user programs. Several ancillary MATLAB functions that facilitate mirror
optimization using the Optimization Toolbox are also included. The code is available at
http://www.mit.edu/˜birge/dispersion .

10. Conclusions

We have demonstrated the extension of the fast group delay algorithm in Reference 11
to the O[n] computation of group delay gradients, and have shown how dispersion op-
timization can be done using only group delay instead of costly group delay dispersion
calculations. In addition to providing a significant speed advantage, this method uses an-
alytic derivatives of both phase and layer thickness. This avoids the numerical difficulties

11

6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0 1 2 0 0
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

GD
 (fs

)

W a v e l e n g t h (n m)

 E x a c t
 A p p r o x

Fig. 2. (Color online) Spectral group delay of example chirped mirror. A portion of
the response past the high reflectivity region (wavelengths greater than about 1050
nm) is shown to demonstrate that the approximation even holds when the group
delay is rapidly varying.

inherent with finite differences, and saves the user from being concerned with issues of
optimal grid spacing or phase unwrapping.

11. Acknowledgements

The authors thank Christian Jirauschek for helpful discussions. This work was supported,
in part, by NSF grant ECS-0501478 and DARPA grant HR0011-05-C-0155.

References

1. A. Stingl, M. Menzner, C. Spielmann, F. Krausz, and R. Szipöcs, “Sub-10-fs mirror-dispersion-
controlled Ti:sapphire laser,” Opt. Lett. 20, 602–604 (1995).

2. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer,
M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22,
831–833 (1997).

3. F. X. Kaertner, U. Morgner, T. R. Schibli, E. P. Ippen, J. G. Fujimoto, V. Scheuer, G. Angelow, and
T. Tschudi, “Ultrabroadband double-chirped mirror pairs for generation of octave spectra,” J.
Opt. Soc. Am. B 18, 882–885 (2001).

4. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, and E. P. Ippen,
“Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–
413 (1999).

12

6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0 1 2 0 0
- 6 0 0 0

- 4 0 0 0

- 2 0 0 0

0

2 0 0 0

4 0 0 0

6 0 0 0

GD
D (

fs2)

W a v e l e n g t h (n m)

 E x a c t
 A p p r o x

Fig. 3. (Color online) Spectral group delay dispersion of chirped mirror shown in
Fig. 2.

5. T. R. Schibli, O. Kuzucu, J. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and
G. Angelow, “Towards single-cycle laser systems,” IEEE J. Sel. Top. Quant. Elec. 9, 990–1001
(2003).

6. O. D. Mücke, R. Ell, A. Winter, J. Kim, J. R. Birge, L. Matos, and F. X. Kärtner, “Self-referenced
200 MHz octave-spanning Ti:saphhire laser with 50 attosecond carrier-envelope phase jitter,”
Opt. Express 13(5163) (2005).

7. A. V. Tikhonravov, “Some theoretical apsects of thin-film optics and their applications,” Appl.
Opt. 32, 5417–5426 (1993).

8. A. V. Tikhonravov, P. W. Baumeister, and K. V. Popov, “Phase properties of multilayers,” Appl.
Opt. 36, 4382–4392 (1997).

9. C. J. v. d. Laan and H. J. Frankena, “Fast computation method for derivatives of multilayer
stack reflectance,” Appl. Opt. 17, 538–541 (1978).

10. J. R. Birge, C. Jirauschek, and F. X. Kärtner, “Efficient analytic computation of group delay
dispersion from optical interference coatings,” in OSA Opt. Interference Coatings Top. Mtg., p.
ThA6 (Tucson, 2004).

11. J. R. Birge and F. X. Kärtner, “Efficient analytic computation of dispersion from multilayer
structures,” Appl. Opt. 45, 1478–1483 (2006).

12. K. Atkinson, An Introduction to Numerical Analysis (Wiley, New York, 1989).

13. P. Dombi, V. S. Yakovlev, K. O’Keeffe, T. Fuji, M. Lezius, and G. Tempea, “Pulse compression
with time-domain optimized chirped mirrors,” Opt. Express 13, 10,888–10,894 (2005).

14. J. Kong, Electromagnetic Theory (EMW, 2001).

15. A. A. Tovar and L. W. Casperson, “Generalized reverse theorems for multipass applications

13

0 1 0 2 0 3 0 4 0

- 6 0 0

- 4 0 0

- 2 0 0

0

2 0 0

4 0 0

6 0 0

8 0 0

GD
 Gr

adi
ent

 (fs
/nm

)

L a y e r

 E x a c t
 A p p r o x

Fig. 4. Exact and approximate gradient of the group delay of the filter shown in Fig.
2 at 800 nm. The gradient approaches zero for layers past the 40th as virtually all
of the light is reflected by that point.

in matrix optics,” J. Opt. Soc. Am. A 11, 2633–2642 (1994).

14

