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1. Introduction 

Spectral shearing interferometry (pioneered by the SPIDER method of Iaconis and 

Walmsley [1]) is unique among pulse measurement techniques in that it 

unambiguously measures the spectral phase of an optical signal by directly 

interfering neighboring frequency components. Furthermore, by encoding group 

delay information on the phase of a spectral domain fringe, SPIDER produces a 

frequency modulated signal and thus enjoys excellent immunity from noise and 

nonlinear optical bandwidth effects. This gives spectral shearing an advantage for 

measuring very wide bandwidths, relative to the “amplitude modulated” signals 

characteristic of other methods, differences in efficiency notwithstanding. 

Consequently, it has become one of the principal methods used to measure few-cycle 

pulses [2], alongside FROG [3] (and the many variants of both). There are, however, 

a few challenges with standard SPIDER that are relevant for the measurement, and 

especially optimization, of ultrahigh bandwidth sources approaching a single-cycle. 

All spectral shearing methods, by their nature, involve measuring spectral 

group delay by observing the interference of two spectrally shifted copies of the 

pulse being measured. As will be explained in more detail in Section 2, any linear 

phase (delay) that occurs between the two components will be interpreted as a 

quadratic phase (dispersion) in the reconstruction. It turns out that the resulting 

error in measured pulse width scales linearly with the unaccounted for delay, 

multiplied by a factor proportional to the resolution of the measurement. At the 
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very least, this implies that great care must be taken in a SPIDER measurement to 

ensure that any linear phase is calibrated out. 

Here, we present a method recently developed that seeks to ensure that there 

is no possibility for uncalibrated phase, by eliminating the possibility for a delay by 

robustly encoding the spectral phase measurement in a series of spectra of a single 

output pulse. While the requirement to take multiple measurements prohibits 

single-shot measurements, the method has the advantage that it involves no delay 

calibration, produces intuitively interpreted data, and requires only a low resolution 

spectrometer. We believe that 2DSI is thus a cost effective and efficient method for 

accurately and reliably measuring few- and even single-cycle pulses. 

Our technique requires only the non-critical calibration of the shear 

frequency and does not perturb the pulse before up-conversion. Rather than encode 

the spectral group delay in a fringe in the spectral domain, 2DSI encodes phase in a 

pure cosine fringe along a completely independent dimension, by scanning the 

relative phase of the two spectrally sheared components. This reduces the resolution 

demands on the spectrometer to that required for proper sampling of the pulse 

itself, and allowing for complex phase spectra to be measured with high accuracy 

over extremely large bandwidths, potentially exceeding an octave. 

2. Background and Motivation for Delay-Free Method 

In any spectral shearing method, the net result is the creation of two spectral copies 

of the pulse under measure, with a small frequency shift  disposed between them. 

For sake of simplicity, in this paper we will ignore the overall offset in frequency 
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caused by the nonlinear upconversion, and will express everything in terms of the 

lowest upconverted pulse spectrum,    ( )( ) ( ) iA A e . In the conventional SPIDER 

method, the two output pulses are delayed with respect to one another by a time , 

leading to a dense fringe in the spectral domain upon which the group delay 

spectrum is encoded, 

                 
2 2

( ) ( ) ( ) 2 ( ) ( ) cos[ ( ) ( )].I A A A A  (1) 

If the delay is large enough, the argument to the cosine can be isolated by signal 

processing of the fringe in the Fourier domain. The contribution of the delay is then 

subtracted out, leaving the finite difference of the spectral phase. More details are 

provided in [1] and [12]. 

Any unaccounted for delay is mistaken for a quadratic phase term, 

potentially one which results in underestimation of the true pulse width. As 

explained in [4], any error in estimating the interpulse delay results in an absolute 

error in the extracted pulse width. This measurement error is proportional to the 

delay error multiplied by the ratio of the shear to the bandwidth; this ratio is 

essentially the number of points over which we sample our spectral phase. The 

bottom line, however, is that because the error is absolute, the relative 

measurement error caused by a given interpulse delay uncertainty is proportional 

to the square of the pulse bandwidth [4], 
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where  is the uncertainty in the interpulse delay, and  is the pulse bandwidth. 

The shear is essentially our sampling interval in the spectral domain. By the 

sampling theorem, it is inversely proportional to the temporal window over which 

we are measuring. As we will argue further in Section 6, the minimum time window 

we must resolve (i.e. the spectral sampling “rate”) ceases to scale inversely to 

bandwidth once pulse widths become shorter than the characteristic time scale of 

intracavity dispersion oscillations (such as those caused by reflections off the 

surface of dispersion compensating mirrors). The scaling of the delay uncertainty is 

more complicated, but by similar arguments, it either scales with the temporal 

measurement window (in the case of standard SPIDER) or is a constant (in the case 

of zero delay variants). As such, beyond a certain bandwidth the measurement 

uncertainty scales as the square of the bandwidth. 

As the single cycle limit is approached, the effect of even tens of attoseconds 

of unknown delay becomes a concern. Calibrating and maintaining a delay on the 

order of hundreds of femtoseconds to within tens of attoseconds is not trivial, 

especially if the experimental configuration must be changed to measure the delay, 

as in those systems where the delay is measured by the spectral interference 

between the second harmonics of the pulses. At the very least, it is certainly 

necessary to recalibrate the device before each measurement. 

The preferred way of calibrating a standard SPIDER fringe, introduced by 

Dorrer [4], does not involve explicitly computing a delay. In this approach, two 

SPIDER measurements with different shears are subtracted from each other to 
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obtain the SPIDER phase minus any common linear phase due to the pulse delay. 

(This assumes that it can be done so such that the delay is invariant between the 

two measurements. One can ensure this is the case by taking them simultaneously, 

as in [6].) When the spectrometer and delay calibrations are mixed together in this 

way, one then does not speak of “delay” calibration but rather a general baseline 

phase calibration that handles simultaneous calibration of the delay and any 

spectrometer nonlinearity. However, whether implicit or not, a measurement of 

delay is inherent, and as the main component of the phase and the leading term in 

any calibration error, it makes sense to cast any discussion of sensitivity in terms of 

the effective delay uncertainty. Even in the absence of systematic delay 

miscalibration, simple measurement noise will contribute some effective  that will 

be the dominant source of pulse width uncertainty. This is borne out in the noise 

simulations discussed in Section 8. 

