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A fully analytic method for computing gradients of dispersion (to any order) for a dielectric multilayer
coating is developed, and it is demonstrated how group delay gradients can be used to optimize the
dispersion of such a filter. The algorithm complexity is linear with the number of layers and quadratic in
dispersion order. To our knowledge, this is the first published algorithm for computing exact analytic
gradients of dispersion. We show an approximation that speeds up the computation significantly, making it
linear in dispersion order. MATLAB and C code implementing the algorithms are made available. © 2007
Optical Society of America
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1. Introduction

Dispersion-compensating dielectric mirrors1,2 have
played a critical role in the development of mode-
locked lasers, with state-of-the-art mirror pairs allow-
ing for femtosecond group delay control over nearly an
octave of bandwidth.3 Such precise control of optical
phase has enabled pulses containing only a few optical
cycles directly from an oscillator.4,5 Furthermore, the
compression or manipulation of pulses outside of the
laser cavity requires the design of mirrors with pre-
scribed group delay dispersion over extremely wide
bandwidths.6 Thus the synthesis of multilayer filters
with prescribed phase properties has received increas-
ing interest in the past decade or so.7,8

When numerically optimizing a thin-film struc-
ture, the majority of the computational effort is ded-
icated to repeatedly computing the gradient of the
merit function and perhaps also the merit function
alone (such as during line searches with numerical
derivatives). Should the merit function include the
spectral dispersion, one must be able to compute the
gradient of phase derivatives. While analytic meth-
ods have been published for computing gradients of
simple reflectivity,9 no work has been shown on an-

alytically computing gradients of dispersion. To our
knowledge, this is the first published algorithm for
computing analytic gradients of dispersion, approxi-
mate or otherwise.

We recently demonstrated an inductive method10,11

for computing analytic derivatives of multilayer phase
to any order. Here we extend this method to computing
the full analytic gradient of such phase derivatives. To
our knowledge, this is the first published algorithm to
compute the exact analytic gradient of dispersion. The
method is O�nm2� in terms of matrix multiplications,
where n is the number of layers and m is the disper-
sion order. Furthermore we show an approximation
that allows for the accurate computation of disper-
sion gradients in only O�nm�, with significant im-
provement in practice even for m � 1 (group delay).

Computing analytic gradients is important for op-
timizing multilayer coatings for two reasons. First,
the use of analytic derivatives avoids the issues of
numerical stability associated with finite differences,
improving accuracy and convergence.12 Second, and
perhaps most importantly, computing gradients us-
ing finite differences results in a gradient algorithm
that scales as O�n2� in the number of layers, making
it rather inefficient for complicated mirror systems.

Although the general scheme shown in this paper
can be applied to the computation of any order of
dispersion, the implementation complexity increases
for higher orders. Fortunately, group delay alone can
be used in a least-squares optimization of dispersion,
as shown in Section 2. Thus in this paper we focus
explicitly only on gradients of group delay.

Finally, we show an example gradient computation
for a chirped mirror used in a mode-locked laser cav-
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ity. We give relative timing results for the gradient
with and without the aforementioned approximation
and show the resulting difference in computed group
delay (GD) and group delay dispersion (GDD).

2. Optimization of Dispersion Using Group Delay
Gradients

In most optical systems, zeroth- and first-order phase
are irrelevant, representing a carrier phase shift and
overall time shift, respectively. For this reason, GDD
or higher-order dispersion have been typically used to
optimize the phase response of filters. However, in
the case where weighted least-squares minimization
is used (at least for dispersion errors) the spectral GD
can be optimized directly by automatically including
an error minimizing constant delay as follows.

