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We demonstrate an inductive method for computing exact derivatives of reflection phase for layered
media by using the transfer-matrix formalism. The algorithm scales linearly with the number of layers.
We show a physically realistic approximation that leads to an efficient procedure for accurately comput-
ing dispersion significantly faster than with standard finite-difference methods. We discuss the theory
behind the approximation and show results for a dispersion-compensating chirped mirror from a Ti:
sapphire laser. © 2006 Optical Society of America
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1. Introduction

The design and fabrication of dispersive optical thin-
film filters and mirrors is important for the genera-
tion of few-cycle laser pulses approaching the single-
cycle regime.1–4 Efficient and accurate calculation of
dispersive properties is crucial for the design and
optimization of these multilayer dielectric optical
coatings. The standard method for computing the
group delay dispersion (GDD) is to compute complex
reflection coefficients with the transfer-matrix tech-
nique and then take successive finite differences
(FDs) of phase over frequency. For paired mirror sys-
tems containing up to 160 layers4 this leads to a
tremendous numerical effort during optimization.

Accurately computing the mth-order dispersion at
a given wavelength with FDs requires computing at
least �m � 1� reflection coefficients and taking m
differences. Unfortunately, numerical differentiation
is inherently unstable,5 and achieving high accuracy
requires careful optimization of sample spacing to
balance the competing effects of round-off error and
truncation error. This issue is especially pertinent
in the computation of higher-order dispersion, as is
often needed in the analysis of telecommunication
filters.

We demonstrate a method to analytically compute
dispersion to any order that is O�n� in both storage
and execution time,6 where n is the number of layers.
We show how simplifying approximations in the
derivative lead to highly efficient algorithms for dis-
persion calculations. In this regime, the first m
derivatives of phase at a given wavelength can be
computed in less time than for m zeroth-order reflec-
tion coefficients, resulting in significantly faster com-
putation time than with numerical differentiation,
yet without the associated issues of numerical stabil-
ity.

The methods discussed here are useful in optimi-
zation algorithms where single values of dispersion
(as opposed to gradients of the dispersion) are
needed, such as in line search algorithms or sto-
chastic optimizations. They are also useful for the
accurate evaluation of dispersion around reso-
nances where accurate numerical differentiation is
problematic. This method can be extended to handle
the computation of dispersion gradients in linear
time.

2. Analytic Computation of Phase Derivatives

In the following we will consider a lossless dielectric
stack whose total transfer matrix7 is given by

T�n,0� � �a��� b���
b*��� a*����

� ��a����exp�j�a���� �b����exp�j�b����
�b����exp��j�b���� �a����exp��j�a�����.

(1)

In our notation, illustrated in Fig. 1, T� will refer to
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the transfer matrix of the �th layer, which includes
the interface between it and the previous medium
and propagation through the layer up to, but not
across, the next interface. (The substrate can be han-
dled as a final zero-thickness layer in this scheme.)
Furthermore, we’ll let T��2,�1� � T�2

· · · T�1�2T�1�1 refer
to the matrix that goes from the end of layer �1 to the
end of layer �2, including all the interfaces in between
those layers. By convention, our transfer matrices
operate on a vector space where the first and second
elements represent forward and reverse propagating
fields, respectively. The complex reflection coefficient
� at the input to the first layer is thus given by

���� � ������exp�j����� � �
b*���
a*���

. (2)

The reflection phase is then

���� � �a��� � �b��� � �, (3)

and so the kth-order dispersion is simply

��k���� � �a
�k���� � �b

�k����. (4)

A. Inductive Computation of Transfer-Matrix Derivatives

The mth-order dispersion for reflection from the
structure is a function of the first m complex deriva-
tives of T�n,0� (see Subsection 2.B). Since T�n,0� can be
computed analytically for a given wavelength, in the-
ory we should be able to find any derivative analyti-
cally. To avoid a combinatorial explosion of terms,
however, we must do so inductively. We calculate
T��,0� and its derivatives from the �m � 1� derivatives
(zeroth through mth order) of the matrix for the �th
layer, T�, and of the cumulative transfer matrix for
the preceding layers, T���1,0�. This is done by simply
evaluating terms of the following form:

	kT(�,0)

	�k �
	k�T�T(��1,0)�

	�k . (5)

As we trace through the stack layer by layer, we only
need to keep track of �m � 1� matrices as we go along.