A second difficulty with standard SPIDER is the need to split the measured 

pulse into two copies. In practice, doing so without the introduction of additional 

dispersion is extremely difficult, especially for pulses with spectra exceeding an 

octave. The only type of beamsplitter that could potentially avoid significant 

dispersion is an extremely thin beam splitter, such as a pellicle. Unfortunately, this 

then introduces the problem of multiple reflections, introducing phase oscillations 

into the measurement. 

The splitting issue can be avoided by the use of two chirped pulses, as 

pioneered by Zero Additional Phase SPIDER (ZAP-SPIDER) [7]. ZAP-SPIDER 
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produces a standard SPIDER fringe, but does so without requiring the 

interferometric splitting of the short pulse, adding no additional dispersion from the 

beamsplitting operation, hence the name. However, the calibration issue still 

remains in ZAP-SPIDER, as the two chirped pulses are disposed along separate 

paths to allow for the upconverted components to be separated and delayed with 

respect to one another. 

3. Principle of 2DSI Operation 

Our solution to the above issues is to use two collinear chirped beams such that the 

output is a single beam, in essence a single pulse with a complicated spectrum. 

Refer to Figure 2 for a frequency domain block diagram of the conceptual process, 

and Figure 1 for a prototypical experimental layout. This arrangement should 

eliminate the potential for a delay to occur between the two output components. 

That this is the case is suggested, at the least, by our results in Section 9.B. 

However, we must admit that the precise extent to which this is true cannot be 

proven conclusively down to the level of attoseconds. In the absence of a perfectly 

known “reference pulse,” a numerical spatiotemporal simulation of the noncollinear 

upconversion would have to be performed to determine the effects of phase 

matching on the output beam properties. 

First, a highly chirped pulse is created by picking off a portion of the pulse to 

be measured, and dispersing it. This chirped pulse is sent through an 

interferometer to create two copies of the chirped pulse. The two chirped pulses are 

then mixed with the original short pulse in a Type-II χ(2) crystal in a noncollinear 
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geometry (see Figure 2) such that the sum frequency generation (SFG) signal can be 

isolated from both the fundamental and second harmonic terms in the output. 

Presuming the chirped pulses are sufficiently dispersed, the short pulse under test 

effectively sees only two single frequency components, one from each chirped pulse. 

The frequencies are determined by the total delay through each path of the 

interferometer, with shear thus determined by the difference in the delay of each 

arm. 

In the crystal, because the short pulse is mixed with two essentially pure 

frequencies the output spectrum consists of two spectrally sheared copies of the 

original spectrum. If the chirped pulses are collinear, the two frequency components 

will have the same propagation vector and thus we can regard the output as a 

single pulse. This neglects the small difference in transverse photon momentum 

between the two chirped pulses. However, for small deviations such that 

nonidealities in the imaging optics can be neglected, there should be no possibility 

for delay to arise. A given wavelength is imaged to the same pixel regardless of 

output angle, and thus no phase difference can arise by Fermat’s principle. 

The upconversion frequencies can be independently and arbitrarily chosen to 

suit the pulse characteristics and maximize the overall signal to noise ratio. A 

discussion of how best to do so is taken up in Section 6. This ability also allows for a 

wide range of pulse widths and complexities to be measured by the same setup. 

Given that a large range is likely to be encountered in the course of optimizing a 

laser, it is useful to have this flexibility. In contrast, the shear in standard SPIDER 
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is constrained by the dispersive element and the required delay, limiting its 

versatility. The collinearity of the chirped beams in 2DSI also means that the shear 

can be changed without affecting the alignment of the system. 

The pulse under measurement only experiences a few reflections, and is 

therefore relatively unperturbed before measurement. The Michelson 

interferometer that splits the chirped pulses, on the other hand, can be highly 

dispersive and even unbalanced, allowing for the use of simple splitting optics. The 

low distortion experienced by the short pulse is extremely important for single-cycle 

pulses, as any spurious dispersion inherent to the apparatus will invariably end up 

(in the opposite sign) in the pulse after optimization. 

The fact that the output is essentially one pulse, the spectrum of which 

encodes the spectral group delay, is the key to the stability and reliability of 2DSI. 

In theory, all the information is present in a single-shot spectrum if we were willing 

to trust the spectral amplitude information. However, such operation would negate 

of the primary strengths of SPIDER methods: the encoding of group delay as a 

fringe phase, lending immunity to phase matching bandwidth effects. It would also 

introduce a time direction ambiguity. 

To robustly observe the spectral phase difference between the two pulse 

components at a given wavelength (which we recall is proportional to the local 

group delay) the relative phase  of one of the quasi-CW beams is scanned over a 

few optical cycles. This allows one to observe the phase difference between the two 

spectral components as a function of wavelength, providing a direct and immediate 
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measurement of spectral group delay. The phase scan is typically done by vibrating 

one of the mirrors in the Michelson interferometer, though it could also be achieved 

with a phase modulator, such as a liquid crystal or electro-optic device. The 

spectrum of the up-converted signal is then recorded as a function of the phase , 

yielding a 2-D intensity function that is given by 

 

 

        

  

     
2

g( /2) ( )