Consider the portion of the merit function due to
GD, assuming weighted least-squares minimization:

zgd � ��
i�1

nk

wi��g�ki� � �g0�ki� � �*�2, (1)

with �g�k� being the group delay of the filter under
optimization, �g0�k� being the ideal delay, and wi be-
ing the weighting for the error evaluated at nk points.
We have also introduced an arbitrary constant group
delay �*, which will be chosen to minimize the error.
To find �* we find the stationary point of Eq. (1):

�zgd

��* � ��
i

2wi��g�ki� � �g0�ki� � �*� � 0. (2)

Because of the squared error, the offset is easily
isolated. Solving for �* gives

�* �
1
W �

i
wi��g�ki� � �g0�ki��, (3)

� �g � �g0, (4)

with W the weighting normalization �i wi and where
we have used an overbar to denote the weighted mean.
Thus the delay offset, which minimizes the squared
error, is simply the difference between the weighted
means of the actual and ideal GDs, an intuitive result.
Substituting the above into Eq. (1) gives

zGD � ��
i�1

nk

wi��g�ki� � �g0�ki� � �g � �g0�2. (5)

Taking the gradient of Eq. (5) with respect to the
vector of layer thicknesses d yields

�dzGD � �2�
i

wi��g�ki� � �g0�ki� � �g � �g0���d�g�ki� � �d�g�.

(6)

This gradient can be used to optimize toward a de-
sired spectral GDD (or whatever order dispersion) by
computing the associated ideal GD.

It should be noted that to the extent that the final
design has a finite error, minimizing GDD error is not
generally the same as minimizing GD error. How-
ever, it can be argued that for wide bandwidths, min-
imizing spectral GD error is preferable to minimizing
GDD error. In fact, ideally one would optimize for
least magnitude squared error of complex reflectivity
(or transmission) modulo a zeroth- and first-order
phase term, as that would minimize error energy.
However, this would require removing both an error
minimizing constant and a linear term and thus re-
quire solving a 2D system of equations at each opti-
mization step. Furthermore, it would reintroduce the
problem of phase unwrapping. However, it is poten-
tially worth pursuing in the future, especially given
recent work showing the ineffectiveness of GDD in
optimizing chirped mirrors.13

3. Analytic Computation of Stack Phase Derivatives

Here we briefly review the analytic computation of
phase derivatives developed previously,11 including
the so-called constant coupling approximation. We
leave out most details here and cover only computa-
tion of first-order phase derivatives (GD). However,
the method can be directly extended to any order of
dispersion. Further details and a discussion of the
validity of the constant coupling approximation can
be found in Ref. 11.

A. General Case

In this paper we will follow the convention estab-
lished in Ref. 11 and consider a dielectric stack whose
total transfer matrix is written as

T�k� � �T11�k� T12�k�
T12

* �k� T11
* �k�	. (7)

In our notation, Tl refers to the transfer matrix of
the lth layer, which is defined to include only the
interface reflection between it and the previous me-
dium and propagation through the layer. Refering to
Fig. 1, we’ll write T�l2,l1� � Tl2 . . . Tl1�2Tl1�1 to refer to
the matrix that goes from the end of layer l1 to the end
of layer l2. The substrate can be handled as a final
layer with a thickness of zero.

For convenience, we depart from computing phase
derivatives in terms of frequency, as was done in Ref.
11, and use vacuum wavenumber k � ��c instead.

Fig. 1. Diagram showing transfer matrix notation.
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This simply avoids having c appear in intermediate
formulas, which will help when considering gradi-
ents. This also more closely matches the way compu-
tation is done in practice, making it easier to compare
the results of this paper with the code provided.

In our notation the transfer matrix operates on a
vector whose components are the forward and reverse
propagating wave amplitudes, respectively.14 For rea-
sons that will become clear later, we will write the
matrix for the lth layer as the product of a full matrix
Dl, which handles the transfer across the interface,
followed by a diagonal matrix Pl that propagates
through the layer:

Tl � PlDl (8)

��e�iñl�k�dlk 0
0 eiñl�k�dlk	�

1
2�1 � pl�k� 1 � pl�k�

1 � pl�k� 1 � pl�k�	,
(9)

where ñl�k� � nl�k�cos 	l is the effective index (which
takes into account the propagation angle 	l of the
wave), dl is the layer thickness, and pl�k� is the ratio

pl�k� �

ñl�1�k�
ñl�k�

TE polarization,

ñl�1�k�nl
2�k�

ñl�k�nl�1
2 �k�

TM polarization. (10)

The complex transmission and reflection coefficients
are given from the elements of the transfer matrix
(8) by


