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Two-dimensional spectral shearing interferometry
for few-cycle pulse characterization
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We present a new method for measuring the spectral phase of ultrashort pulses that utilizes spectral shear-
ing interferometry with zero delay. Unlike conventional spectral phase interferometry for direct electric-field
reconstruction, which encodes phase as a sensitively calibrated fringe in the spectral domain, two-
dimensional spectral shearing interferometry robustly encodes phase along a second dimension. This greatly
reduces demands on the spectrometer and allows for complex phase spectra to be measured over extremely
large bandwidths, potentially exceeding 1.5 octaves. © 2006 Optical Society of America

OCIS codes: 320.7100, 120.5050.
As few- and single-cycle optical pulses have become
more common, spectral phase interferometry for di-
rect electric field reconstruction1 (SPIDER) has
emerged as one of the principal methods for deter-
mining the electric field of such pulses,2 with vari-
ants specialized for low-power pulses3 and spatiotem-
poral characterization,4 among others. SPIDER
applies the technique of Fourier transform spectral
interferometry to a pair of frequency sheared pulses.
Two significant benefits of spectral shearing interfer-
ometry are its insensitivity to noise5 and the fact that
it directly measures spectral phase. In contrast, indi-
rect methods such as interferometric autocorrelation6

and frequency-resolved optical gating7 require the so-
lution of ill-posed inverse problems.8,9 Nonetheless,
there are a few issues with conventional SPIDER
that are particularly cogent for large bandwidths.
Most notably, the delay � between the pulses must be
calibrated and maintained to within interferometric
precision.

In Fourier transform spectral interferometry, the
measured pulse width error for a given delay error ��
can be shown by Gaussian analysis to be approxi-
mately

�t � �����/��, �1�

where �� is the pulse bandwidth and � is the shear
frequency. For few- and single-cycle pulses, the di-
mensionless ratio �� /� is typically of the order of
100 (see Ref. 10, for example). For few-cycle pulses,
then, the SPIDER delay error �� must be of the order
of 10 as to achieve even 10% accuracy in the mea-
sured pulse width. Such calibration accuracy is not
trivial for delays of the order of picoseconds and re-
quires mechanical stability to within a few nanom-
eters and beam pointing to within a few milliradians
(assuming perfect alignment to begin with). Unfortu-
nately, there is no self-consistency check available in
SPIDER; any error in � is simply manifest as an ad-
ditive quadratic phase. This is especially relevant
when one is optimizing a laser: Given the coupling
between beam alignment and �, it is probable that

any tuning of the laser will be, to some extent, opti-
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mization of spurious delay to minimize the pulse
width as measured.

A second issue with conventional SPIDER is the
use of a Michelson interferometer to split the mea-
sured pulse. This invariably introduces phase distor-
tion, especially for broadband pulses, as it is difficult
to build a beam splitter that is dispersionless over
more than an octave of bandwidth.

Zero-additional-phase SPIDER11 addresses this is-
sue by using two noncollinear chirped pulses. How-
ever, it still suffers from the SPIDER delay calibra-
tion issues discussed above. Furthermore, the
multiple path geometry results in inefficient coupling
into the spectrometer, making the method most ap-
propriate for externally amplified chirped pulses.

In the course of writing the present Letter we were
made aware of spatially encoded arrangement (SEA)
SPIDER,12 which was recently demonstrated on
100 fs pulses. SEA-SPIDER uses an arrangement
similar to zero-additional-phase SPIDER, though no
interpulse delay is introduced and a spatial interfer-
ence fringe is imaged orthogonally to the spectral
axis.

In common with SEA-SPIDER, our method also
performs shearing interferometry with zero delay,
though we use a collinear geometry and encode the
fringe over time rather than space (as discussed in
what follows). A benefit of SEA-SPIDER relative to
our method is that the former is capable of single-
shot operation. However, where power limitations
render single-shot measurements impossible, two-
dimensional spectral shearing interferometry (2DSI)
may hold advantages in terms of stability and signal
strength, owing to the collinearity of 2DSI and the
fact that the fringe is decoupled from the spatial
structure of the beam. Furthermore, expression (1)
still applies to any shearing interferometry, even if
the delay is nominally zero. Thus the separate paths
taken by the pulses in SEA-SPIDER mean that even
subwavelength imaging aberrations or nanometer in-
tersection misalignments of the auxiliary pulses
could become an issue for extremely short pulses.

In 2DSI, two highly chirped (quasi-cw) signals are
created by dispersing a portion of the pulse to be

measured and splitting the result in a Michelson in-
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terferometer (see Fig. 1). The two chirped pulses are
mixed with the original short pulse in a type II ��2�

nonlinear crystal. The two upconverted pulses that
result are sheared spectrally but are collinear (ne-
glecting the small difference in transverse photon
momentum caused by the shear) and with identical
envelopes, forming a single pulse. To observe the
phase difference between the pulse’s two compo-
nents, the delay of one of the chirped auxiliary pulses
is scanned over a few optical cycles by oscillating its
corresponding mirror in the interferometer. This is
tantamount to scanning the zeroth-order phase of
one of the upconverted pulse components. The spec-
trum of the upconverted signal is recorded as a func-
tion of this phase delay, yielding a two-dimensional
intensity function that is given by

Fig. 1. (Color online) Schematic of 2DSI optics: SF, SF10
glass (Schott glass); BBO, �-barium borate.