( , ) 2 ( ) ( ) cos[ ( ) ( )] D.C.,

O

I A A  (3)  

where, as before, ( ) is the low upconverted pulse spectrum, and ( ) is its 

spectral phase. The under-bracketed expression can be viewed as a finite difference 

approximation of the group delay scaled by the shear. This term is what all SPIDER 

variants measure, though in 2DSI it is available directly without any filtering, as 

discussed in the next section, since there are no other terms dependent on the 

frequency. A simple two-dimensional raster plot of I( , ) reveals the shifted pulse 

spectrum along the -axis, with fringes along the -axis that are locally shifted in 

proportion to the group delay at a given frequency (as illustrated in Figure 3). The 

user can thus immediately ascertain salient properties of the complex spectrum 

simply by looking at the raw data: the cosine fringe at each wavelength is vertically 

shifted in proportion to its actual delay in time, with the fringe amplitude roughly 

proportional to the power spectral density (neglecting bandwidth effects). The 

ability to use the raw spectrometer data when optimizing a laser yields information 

not available from processed data from an inversion algorithm alone, such as 

measurement noise and laser stability. 
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Comparison of equations (1) and (3) shows that the fringes produced by 2DSI 

and conventional SPIDER are mathematically identical, except for the fact that the 

fringe in 2DSI is produced by a phase occurring in as separate domain (the  term), 

whereas in SPIDER the fringe phase oscillates in the spectral domain. In both, the 

fringe can be viewed as creating sidebands in the respective Fourier domain of the 

fringe; with SPIDER we get sidebands in the pseudo-time domain and in 2DSI the 

sidebands are pulled into the “pseudo-frequency” domain relative to the phase 

delay. In either case, the purpose of the fringe is to pull the sidebands away from 

the central DC term so that they don’t interfere, rendering the phase extraction 

insensitive to the amplitude of the fringe. In SPIDER, the fact that the sidebands 

are in the optical frequency domain results in a significant increase in required 

spectrometer resolution over that needed to simply resolve the fundamental pulse 

spectrum. In 2DSI, the extra dimension means that the spectrometer resolution 

required is simply that required by the Nyquist limit for the pulse being measured 

(i.e. determined by the time window that must be resolved), enabling larger time 

bandwidth products to be measured than with standard SPIDER. 

4. Relation to Other Spectral Shearing Methods 

SEA-SPIDER, a method developed by Ellen Kosik [8] and successfully 

adapted for few-cycle pulses by Adam Wyatt [9], follows ZAP-SPIDER in using two 

chirped pulses. By putting a tilt between the two upconverted beams and measuring 

the output with an imaging spectrometer, a spatial fringe is created in one axis 

while spectrally resolving the other. 2DSI is similar to SEA-SPIDER in many 
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respects, with the fringe encoded in terms of an upconversion phase, rather than 

mixed with the pulse profile and encoded in space, 

              ( , ) 2 ( , ) ( , ) cos[2 cos ( ) ( )] D.C.,I x A x A x x c  (4) 

where x is the transverse spatial dimension and  is the half angle of intersection 

between the two upconverted beams. 

SEA-SPIDER’s use of spatial encoding allows for single-shot pulse 

characterization, including some kinds of spatiotemporal measurement along one 

axis. However, the use of separate output paths from the crystal in SEA-SPIDER 

makes the method more susceptible to a delay occurring between the point of 

upconversion and interference on the CCD detector. It is necessary to calibrate both 

the intersection angle of the two beams in SEA-SPIDER (the nominal fringe 

spacing) as well as the angle of the spectrometer grating axis (i.e. the nominal 

fringe angle) and inspection of (4) and comparison to (1) shows that miscalibration 

of either angle is equivalent to an erroneous delay in SPIDER, manifesting as 

discussed in Section 2. 

Because a nonlinear upconversion operation does not commute with a linear 

delay, the fact that a 2DSI system involves a scanning of the chirped pulse delay 

prior to upconversion makes it fundamentally different from SEA-SPIDER, which 

involves delays applied after. The result is that in SEA-SPIDER there is a varying 

time delay between pulse copies (with an associated spectral dependence), whereas 

in 2DSI there is a changing pure phase that is constant in frequency. We believe 
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varying the chirped pulse phase before upconversion results in a more robust 

measurement than changing a delay after upconversion, as our approach results in 

a simpler interferogram that requires less calibration. Because the output of 2DSI 

is essentially a single pulse, it is essentially impossible for the two components to 

experience further phase shifts.  

More recently, Ian Walmsley et al introduced a method which simultaneously 

records multiple SPIDER fringes over a range of different shears [10]. This allows 

for the calibration of the delay through a consistency requirement on all of the 

fringes, and was recently demonstrated for a 70 fs pulse. Because it implicitly relies 

on a thick crystal, however, applying this method to few- or single-cycle pulses may 

not be possible. 

The orthogonality of the temporal fringe to the spectral domain is also why 

the fringe period does not need to be known in 2DSI. At each wavelength, the fringe 

encodes only one piece of information (the group delay), and we are only concerned 

with the relative shift between wavelength. We thus do not care about the 

frequency of the fringe or even whether or not it is constant, only needing to know 

its relative phase. This eliminates many potential avenues for measurement error 

in a real system, such as scan linearity and calibration. In fact, the only calibration 

needed by 2DSI is for the up-conversion frequencies which produce the shear. 

Fortunately, this is a relatively non-critical calibration, as the relative pulse 

measurement uncertainty is proportional to the relative uncertainty in the shear 

[1]. 
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However, there is a cost for 2DSI’s simplicity in reconstruction and 

experiment, which is the loss of single-shot capability. Nonetheless, while the 

requirement for scanning in the present version of 2DSI renders single-shot 

operation impossible, it is still capable of video-rate operation, which is essential for 

laser tuning or automated pulse compression. The scanning mirror only needs to 

move a few microns, at most, and thus the system is theoretically capable of 

operation at kilohertz rates. In practice, signal to noise generally puts a lower 

bound on the required integration time to yield sufficient accuracy. This 

requirement will often exceed the pulse repetition rate, especially given the low 

efficiency of spectral shearing techniques (save for M-SPIDER [11]). This means 

that 2DSI will be appropriate for measuring a relatively stable oscillator, but a 

single-shot-capable method may be a better choice for an amplified pulse, especially 

given the extra pulse-to-pulse noise induced by amplification. 