�k� � �
T12

* �k�
T11

* �k�
, (11)

T�k� � T11�k� �
�T12�k��2

T11
* �k�

, (12)

respectively.
To determine the mth frequency derivative of phase

(either in reflection or transmission) one must know
the zeroth through mth derivatives of the elements of
the transfer matrix. As discussed in Ref. 11, this can be
done in O�nm2� operations by inductively computing
the matrices T�l,0� for l from one to n. In the case of GD,
for example, this means repeatedly computing matri-
ces of the form

T�l,0� � TlT�l�1,0�, (13)

�T�l,0�

�k �
�Tl

�k T�l�1,0� � Tl

�T�l�1,0�

�k . (14)

B. Constant Coupling Approximation

Assuming p�l�k� → 0 yields a significant decrease in
complexity for computing dispersion, from O�m2� to

O�m�, as experimentally verified in Table 1 of Ref. 11.
This implies that we neglect the derivatives of the
Dl�k� matrices that couple between forward and back-
ward waves, hence the name. The reason why this is
more efficient can be seen by considering the deriva-
tive of Eq. (8) under the approximation

T�l�k� � P�lDl (15)

���idl�ñl�k� � kñ�l�k�� 0
0 idl�ñl�k� � kñ�l�k��	P�lDl

(16)

��idl�ñl�k� � kñ�l�k���3Tl�k�. (17)

For convenience, we have used the Pauli matrix

�3 ���1 0
0 �1	, (18)

though there is obviously no implied connection be-
tween the present application and spinors except
where the commutation relations may prove useful
(e.g., two such derivative approximations in succes-
sion cancel to a scalar). The reason for the simple
form is that Pl is diagonal, and thus taking the de-
rivative of it is equivalent to left multiplying it with
another diagonal matrix. Since the symmetry of
transfer matrices is such that we need to keep track
of only one row, left multiplication by a diagonal ma-
trix is computationally equivalent to a single scalar
multiplication (though it still does not commute, of
course, so it cannot be lumped with other scalars).
The net result is that the first derivative matrix can
be computed using only one matrix multiplication
instead of two.

4. Gradients of T(k)

At the core of computing the gradient of GD is the
problem of computing the gradients of T�n,0��k� and
T��n,0��k� with respect to the n layer thicknesses. To
begin with, we factor the total transfer matrix to
isolate the lth layer:

T � T�n,l�TlT�l�1,0�. (19)

The lth gradient element is then simply

�T
�dl

� T�n,l�

�Tl

�dl
T�l�1,0�, (20)

��ikñlT�n,l��3T�l,0�, (21)

where we have used Eq. (8) to compute the derivative.
An inspection of Eq. (21) immediately suggests the

general method for computing the gradients: If we
precompute all the front matrices T�l,0� as well as the
back matrices T�n,l� for each layer l, then the gradients
can be computed trivially in n matrix multiplications.
(The multiplication by the Pauli matrix �3 is not

2658 APPLIED OPTICS � Vol. 46, No. 14 � 10 May 2007



counted as it is computationally equivalent to a scalar
multiplication, as explained in the previous section.)
More importantly, the front matrices can be com-
puted in n matrix multiplications by simply comput-
ing them inductively as shown in Section 3. The same
is true of the back matrices, though there are some
complications that will be covered in Subsection 5.C.
The entire gradient can thus be computed in O�n� ma-
trix multiplications, a significant improvement over
the O�n2� operations required for a naive finite differ-
ence gradient.

5. Gradients of T�(k)

A. General Method

The scheme outlined in the previous section can be
applied in a straightforward way to find gradients of
any order wavenumber derivative, albeit with signif-
icant growth in complexity as higher derivatives are
used. As justified in Section 2, we will simply dem-
onstrate the method for the first wavenumber deriv-
ative used to compute GD. Taking the k derivative of
Eq. (19), the matrix product rule gives us the follow-
ing decomposition:

T��k� � T��n,l�TlT�l�1,0� � T�n, l�T�lT�l�1,0�

� T�n, l�TlT��l�1,0�. (22)

The lth gradient element is then

�T��k�
�dl

� �ikñlT��n,l��3T(l,0) � T(n,l)

�T�l

�dl
T(l�1,0)

� ikñlT(n,l)�3T��l,0�, (23)

where we have applied the result in Eq. (21) to sim-
plify the outer two terms. From the definition of Tl in
Eq. (8) we obtain

where all primes refer to wavenumber derivatives,
and we have dropped some of the unambiguous l
subscripts for convenience. In arriving at the above,
we solved for the matrix that takes the simultaneous
wavenumber and layer thickness derivative of Tl.