Fig. 2. (Color online) Raw 2DSI data from (a) a 5 fs laser
spectrum is shown in (c) with the extracted group delay (G

derived glass group delay.
�2�

where �cw and �cw are the delay and the local fre-
quency, respectively, of the quasi-cw signal being
shifted, A��� is the upconverted pulse spectrum, and
���� is its spectral phase. As in SPIDER, the phase
difference between the two sheared components is a
first-order approximation for the group delay multi-
plied by the shear frequency.

A two-dimensional raster plot of I�� ,�cw� reveals
the shifted pulse spectrum along the � axis, with
fringes along the �cw axis that are locally shifted in
proportion to the group delay at a given frequency.
See Figs. 2(a) and 2(b) for an example (in the wave-
length domain). The user can immediately ascertain
the rough qualitative properties of the complex spec-
trum simply by looking at the raw spectra; each spec-
tral component is vertically shifted in correspondence
to its actual shift in time. The ability to interpret the
spectra directly is valuable when one is optimizing a
laser, yielding information not available with pro-
cessed data from an inversion algorithm alone.

Precise quantitative determination of the group de-
lay spectrum can be effectively extracted by comput-
ing one-dimensional fast Fourier transforms along
the �cw axis and taking the phase of the dominant
spectral component. It is not necessary to know the
length or rate of the delay scan, so long as the scan is
relatively linear and sufficiently long. Only the rela-
tive phase of the fringes matters in Eq. (2), so the
technique is highly robust to perturbations to the de-
lay scan. In contrast to SEA-SPIDER (which requires
knowledge of the nominal fringe spacing to decon-
volve the spatial envelope), the only calibration
needed with 2DSI is for the upconversion frequencies

lse and (b) a pulse dispersed by 1 mm of fused silica. The
urves shown in (d) alongside the measured and Sellmeier-
pu
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that determine the shear. Furthermore, this is a rela-
tively noncritical calibration, as demonstrated in Ref.
1, and changes in incoming beam alignment will have
a negligible effect.

While the requirement for scanning prohibits
single-shot operation, scan rates up to a few hertz
were possible in this first implementation, limited by
the speed of the computer interface to the piezoelec-
tric amplifier. With further optimized hardware,
scans well above video rates should be possible, given
the extremely short distances involved.

The sensitivity to the spurious interpulse delays
common to spectral shearing methods is mitigated
with 2DSI, as the upconverted pulses originate from
the same point in space and time (the intersection of
the quasi-cw beam and the short pulse) and are then
paraxially imaged into a spectrometer. Given the sta-
tionary phase condition of imaging and the lack of ab-
errations on axis, the zero delay between the pulses
should remain stable even with changes in incoming
beam alignment. Multiple shears can nonetheless be
used as a self-consistent verification that no phase er-
rors have occurred.

As with SEA-SPIDER, the ability to arbitrarily set
the shear allows for optimal selection of � for a given
situation, subject to sampling requirements. A given
setup may thus be used to measure a wide variety of
pulse bandwidths and chirps. This is in contrast to
conventional SPIDER, for which the need to spec-
trally resolve a dense fringe limits the time–
bandwidth product that can be tolerated.

To gauge the relative accuracy of the method, a
few-cycle (5 fs FWHM) pulse from a prismless Ti:Sa
laser13 was measured, with 2DSI used both before
and after dispersion by a 1 mm fused-silica plate
[Figs. 2(a) and 2(b), respectively]. It is apparent from
the raw spectrum in Fig. 2(a) that the pulse is ini-
tially slightly negatively chirped, and the positive
dispersion introduced by the glass plate is evident in

Fig. 3. (Color online) 2DSI predicted and measured inter-
ferometric autocorrelation of a 5 fs pulse.
Fig. 2(b). The net measured group delay matches the
Sellmeier predicted curve well, as shown in Fig. 2(d).
To enhance the fringe tilt, a shear of 18 THz was
used. No averaging was done, and the shear was cali-
brated independently by cross correlation of the up-
converted spectra with the base spectrum.

To qualitatively demonstrate the absolute accuracy
of the system, an IAC was performed on the same
5 fs pulse and compared with that predicted by the
reconstructed pulse from the 2DSI measurement.
The predicted and experimental IAC traces are
shown in Fig. 3. The traces conform reasonably well,
with some deviation that we attribute largely to limi-
tations in the IAC technique for few-cycle pulses
(note that the IAC is not exactly symmetric, as it ide-
ally should be). As a measure of the precision and re-
peatability of 2DSI, we achieved the same pulse
width prediction to within a few hundredths of a fem-
tosecond for shears ranging from 4 to 20 THz.

Two-dimensional spectral shearing interferometry
involves a relatively simple optical setup with little
calibration required, yet is capable of extremely accu-
rate measurements over a large bandwidth. The lack
of dispersion on the pulse to be measured, the stable
absence of delay between the sheared pulses, and the
relaxed spectrometer resolution requirements make
2DSI extremely well suited for the measurement of
wide-bandwidth pulses, including those with poten-
tially complicated phase spectra. Further work is un-
der way to increase the scanning frequency to video
rates.
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