5. Physical Layout and Operation 

As with any method, there are several ways to implement the optical operations 

required for 2DSI. In Figure 2, we provide a schematic of one approach. We have 

found that this arrangement provides for a cost effective, robust measurement. 

To begin with, roughly four percent of the short pulse under test is picked off 

by the Fresnel reflection from the glass cube beamsplitter (C) used in the Michelson 

interferometer. This can be done with a wedge bonded to the beamsplitter, or by 

simply operating the interferometer at slightly shallower than a right angle 

geometry. The remainder of the pulse is split in the interferometer, where a one 
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inch glass beamsplitter provides sufficient chirping to measure a pulse in the few-

cycle regime (see Section 18). If longer pulses need to be measured, an additional 

glass block can be placed in the output path of the interferometer. 

After the interferometer, the polarization of each chirped beam is rotated by 

a half-wave plate. (The polarization must be rotated since we are using Type II 

upconversion.) A simple low-order half-wave plate is sufficient since the rotation 

only needs to occur at two frequencies that are separated by the shear, which is 

typically on the order of 5 to 10 THz. 

The short pulse to be measured and the chirped pulses are made parallel and 

then focused by an off-axis parabolic mirror into a thin (roughly 30 m) Type II 

BBO crystal. As pointed out by Walmsley [12], BBO is rather fortuitous as an 

upconversion medium for spectral shearing methods, as its Type II phase matching 

curve can be engineered to have octave-spanning bandwidths in one polarization, 

with narrow bandwidths in the other. The collinear output of 2DSI preserves the 

favorable phase-matching of standard SPIDER, as illustrated in Figure 6. Coupled 

with the fact that bandwidth effects don’t impair spectral shearing measurements 

beyond reducing the signal to noise ratio, this renders 2DSI capable of precise self-

referenced measurements of pulses down to a single-cycle [11]. The use of 

noncollinear input beams allows the SFG beam to be isolated from the SHG beams. 

Finally, a standard glass objective focuses the output onto a grating spectrometer. 

Using a collinear input (where the chirped pulses and the pulse under test 

form a single beam) would simplify alignment, but it would present several 
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difficulties and is not recommended. First, combining the beams would involve loss, 

and would be impossible to do without introducing either significant loss (in the 

case of a Fresnel reflection) or phase distortion (in the case of a coating or pellicle) 

on the pulse to be measured. Second, separating the SFG from the fundamental 

would be difficult in the case of a single-cycle pulse, especially for a grating 

spectrometer. In addition, SHG light would likely be present, though this could be 

filtered out by proper signal processing during reconstruction. 

Mirror (B) is controlled manually by a translation stage with a relatively long 

travel (at least millimeters). This mirror is used to control the delay between the 

chirped pulse copies that determines the shear. The other mirror (A) is controlled by 

a short throw piezoelectric translation stage. Since this scanning mirror will only 

need to be translated a few microns, at most, a flexure stage can be used to 

maximize stability and reduce noise during the scan.  

A third delay stage (D) is used to adjust the temporal overlap between the 

short pulse and the chirped pulses, which determines the overall frequency of the 

upconversion. This stage should be rather long, on the order of a centimeter, at 

least, to provide for ease in alignment. Together, stages (B) and (D) provide 

sufficient degrees of freedom that both upconversion frequencies can be 

independently chosen. 

While 2DSI appears on the surface to have an experimental complexity 

similar to IAC or FROG, due to the scanning, this is not the case given the short 

distance of the scan and the lack of any calibration needed for it. The scan itself 
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may be handled in an open loop fashion, and a basic function generator may be used 

to ramp the mirror while spectra are taken at regular intervals. (This is the method 

we employed to provide the experimental demonstrations shown in the following 

section, in fact.) 

Our simulations show that nonlinearity of the fringe has no effect on the 

accuracy, though it does affect the reconstruction in the presence of noise by 

broadening the fringe in the frequency domain. Empirically, we found that even 

50% nonlinearity (defined as the maximum relative deviation from the nominal 

scan rate) results in only a halving of the signal to noise ratio. Nonlinearities below 

10% were not found to have an appreciable effect on the noise performance. The 

linearity of the scan will thus not be an issue for most commercial stages. 

Before a reconstruction is performed, the upconversion frequencies must be 

determined. This is done by alternately blocking one of the arms of the Michelson 

and recording the spectrum of each individual upconverted component. By cross-

correlating the upconverted spectrum with the fundamental pulse spectrum (taken 

by a separate OSA), the individual upconversion frequencies can be computed, and 

from this the shear, providing all information necessary for the reconstruction of the 

pulse. The calibration of the upconversion frequencies is not particularly sensitive; 

once this calibration is done, it does not need to be repeated for subsequent 

measurements unless the configuration is changed. 

To take a measurement, a computer controlling the piezoelectric stage moves 

the (A) mirror (A) over a total range of roughly 1 micron, recording a dozen or so 
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spectra during the scan. Due to the effective monochromaticity of the chirped 

pulses, this is equivalent to scanning a pure zeroth-order phase of the corresponding 

upconverted spectral component. As discussed in Section 6, only four spectra are 

actually needed for reconstruction, but taking more results in a more intuitively 

understandable trace and one that allows for a simplified reconstruction algorithm. 

6. Design Considerations 

The construction and alignment of 2DSI presents no challenges beyond that 

required of for any Michelson interferometer and sum frequency generation. The 

experimental setup is essentially the same as a conventional SPIDER, with the 

main differences being the location of the dispersion and the addition of a motor to 

one delay stage. Care should be taken to ensure relative collinearity of the chirped 

beams with respect to each other. Fortunately, any deviation from this should not 

result in a spurious spectral phase, as discussed in Section 3. In fact, all conceivable 

misalignments, to the best of our knowledge, will simply result in attenuation of 

signal, not errors. 

When putting together a 2DSI setup, there are essentially six design issues: 

i. How much shear to use 

ii. How far to scan and how linear it must be made 

iii. How much dispersion to use for chirping 

iv. How often to sample the spectrum during the scan 

v. Spectrometer resolution 

vi. Nonlinear crystal thickness 
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These six issues are not independent, and are all determined by the 

bandwidth and temporal extent of the pulse. Each is discussed individually in the 

following subsections. 