The front and back derivative matrices, T��l,0� and
T��n,l�, respectively, are found using the exact methods
of Section 3. The front matrices are available directly
as they are the intermediate results of computing T�.
The back derivative matrices require extra computa-
tion, however, and can be found by proceeding through

the stack in reverse, doing right multiplications in lieu
of left multiplications. (In the case where the constant
coupling approximation is used, there is a more effi-
cient way to compute the back matrices, discussed in
Subsection 5.C.)

Higher-order dispersion terms beyond what we
have shown here can be computed similarly, and the
computation of the front and back matrices will scale
as O�nm2�, according to Section 3. However, the num-
ber of matrix multiplications required for the final
matrices [e.g., Eq. (24)] grows exponentially, as O�3m�,
and the complexity of the elements in each matrix
increases considerably. Thus higher-order dispersion
quickly becomes infeasible with this method, and
even the m � 1 case (for GD) is rather complex as can
be seen from Eq. (24). In the next subsection, we will
show how to use the constant coupling approximation
to greatly simplify the gradient computation, signifi-
cantly speeding up low-order dispersion and enabling
the gradient computation of higher-order dispersion.

B. Constant Coupling Approximation

We have already seen how the assumption that
D�l�k� → 0 greatly speeds up the computation of the
front and back matrices, as needed for Eq. (24). How-
ever, it also greatly simplifies the final terms in Eq.
(24). Under the constant coupling approximation, the
off-diagonal terms in the last product term vanish,
leaving a trivial scalar multiplication in lieu of a ma-
trix product. Thus Eq. (24) becomes

�T��k�
�dl

� �ikñl�T��n,l��3T(l,0) � T(n,l)�3T��l,0��

�
i(ñ � kñ�)

2p T(n,l)�3T(l,0) � dlkñ(ñ � kñ�)T,

(25)

where the third term is a scalar multiplication of
the zeroth-order gradient element from Eq. (24),
and the last term is just a scaling of the total trans-
fer matrix.

In general, the simplification afforded by the con-
stant coupling approximation not only takes the front
and back matrix computation from O�nm2� to O�nm�
but also makes the final matrix expression [e.g., Eq.
(25)] scale as O�2m� instead of O�3m�, as all terms
consist of only two full matrices. In the specific case of
GD, the total speedup in practice is roughly a factor

�T��k�
�dl

� �ikñl�T��n,l��3T(l,0) � T(n,l)�3T��l,0��

�
1

2p T(n,l)�2p(dlkñ � i)(ñ � kñ�) � ikñp� �ikñp�e�i2dlkñ

ikñp�ei2dlkñ 2p(dlkñ � i)(ñ � kñ�) � ikñp�	T(l,0), (24)
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of two, assuming n is large enough such that the
computation of front and back matrices dominate.11

Finally, the approximation makes it reasonable
to compute GDD gradients, affording a speedup of
roughly a factor of four. Taking another k derivative
of Eq. (25) and combining like terms gives

�T�(k)
�dl

� �i�(n � kn�)�2p � n��T��n,l��3T(l,0)

� T(n,l)�3T��l,0�� � 2ikn�T��n,l��3T��l,0�

� T��n,l��3T(l,0) � T(n,l)�3T��l,0��

�
in�

2p T(n,l)�3T(l,0) � (dlñ
2 � 2dlnn�k)T

� dlnk(ñ � ñ�k)T�. (26)

The individual terms above are all derived in Ref. 11.
While it is certainly possible to compute GDD gradi-
ents without the constant coupling approximation,
the final gradient terms become extremely cumber-
some. Fortunately, given the accuracy of the constant
coupling approximation for GDD, as demonstrated in
Fig. 3 below, there is little reason to use exact GDD
computations except perhaps as a final refinement
step.