To calculate the recurrence relation for the kth
derivative of the transfer matrix from the beginning
of the structure up to the �th layer, we simply apply
matrix derivative product rules to Eq. (5). The induc-
tion rules for the first three derivatives (enough to
compute third-order dispersion) are

T(�,0) � T�T(��1,0), (6)

	T(�,0)

	�
�

	T�

	�
T(��1,0) � T�

	T(��1,0)

	�
, (7)

	2T(�,0)

	�2 �
	2T�

	�2 T(��1,0) � 2
	T�

	�

	T(��1,0)

	�

� T�

	2T(��1,0)

	�2 , (8)

	3T(�,0)

	�3 �
	3T�

	�3 T(��1,0) � 3
	T�

	�

	2T(��1,0)

	�2

� 3
	2T�

	�2

	T(��1,0)

	�
� T�

	3T(��1,0)

	�3 , (9)

and so on. Each term on the right-hand side above is
either known from an induction assumption [i.e., pre-
viously computed T���1,0�

�k� terms] or can be calculated
directly [i.e., current layer T�

�k� terms]. The only other
pieces missing are the trivial statements of the initial
matrices:

T(0,0) � I,
	kT(0,0)

	�k � 0, 0 
 k � m. (10)

Clearly this scheme is still O�n� in the number of
layers, as is the standard FD method. However, in
practice it will be slower. Since each successive de-
rivative requires one more matrix multiplication
than its predecessor, the total number of matrix mul-
tiplications required to find the first m derivatives is
O�nm2�, whereas FDs require only O[nm] matrix
multiplications. Thus, the fully general case is best
used for either low-order dispersion or when accuracy
is more important than speed. In Section 3 we discuss
a fast approximate version of this algorithm.

B. Computing Dispersion from Transfer-Matrix
Derivatives

The kth phase derivative of ���� is given by the
difference between the kth derivatives of �a���
and �b���, as in Eq. (3). However, the derivatives of
T�n,0�, which we will calculate with the method of Sub-
section 2.A, only give us the real and imaginary parts
of the derivatives of a��� and b���. We therefore must
find the phase (polar coordinate) derivatives in terms
of these rectangular terms. There are various ways to
do this, most obviously direct computation of the total

Fig. 1. Diagram showing transfer-matrix notation.
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derivative using coordinate transformations. How-
ever, care must be taken to do so in a way that is
numerically stable and computationally efficient.
Here we briefly illustrate a suitable recursive method
and provide explicit solutions for a few initial terms.

Consider the complex function a��� of Eq. (1),
which can be written as

ar��� � jai��� � �a����exp�j�a����. (11)

The two terms on the left-hand side, as well as their
derivatives, are found in the computation outlined in
Subsection 2.A. A general procedure to find the first
m derivatives of �a��� is to take the kth derivative of
both sides of Eq. (11) and then split the resulting
equation into real and imaginary parts to yield two
coupled equations. Solving for �a

�k���� and |a���|�k�

then gives solutions in terms of lower polar deriva-
tives and ar

�k� and ai
�k�. The lower derivatives can then

themselves be solved for in the same manner until
everything is finally expressed only in terms of de-

rivatives of ar��� and ai���.
The first three derivatives for �a��� found per the

above procedure are

��a��� �
1

�a��a�i cos �a�a�i, sin �a�, (12)

a���� � a�r, cos �a � a�i sin �a, (13)

��a��� �
1

�a��a�i cos �a � a�r sin �a � 2a���a�, (14)

a ���� � �r cos �a � �i sin �a � �a����a�2, (15)

��a��� �
1

�a� �a�i cos �a � a�r sin �a

� �a����a�3 � 3�a��a � 3a���a�. (16)

Here a� and a� are derivatives of the magnitude, as in
a���� � d|a���|�d�. The expressions above are
enough to compute up to third-order dispersion,

though it is simple to continue to higher-order terms
as necessary. Making the substitutions
cos �a → ar�|a| and sin �a → ai�|a| and simplify-
ing the results yields compact expressions for the first
two phase derivatives:

�a���� �
1

�a�2 �ai�ar � ar�ai�, (17)

�a � ��� �
1

�a�2 ��ai � �2ar��a��ar

� �ar � �2ai��a��ai�. (18)

After solving, in the same manner, for the first m
derivatives of �b���, one then substitutes the results
into Eq. (4) to find the final dispersion terms.

3. Constant Coupling Approximation

To see how one might speed up the algorithm dis-
cussed in Subsection 2.A, consider the specific transfer
matrix for a single layer,7

and its first derivative,

where ñ���� � n����cos � is the effective index (which
takes into account the angle � of the wave) and p����
is the ratio

p���� �	
ñ��1���
ñ����

, TE polarization,

ñ��1���n�
2���

ñ����n��1
2���

, TM polarization.
(21)

Everything in derivative (20) is a simple multiplica-
tion of the transfer matrix with the exception of the
�p����� terms, which break the symmetry. Fortu-
nately, it turns out that neglecting the derivatives of
p���� is a physically valid approximation for most
situations. Within the framework of the coupled-
mode theory used to analyze chirped mirrors,8 the
coupling coefficient � is proportional to the Fresnel
reflection. Thus, taking p����� → 0 is equivalent to
assuming constant coupling between forward and
backward waves. This is discussed further in Sec-
tion 4.