A. Shear Frequency 

The shear frequency ultimately becomes the “sampling period” of the phase 

in the spectral domain, and most of the other parameters can be derived from it. By 

the Shannon sampling theorem, this determines the temporal window over which 

we can reliably measure. In the remainder of this paper will refer to this time 

period as the shear Nyquist duration. While it may be tempting to simply pick a 

shear sufficient to include a region of interest, such as the main pulse, this is not 

sufficient. Any satellite pulses or pedestal structure will still be measured, but will 

be “aliased” into our chosen temporal window, resulting in errors. Thus, the shear 

must be chosen so as to allow resolution of all spectral features. Moreover, satellite 

pulses which may seem negligible can have significant effects when aliased onto the 

main pulse, due to the fact that aliases add in field. Our numerical simulations 

have shown that a satellite pulse with an intensity of only 2% of the main pulse can 

change the FWHM of the main pulse by up to 5.5% should it be aliased on top of it. 

The required temporal window is not known a priori, by definition, in a pulse 

that we are seeking to characterize. It is tempting to simply conclude the sampling 

was sufficient by taking a measurement and verifying that the reconstruction is 

well contained with the time window. However, the nature of aliasing is that once 

sampling occurs, one cannot tell the difference between correctly or insufficiently 
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sampled signals. The only reliable way to assure that the sampling rate is sufficient 

is to take measurements at a series of decreasing shears, and verify that the 

measurements converge to required precision. 

In practice, for sub-two-cycle pulses produced by oscillators with dispersion 

compensating mirrors, we have found that a shear of around 4–5 THz is required to 

sufficiently resolve the satellite pulses and pedestal. Unfortunately, this appears to 

be independent of the final pulse bandwidth, as one would expect given that the 

mechanisms for creating them are independent of bandwidth. 

B. Chirping Dispersion 

The signal of the final measurement is inversely proportional to the amount 

of dispersion used to create the quasi-CW beams, and thus the chirp of the ancillary 

pulses should be the minimal amount required to result in an accurate 

measurement. Over-chirping results in an unnecessarily weak signal, and under-

chirping results in a complicated “blurring” of the measurement in the spectral 

domain as the upconversion occurs with a range of interacting wavelengths. Having 

determined the required spectral resolution with the shear, the chirping should be 

selected such that the associated blur is smaller than this resolution. Requiring that 

the chirped pulses’ instantaneous frequency does not change by more than  over 

the entire temporal window conservatively implies that the required second-order 

dispersion be 

 


2 2

1

2
D  (5) 
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For example, if 5 THz of shear is used, the dispersion required is 20,000 fs2, 

obtained by roughly 10 cm of SF11. This is quite a bit of dispersion, and will 

significantly impair the signal power. 

However, equation (5) presumes that we care about properly measuring the 

field over the entire temporal window. In most cases, we only care about accurately 

measuring a main pulse. (This is consistent with our previous statement that all 

satellite structure must be resolved; while we may not be interested in the accurate 

measurement of satellite pulses, we still must ensure that they do not alias.) If a 

well-separated satellite pulse sees shifted local frequencies of the chirped pulses, it 

will simply result in a local error in the reconstruction of that feature in proportion. 

Thus, a more reasonable criterion is simply for the frequency of the CW beam to 

change by no more than the shear over the temporal extent of the main pulse. 

Taking this width to be T, this gives 

 
2
T

D  (6) 

Since the optimal shear cannot be known a priori (as explained above) 

neither can the dispersion be determined without knowing the temporal extent of 

the pulse, exactly the thing we seek to measure. Ideally, one would iteratively 

increase the chirping as with the shear, until the measurement converged to some 

satisfactory precision. However, this is generally not feasible, as variable sources of 

dispersion with wide variability are not easily found and would be expensive 

regardless. As such, the chirp will have to be chosen somewhat conservatively when 
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the 2DSI system is built, with the worst-case pulse width in mind and a 

conservative estimate for the smallest shear likely to be used. A safe configuration 

for a few-cycle laser can be found by assuming a shear of 5 THz, and a pulse width 

of no more than 25 fs, yielding a dispersion of 5000 fs2. This is a small enough 

amount that it can be provided by the cube beamsplitter used in the chirped beam 

interferometer (as in Figure 1). 

C. Delay Scan Length 

The scan must be long enough such that the sidebands shown in Figure 4 are 

well separated from the central DC peak. This distance will vary depending on 

whether or not we are performing windowing, and how accurately the scan can be 

matched to the fringe period. In general, one will be fine as long as at least three 

fringes are visible, as derived in Section 6. Beyond this consideration, the length of 

the scan actually does not matter. This implies scan lengths on the order of a 

micron or two, at most, allowing very stable short-throw piezoelectric stages to be 

used, and enabling high scan rates limited only by signal levels. In our setup, we 

have been able to achieve scan rates of several Hertz, limited by the readout speed 

of our spectrometer. 

D. Scan Sample Rate 

The number of points over which the scan is sampled is largely irrelevant so 

long as they are sufficiently sampled. Beyond that, doubling the number of samples 

but halving the integration time of each will result in identical measurements. That 
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is to say, the only thing that matters is the total measurement time. The exception 

to this is when the measurement is limited by readout noise, in which case keeping 

the samples to a minimum is advised. In such a situation, it is actually possible to 

get by with only four measurements. 

Given that the scan rate doesn’t affect the measurement, a rate high enough 

to yield a human-readable spectrogram can be useful, such as that shown in Figure 

3. This allows the user to visually gauge the functioning of both the laser and the 

2DSI system. 

E. Spectrometer Resolution 

The required spectrometer resolution is simply that consistent with the 

sampling rate set by the shear. Any more will only result in excess dark current 

noise. Of course, the spectrometer resolution is not a readily changed variable, so 

we recommend choosing a spectrometer with a resolution of at least 2 THz, to 

ensure the apparatus can be used to measure any reasonable time-bandwidth 

product. 