C. Efficient Computation of Back Derivative Matrices

An element of extending the constant coupling
method of Subsection 3.B to gradients, which is not
straightforward, is the issue of efficiently handling
the back matrices, T�n,l�, which take the fields from
the interior of the stack to the end. The efficiency
of the constant coupling approximation hinges on the
fact that we build the full matrix from successive left
multiplications of PD layers, as in Eq. (8). Were we to
simply compute the matrices by using right multipli-
cations and working our way backward from the end,
the constant coupling approximation would not yield
any advantage.

The way around this is to actually compute the
back matrices as the front matrices for the reversed
stack. This can be done without having to recompute
any of the individual transfer matrices by using the
reversal theorem of transfer matrices15:

TR �
T†

�T�
, (27)

where TR denotes the transfer matrix for the reversed
stack. In terms of a specific layer, we must also take
into account the fact that the propagation must occur
after the boundary. With this in mind, we can write a
single layer of the reversed stack in terms of the
components of the original stack,

Tn�l�1
R � Pl

†
Dl�1

†

�Dl�1�
. (28)

Note that the propagation matrix is once again ex-
posed on the left side as in Eq. (15).

If we were to have to compute all of the determi-
nants arising from Eq. (28), the extra complexity
would mitigate any advantage of the constant cou-
pling approximation. Fortunately, however, we can
safely ignore the determinants as they cancel in the
end. To see how, consider the computation for T�n,l� in
terms of the reverse stack:

T�n,l� �
�T�l,0�

R �†

�T�l,0�
R �

(29)

�

� Dl�1
†

�Dl�1��Pl�1
†

Dl
†

�Dl�
 . . . �Pn�1
†

Dn
†

�Dn�
	
†

� Dl�1
†

�Dl�1��Pl�1
†

Dl
†

�Dl�
 . . . �Pn�1
†

Dn
†

�Dn�
�
. (30)

The groups in parentheses represent the individual
layer matrices of the reversed stack. Moving the de-
terminants in the denominator outside the surround-
ing determinant yields the product of the squared
determinants (since we are dealing with 2 � 2 ma-
trices), giving us

T�n,l� �

�Dl�1
† �Pl�1

† Dl
†� . . . �Pn�1

† Dn
†��†

�Dl�1��Dl��Dn�
�Dl�1

† �Pl�1
† Dl

†� . . . �Pn�1
† Dn

†��
��Dl�1��Dl��Dn��2

. (31)

The determinants then all cancel (the determinant of
a propagation matrix is 1) yielding a very simple and
direct way to go from the individual layer matrices to
the back matrices,

T�n,l� � �Dl�1
† �Pl�1

† Dl
†� . . . �Pn�1

† Dn
†��†. (32)

This expression has two advantages. First, and most
important, it allows us to build up the back matrices
using successive left multiplications of PD matrix
pairs, enabling the use of the fast approximate algo-
rithm discussed in Subsection 3.B to find the k deriv-
atives of Eq. (32). Second, everything on the right
hand side of Eq. (32) has already been computed in
finding the front matrices, T�l,0�. Consult the code ref-
erenced in Section 9 for further details and a demon-
stration.

6. Dispersion Gradients from Matrix Gradients

Having computed gradients of the full transfer ma-
trix and its k derivatives, the final step in any opti-
mization will be the translation of those values into
gradients of dispersion for use in the merit function
gradient computation. For reference, we provide for-
mulas for the case of reflection GD:
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��k� �
T12T�11�T�12T11

T11
2 , (33)

���k� �
��
����
� � ��
����
�

�
�2 , (34)

�
�k� � �
1

T11
�
�T11 � �T12�, (35)

��
�k��2 � 2����
���
� � ���
���
��, (36)

�
��k� �
1

T12
2 ��T12T�11��T11T�12�
�2�T11T�11

�T11�T�11�T11�T�12��, (37)

���k� �
���
���
� � ���
���
�

�
�2 , (38)

����k� �
1

�
�2����
����
� � ���
����
�

� �����
����
� � ��
����
�� �
����
�2

2 	.