T���� �
�1 � p�����exp��iñ����d���c� �1 � p�����exp��iñ����d���c�
�1 � p�����exp�iñ����d���c� �1 � p�����exp�iñ����d���c� �, (19)

T����� � (��id��c�1 � p������ñ���� � �ñ������ � p�����exp��iñ����d���c...�
��id��c�1 � p������ñ���� � �ñ������ � p�����exp�iñ����d���c...� ), (20)
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The resulting reduction in computational complex-
ity from neglecting p����� is rather dramatic. Taking
the kth derivative of the �th transfer matrix is then
equivalent to left multiplying the matrix with a triv-
ial operator D̂�

�k�:

T�
�k���� � D̂�

(k)T�

��D�
�k� 0
0 D�

�k�*�T�, (22)

where D�
�k� is a complex scalar. This operator is com-

putationally equivalent to a simple scalar multipli-
cation as opposed to a full matrix multiplication. [In
practice, second- and higher-order derivatives of ñ���
can be ignored, as well, because they will be small
compared to the error already inherent in the approx-
imation.] The first three matrix derivatives given in
Eq. (6) can now be written as

	T(�,0)

	�
� D̂�

(1)T(��1,0) � T�T����1, 0�, (23)

	2T(�,0)

	�2 � D̂�
(2)T(��1,0) � 2D̂�

(1)T�T����1, 0�

� T�T����1,0�, (24)

	3T(�,0)

	�3 � D̂�
(3)T(��1,0) � 3D̂�

(2)T�T����1, 0�

� 3D̂�
(1)T�T����1, 0� � T�T����1, 0�, (25)

where the scalar multipliers in expression (22) are

D�
�1� � �i

d�

c �ñ���� � �ñ������, (26)

D�
�2� � �

d�

c 
2ñ����� �
d�

c �ñ���� � �ñ������2�, (27)

D�
�3� � i

d�
2

c2 �ñ���� � �ñ������
6iñ'����

�
d
c �ñ���� � �ñ������2�. (28)

For a given derivative of T��,0�, all the terms on the
right-hand side of Eqs. (23)–(25) are trivial opera-
tions on previously computed matrices except for one;
the sole new term that must be computed is always
T�T���1,0�

�k�. As such, the first m derivatives can now be
found with O[nm] matrix multiplications, the same
complexity of numerical differentiation methods.
Moreover, in practice, this analytic computation can
be done significantly faster than FDs since all the
matrices involved are evaluated at a single fre-
quency, so only one new full transfer matrix must be
computed per layer. Since computing a zeroth-order

transfer matrix involves costly transcendental oper-
ations, this is a significant advantage (see the results
in Section 5).

This scheme is still an analytic computation that
exactly takes structural and material dispersion ef-
fects into account but that neglects wavelength vari-
ation of the coupling between forward and backward
waves. For reasonable values of �n and material dis-
persion this results in very small errors (as shown in
the following section). In cases where group delay is
dominated by structural effects, such that local ma-
terial dispersion can be ignored, this approximation
becomes exact.

4. Accuracy of Constant Coupling Approximation

Empirically, we have found that the constant coupling
approximation discussed in the preceding section
works well for computing at least second-order disper-
sion for any mirror. Moreover, there is theoretical
reason to believe that this should be the case, espe-
cially for the chirped structures used in dispersion-
compensating mirrors. Using results from the theory
of double-chirped mirrors developed in Refs. 9 and 10,
we show that the constant coupling assumption is
physically justified. This is supported by results from a
computation on an actual chirped mirror design.