F. Nonlinear Crystal Thickness 

Thanks to the phase encoding inherent to spectral shearing, the bandwidth of 

the nonlinear crystal only affects the measurement from a signal-to-noise 

standpoint. The uniformity of the upconversion is thus not an issue, and the ideal 

crystal is such that the minimum conversion efficiency is maximized. In most cases, 

this entails choosing the crystal angle that maximizes the minimum conversion over 
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the expected bandwidth, regardless of the resulting variation of efficiency across the 

spectrum. 

As mentioned earlier, a unique aspect of spectral shearing interferometry is 

that the nonlinear operation is between a signal with high bandwidth (the pulse 

under test) and one which is nearly monochromatic (the chirped beams). This allows 

one to take advantage of the inherent asymmetry in Type II upconversion, wherein 

one polarization will have greater bandwidth than the other. In the case of BBO, 

the dispersion works especially favorably for Type II upconversion in the NIR, such 

that bandwidths exceeding an octave can be efficiently upconverted with crystals of 

reasonable thickness. This, combined with the natural noise resilience of spectral 

shearing, goes a long way to making up for the relatively low optical efficiency of 

SPIDER methods. To optimize the conversion efficiency, a full non-collinear phase 

matching curve must be considered for the specific wavelength ranges to be used. 

An example of such a curve is shown in Figure 6.  

7. Reconstruction Algorithm 

A. Fringe Phase Extraction 

The inversion process for a 2DSI fringe is significantly simpler than that 

required for FROG, or even SPIDER. The only information we need to extract from 

the 2D interferogram is the phase of the fringes along the direction of the scan delay 

(i.e. the vertical direction in Figure 3). Precise quantitative determination of the 

fringe phase, and thus the group delay, at each wavelength, can be obtained in one 
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of several ways. The most direct method of extracting the fringe phases is to simply 

fit a cosine to the fringe at each wavelength. While this approach is potentially 

quite accurate, it is relatively slow and will not always converge in the presence of 

noise. 

If the fringe period is known exactly, the phase can be recovered using a 

variation of the Takada algorithm [13], analogously to what is done in SPIDER and 

SEA-SPIDER [8]. However, this would require having a calibrated linear scan. It 

would complicate the experiment greatly to require the scan to be known and linear, 

necessitating either feedback control or accurate measurement of the mirror 

displacement and linearization via signal processing. Fortunately, the fact that no 

information is encoded in each fringe other than the spectral group delay means 

that we can use a very simple reconstruction algorithm. 

An efficient and direct way to access the fringe phase is to compute a series of 

1D FFTs along the fringe axis. According to (2), the fringes generate well-separated 

sidebands in the continuous Fourier domain (see Figure 4) and their phase angle 

represents the spectral group delay term in (1). However, depending on the length 

of the scan and how close it is to a multiple of the CW wavelength, in practice 

windowing effects may broaden the sidebands such that they and the central DC 

term interfere, perturbing the phase. This can be effectively dealt with by applying 

a windowing function to eliminate the broadening. We have empirically found a 

hamming window to perform quite well if the number of fringes initially visible is at 

least three. This method comes with the disadvantage of throwing away information 
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at the edges of the scan, however, which will necessarily reduce the SNR of the 

measurement. Nonetheless, we mention it as it is by far the simplest approach to 

take, and will work in virtually any situation. 

In practice, fortunately, windowing isn’t necessary so long as a sufficient 

number of fringes are observed. Because we are actually measuring group delay, 

any constant offset is meaningless, which mitigates the effects of windowing. The 

worst-case relative error in the extracted pulse spectral phase can be shown (see 

Appendix A) to be approximately equal to 

 
 
 




 
rec

act n
, (7)  

where n is the index of the FFT component (the harmonic number) and  is the 

difference in frequency between the fringe and the harmonic (normalized to the 

fundamental, such that the worst case scenario is  = 0.5). As can be seen, the 

error will be relatively small if the fringe frequency is close to the FFT harmonic, or 

if n is large. As a rule of thumb, so long as three or more fringes are visible, or the 

scan length is within 10% of the fringe period, the worst possible error will be no 

more than a few percent and windowing will not be necessary. 

It is often advisable to filter in the wavelength domain to suppress noise 

outside the measurement time window. This filtering can be efficiently combined 

with the reconstruction by computing a 2D FFT of the interferogram, and selecting 

a subset of the single line of “pixels” representing the 2D sideband within the shear 
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Nyquist limit. Wavelength domain filtering is especially important when the 

detector is significantly oversampling the spectrum. 

B. Finite Difference Inversion 

Having determined the phase of the fringe at each wavelength, multiplying 

by the shear yields the finite difference of the spectral phase, as shown in (3). The 

final step, then, is to compute the spectral phase of the measured pulse from these 

finite differences. This step is common to all spectral shearing methods, and has 

been discussed elsewhere in the literature. 

The most straightforward way is to simply treat the finite differences as 

proportional to the spectral group delay, numerically integrating them using 

standard methods and accepting the O( 2) error. However, this does not result in 

the most accurate measurement possible, as the truncation error due to the finite 

difference is actually reversible. One can regard a finite difference as approximating 

the continuous derivative operator with a two term “discrete time” FIR filter. The 

amplitude transfer function of this effective FIR filter is sinusoidal in the 

pseudotime domain, peaking at half the inverse period of the finite difference (half 

the shear Nyquist rate). Thus, it underestimates the magnitude of phase 

oscillations, with the underestimation increasing as the oscillation period decreases. 

In terms of pulse reconstruction, this means that the amplitude of satellite pulses 

will be underestimated the further away they are from the main pulse. 