(39)

In the above, all gradients are with respect to the
layer thicknesses, and all primes refer to k deriva-
tives.

7. Algorithm Overview

Here we summarize the overall dispersion gradient
algorithm. The general steps are

1. Precompute all individual layer transfer matri-
ces Pl and Dl and their derivatives with respect to k.

2. Iteratively compute front transfer matrices T�l,0�
and their derivatives for n � 1 
 l 
 1, as demon-
strated in Section 3 and Ref. 11.

3. Compute back transfer matrices T�n,l� and de-
rivatives by repeating Step 2 for the reversed stack
and then taking the Hermitian transpose, as shown
in Eq. (32) and explained in Subsection 5.C.

4. Loop through all layers, computing matrix
gradient elements of �T and �T� as per the exact
expression Eq. (21) or the approximate expression
Eq. (25).

5. Translate matrix gradients into reflectivity and
GD gradients as done in Section 6.

6. Finally, compute merit function gradients from
the matrix gradients found in step 5, using the re-
sults from Section 2 when GD error is part of the
merit function.

8. Example Gradient Computation

To demonstrate the efficacy of the constant coupling
approximate gradient algorithm, we have computed
the gradient of group delay at a central wavelength for
a typical chirped mirror. For reference, the chirped
mirror spectral GD and GDD are plotted in Figs. 2 and

3, respectively. The gradient of group delay at 800 nm
is shown with and without the constant coupling ap-
proximation in Fig. 4, illustrating how close the ap-
proximate version is to the exact computation.

When computing the gradient at 256 wavelengths,
the constant coupling gradient was empirically found
to be 63% faster than the exact gradient algorithm,
demonstrating that computational savings in the
gradient extend from the algorithms given in Ref. 11.
We thus estimate that our GD gradient method is
roughly four times faster than computing gradients
using GDD.

Note that the gradient itself is exact (i.e., it is an
exact analytic gradient of an approximate GD), so
using the approximation should not affect the conver-
gence rate but may have a small effect on the final
solution. We expect that, on average, optimizations
will be made correspondingly faster. Should final GD
error be so small that the constant coupling approx-
imation error is no longer negligible, a few refinement
steps can be performed at the end with the exact
gradient to converge at the exact solution.

Fig. 2. (Color online) Spectral group delay of an example chirped
mirror. A portion of the response past the high reflectivity region
(wavelengths greater than approximately 1050 nm) is shown to
demonstrate that the approximation holds even when the group
delay is rapidly varying.

Fig. 3. (Color online) Spectral group delay dispersion of the
chirped mirror shown in Fig. 2.

10 May 2007 � Vol. 46, No. 14 � APPLIED OPTICS 2661



9. MATLAB and C Code

To simplify the use of these algorithms, we have pro-
vided MATLAB and C code of both the GD gradient
algorithms discussed in this paper, as well as the GD
and GDD algorithms from Ref. 11. The C codes are
written as MATLAB MEX functions to enable their
use in optimization routines within MATLAB, though
each function is available as a stand-alone for use in
user programs. Several ancillary MATLAB functions
that facilitate mirror optimization using the Optimi-
zation Toolbox are also included. The code is avail-
able at http://www.mit.edu/�birge/dispersion.

10. Conclusions

We have demonstrated the extension of the fast
group delay algorithm in Ref. 11 to the O�n� compu-
tation of group delay gradients and have shown how
dispersion optimization can be done by using only
group delay instead of costly group delay dispersion
calculations. In addition to providing a significant
speed advantage, this method uses analytic deriva-
tives of both phase and layer thickness. This avoids
the numerical difficulties inherent in finite differ-
ences and saves the user from being concerned with
issues of optimal grid spacing or phase unwrapping.

The authors thank Christian Jirauschek for help-
ful discussions. This work was supported in part by

National Science Foundation grant ECS-0501478 and
Defense Advanced Research Projects Agency grant
HR0011-05-C-0155.
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