It is well known that a dielectric stack can be mod-
eled with coupled-mode theory.8 In this context, the
local coupling coefficient ���� is approximately pro-
portional to the Fresnel reflection between layers:

���� � �2r��� � �2
1 � p���
1 � p���

, (29)

where we have dropped the � subscript for this sec-
tion. Thus, setting p���� � 0 is tantamount to assum-
ing that ����� � 0. Matuschek et al.8 showed that a
chirped mirror can be transformed into a weakly in-
homogeneous coupled-mode problem that can then be
solved with the WKB approximation. The group de-
lay (GD) of a chirped mirror is then found to be [c.f.
Eq. (52) in Ref. 8]

�g��� � �2�
0

mt���

	

	�
��2�m� � �2�m� dm, (30)

where m is a normalized spatial variable that param-
eterizes location within the mirror, mt��� is the loca-
tion of the classical turning point, and ��m� is the
coupled-mode detuning coefficient. Matuschek ar-
gues that in the classically accessible region of the
mirror, the detuning coefficient dominates the cou-
pling coefficient and so, to zeroth order, we have

�g
�0���� � 2�

0

mt���

	

	����m��dm,
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� 2��
0

mt���

1
kB

dm. (31)

Finally, if the Bragg wavelength kB is taken to first
order as

kB�m� � k0 � k1m, (32)

then the GD can be found analytically to be approx-
imately

�g
�0���� �

2�

ck1

ln�1 �

����
� �� ln�ck0

� ��. (33)

The contribution of ���� to the GD will be minor for
r �� 1. Furthermore, ����� appears only in GDD or
higher. Thus, we would expect that neglecting p����
would be a good approximation for GD, with fair but
decreasing accuracy for higher orders of dispersion.
This is borne out in the examples shown in Fig. 2.
Despite its lack of appearance in Eq. (33), neglecting
����� is still only approximately correct for GD due
to approximations made in going from Eq. (30) to
Eq. (31).

This can all be understood intuitively by recogniz-
ing that the effective round-trip optical path length is
dominated by the material indices and the location of
the classical turning point, the latter of which is not
strongly affected by the Fresnel reflection coefficient,
r���. This is the case even when the material disper-
sion itself is large such that local index derivatives
must be considered. This can be seen from the GD
curve in Fig. 2(a), where neglecting n���� is shown to
be a poor approximation compared to simply neglect-
ing p���� alone. Thus, despite the fact that p����
and n���� are of the same order and both appear in
Eq. (20) to the same order in ��since c�d� � ��, it is
only necessary to consider n���� when computing
�����.

5. Example Computations

To gauge the calculation speed of different approxi-
mations for various orders of dispersion, we com-
puted the dispersion of off-axis reflection from one
half of a double-chirped mirror pair having 80 layers
with material indices of roughly 2.5 and 1.4, evalu-
ated at an angle of incidence of 5°. Such mirrors are
used for the construction of octave-spanning femto-
second laser systems emitting sub-two-cycle puls-
es.2,3 The results for several different cases are shown
in Table 1.

Note that the execution time for the exact case in-
creases quadratically with dispersion order, whereas
that of the constant coupling approximation grows lin-
early, as predicted in Section 3. Moreover, the constant
coupling approximation grows slower than the stan-
dard FD scheme due to the avoidance of further tran-
scendental function evaluations for higher orders,
taking roughly 60% of the time for GD and only 47%
for GDD.

To show the effects of the different approximations,
we have plotted the GD and GDD for the double-
chirped mirror under various levels of approxima-
tion. Figure 2(a) shows the GD computed exactly,
with constant coupling, and with all material disper-
sion ignored �i.e., n���� → 0�. Note that the dotted
curve representing the constant coupling approxima-
tion is virtually indistinguishable from the exact ana-
lytic computation. This demonstrates the validity of
the approximation even in cases where material dis-
persion is significant. We have also investigated situ-
ations where one material has anomalous dispersion
(results not shown here) and obtained similar accu-
racy.

Fig. 2. (a) GD of chirped mirror computed under various approximations. (b) GDD of same mirror under various approximations.

Table 1. Relative Execution Times under Various Approximations

m Exact p=(k) ¡ 0 FD

0 (�) 1 1 1
1 (GD) 2.45 1.20 2.00
2 (GDD) 4.36 1.42 3.00
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In Fig. 2(b) we have done the same for GDD and, in
addition, have also computed the dispersion assum-
ing second-order index derivatives are zero, as well.
This result confirms that index dispersion need only
be considered to first-order in typical cases. The
material system used �SiO2 and TiO2� is dispersive
enough and the index contrast is high enough that
this example should provide a conservative estimate
of the validity of the various approximations.

6. Summary

We have demonstrated an inductive method for ex-
actly computing the dispersion of an n layer structure
to mth order. This method is, in general, O�nm2� in
time and O�m� in memory. We then introduced an
approximation that results in O[nm] execution time,
and results in significant speed advantages over even
FDs in practice. The approximation is shown to be
adequate for evaluation of GD and GDD.

MATLAB code implementing the algorithms dis-
cussed in this paper has been made available on the
Internet at http://www.mit.edu/�birge/dispersion/.
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0717 and the U.S. Air Force Office of Scientific
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