A rigorous approach to the phase reconstruction is to compute the inverse of 

the finite difference operation, yielding the phase without any errors other than 



28 

those caused by noise. To do so, the data must first be antialiased by filtering out all 

“frequencies” above 1/ . Then, a sinc interpolation can be used to compute the 

fringe phase  on a regular grid of points spaced by . A simple cumulative sum 

will then yield the spectral phase of the pulse. It may seem that this approach is not 

optimal in terms of noise performance, as the data will be concatenated at a lower 

resolution than that provided by the spectrometer, seemingly throwing out data 

points that are being skipped over. However, the antialiasing filter step provides 

the averaging in this case. By suppressing all noise beyond the shear Nyquist limit, 

the final filtered phase data will be made internally consistent such that the 

concatenation operation will yield the same result regardless of the starting point. 

8. Sensitivity to Noise 

As illustrated in Figure 4, the sidebands in 2DSI are spectrally compact. The 

fringe is simply an impulsive line in the 2D Fourier domain, the sharpness of which 

is limited by the scan length. This spectral compactness means that the bulk of any 

noise will not interfere with the signal, maximizing SNR. A significant amount of 

noise immunity is gained by isolating the sideband (as discussed in Section 6) 

assuming the noise is uniformly distributed over all frequencies. Furthermore, the 

information is contained in the phase of the sideband, not its intensity, further 

reducing the sensitivity to noise. 

An important question to answer is whether or not 2DSI’s need to scan over a 

delay renders it more or less sensitive to noise than standard SPIDER. Intuitively, 

one might expect that for a given total integration time, they would be comparable 
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in light of our previous assertion that 2DSI simply takes the SPIDER sidebands and 

moves them in a new direction. To illustrate the noise immunity of 2DSI (and in 

fact spectral shearing in general) we simulated the measurement of a pulse with a 

rectangular spectrum of 300 THz bandwidth, whose transform-limited pulse width 

is roughly 3 fs. The SPIDER method was simulated using the same noise source, 

with an integration time equal to the total measurement time of the 2DSI trace. 

The SPIDER calibration method used was that of [4], where a calibration 

measurement with exactly zero shear was assumed to be available that exactly 

preserved the delay. 

The results are shown in Figure 5. For a given measurement time, 2DSI has 

half the variance of SPIDER. The difference between the two is entirely due to 

uncertainty introduced into the SPIDER calibration by the detector noise. 

Furthermore, it is apparent from the middle plot in Figure 5 that the SPIDER error 

is predominantly composed of a second-order term, validating our consideration of 

the calibration as largely manifesting as an effective delay uncertainty. 

If the SPIDER calibration noise issue is ignored, the two methods perform 

identically, regardless of the type of noise used (i.e. additive or shot). This is to be 

expected, given 2DSI simply takes the SPIDER sidebands and moves them into 

another dimension. From a signal processing point of view, a SPIDER measurement 

is equivalent to a 2DSI measurement where the upconversion phase is constant and 

the sidebands are created by a temporal delay. It is thus to be expected that the two 

methods would perform similarly in the absence of calibration issues. 
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9. Experimental Demonstrations 

A. Precision Test 

To gauge the relative precision of the method, a few-cycle (5 fs FWHM) pulse from a 

prismless Ti:sa laser was measured using a 2DSI setup similar to that shown in 

Figure 1, using a shear of 18 THz. The pulse was measured both before and after 

dispersion by a one mm fused silica plate, Figure 7(b). It is apparent from the 

spectral GD curves that the pulse is initially slightly negatively chirped, and the 

positive dispersion introduced by the glass plate is evident. The sharp roll-off in the 

GD below 650 nm is genuine, and caused by phase distortion from the output 

coupler. Oscillations in the spectral group delay, caused by the chirped mirrors, are 

also clearly visible. Despite these perturbations in the individual spectra, the 

oscillations completely cancel in the difference between the phase of the two 

measurements, which matches well to that predicted by the known Sellmeier 

equations for fused silica, as shown in Figure 7(c). In fact, in terms of phase delay, 

the 2DSI system measured the glass dispersion to within 30 attoseconds of phase 

delay over a bandwidth from 600 to 1000 nm, Figure 7(d). This precision was 

achieved despite the absolute phase delay of each measurement ranging over more 

than 40000 as. 

While these results suggest that the 2DSI apparatus is capable of precise 

measurements, they do not rule out the possibility of constant errors occurring that 

are consistent between measurements. For example, if there were an unknown 

linear phase creeping in the measurement somehow (as discussed earlier in Section 
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7) such a systematic error would not be evident from these dispersion 

measurements. 

B. Accuracy Test 

To qualitatively demonstrate the absolute accuracy of the system and rule out the 

existence of systematic errors, we recently performed a measurement on an octave 

spanning sub-two-cycle pulse [14,15] from another unamplified Ti:sapphire 

oscillator, and compared the 2DSI measurement to that obtained with a standard 

IAC (Figure 8). 

In Figure 8(d), we show the reconstructed pulse envelope and phase for the 

pulse, measured to have a full width half maximum of 4.9 fs. To our knowledge, this 

is the shortest pulse measured with a spectral shearing method directly from an 

oscillator (i.e. without use of an external amplifier). As shown in Figure 8(b), the 

measured IAC and that predicted by the 2DSI measurement show fairly close 

agreement. We attribute most of the difference between the two to band-limiting 

effects on the IAC, which is not well suited to measuring a 4.9 fs pulse (note, for 

example, the lack of symmetry in the IAC trace). Thus, we do not present this 

measurement as further evidence of the precision of 2DSI, as an IAC is not a 

particularly reliable measurement of fine detail. However, the fact that the overall 

pulse widths predicted by both are consistent does suggest that we are correct in 

assuming that no appreciable hidden linear phase can occur in 2DSI. This validates 

the assertion that 2DSI does not require a separate calibration step. This 

measurement has also been corroborated by detailed simulations of the laser cavity 
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in question, which also predict a 4.9 fs pulse with a large sub-pulse 9 fs away from 

the peak (see [16] for details). 

10. Future Work 

The geometry of 2DSI is unique in that the pulse to be measured never 

encounters a dispersive element, and yet the arrangement is still collinear. Were 

the spectrometer replaced by an imaging spectrometer, a spatially resolved 2DSI 

measurement could be taken along one axis. Moreover, if a full 2D imaging 

spectrometer were used, such as that available with imaging Fourier transform 

spectroscopy or grisms, one could make a full 2DSI measurement at a 2D array of 

points along both transverse axes. By spatially filtering the chirped beams so that 

they were spatially coherent, they would provide a constant phase reference across 

the beam profile, enabling a full spatiotemporal reconstruction up to a trivial 

constant and quadratic spatial phase (focusing). This would allow for the first self-

referenced 3D measurement of few-cycle pulses. 

By using a nanostructured stepped mirror, a single-shot version of 2DSI 

might be implemented. The CW phase would then be encoded as a function of space, 

and the fringe could be read using an imaging spectrometer. This arrangement 

would result in the mixing of the spatial profile with the fringe, essentially creating 

a collinear variation of SEA-SPIDER with a spatially varying zeroth-order phase as 

opposed to linear phase. This could provide similar advantages to SEA-SPIDER, but 

with potentially simpler calibration and alignment. 
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11. Conclusion 

Two-dimensional spectral shearing interferometry involves a relatively simple 

optical setup with little calibration required, and yet is capable of spectral phase 

measurements accurate to within tens of attoseconds of phase delay over octaves of 

bandwidth. The lack of dispersion on pulse to be measured, the stable absence of 

delay between the sheared pulses, and the relaxed spectrometer resolution 

requirements make 2DSI extremely well suited for the measurement of wide-

bandwidth pulses, including those with potentially complicated spectral phase. 
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14. Appendix A: Derivation of FFT-computed fringe phase error 

[I’m having second thoughts about whether or not this is overkill. Franz, do you 

think this is a good idea to include?] 
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15. List of Figure Captions 

Figure 1. Experimental schematic of 2DSI setup. 

Figure 2. Frequency domain block diagram of 2DSI process. 

Figure 3. (Color online) Raw 2DSI traces from octave spanning laser, with (a) 

extracted spectral group delay overlaid to demonstrate the interpration of fringe 

offset, and (b) the same pulse with 1 mm of fused silica. The presense of extra 

dispersion is evident in the raw trace without any need for reconstruction. 

Figure 4. Illustration of the different sideband schemes between 2DSI (top) and 

SPIDER (bottom), showing the two schemes for pulling the information containing 

sidebands out of the DC term. 

Figure 5. Simulated 2DSI spectrogram (top) measured with 64 phase steps for a 

sinc pulse with second- and third-order dispersion and a satellite, measured in the 

presence of additive and shot noise, such that the resulting SNR per spectrum is 

0.5. A sample reconstruction, including comparison with SPIDER is shown in the 

middle frame. The bottom frame shows the standard deviation of the phase 

measurement for both SPIDER and 2DSI, showing that the lack of delay calibration 

in 2DSI yields a factor of two improvement in noise performance. 

Figure 6. (Color online) top: 2DSI Phase matching plot for Type II sum frequency 

generation for BBO cut to measure a typical few-cycle Ti:sapphire laser. The lined 

areas denote the phasematched regions, with each line denoting increased efficiency 

by 10 percent. bottom: Slices of the phase matching curves for two upconversion 
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wavelengths separated by 6 THz, showing the efficiency of upconversion for the two 

spectrally sheared components. 

Figure 7. (a) Spectrum of 5 fs laser used in test; (b) extracted group delay both with 

and without glass slide; (c) Phase of glass slide as measured by 2DSI and as 

predicted by known glass dispersion; (d) Net phase delay error in glass dispersion 

measurement. 

Figure 8. (Color online) (a) Raw 2DSI data; (b) comparison of IAC and that 

predicted from the 2DSI measurement; (c) Extracted spectral phase (dashed); (d) 

Reconstructed pulse (solid), simulated pulse (dotted) and temporal phase (dotted). 
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16. Figures 

 

Figure 1. Experimental schematic of 2DSI setup. 
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Figure 2. Frequency domain block diagram of 2DSI process. 
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Figure 3. (Color online) Raw 2DSI traces from octave spanning laser, with (a) 
extracted spectral group delay overlaid to demonstrate the interpration of fringe 

offset, and (b) the same pulse with 1 mm of fused silica. The presense of extra 
dispersion is evident in the raw trace without any need for reconstruction. 
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Figure 4. Illustration of the different sideband schemes between 2DSI (top) and 
SPIDER (bottom), showing the two schemes for pulling the information containing 

sidebands out of the DC term. 
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Figure 5. Simulated 2DSI spectrogram (top) measured with 64 phase steps for a 
sinc pulse with second- and third-order dispersion and a satellite, measured in the 
presence of additive and shot noise, such that the resulting SNR per spectrum is 
0.5. A sample reconstruction, including comparison with SPIDER is shown in the 

middle frame. The bottom frame shows the standard deviation of the phase 
measurement for both SPIDER and 2DSI, showing that the lack of delay calibration 

in 2DSI yields a factor of two improvement in noise performance. 



44 

 

Figure 6. (Color online) top: 2DSI Phase matching plot for Type II sum frequency 
generation for BBO cut to measure a typical few-cycle Ti:sapphire laser. The lined 

areas denote the phasematched regions, with each line denoting increased efficiency 
by 10 percent. bottom: Slices of the phase matching curves for two upconversion 

wavelengths separated by 6 THz, showing the efficiency of upconversion for the two 
spectrally sheared components. 
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Figure 7. (a) Spectrum of 5 fs laser used in test; (b) extracted group delay both with 
and without glass slide; (c) Phase of glass slide as measured by 2DSI and as 

predicted by known glass dispersion; (d) Net phase delay error in glass dispersion 
measurement. 
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Figure 8. (Color online) (a) Raw 2DSI data; (b) comparison of IAC and that 
predicted from the 2DSI measurement; (c) Extracted spectral phase (dashed); (d) 
Reconstructed pulse (solid), simulated pulse (dotted) and temporal phase (dotted). 


