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than the scale of a wavelength. This is demonstrated by numerical simulations of

SPIDER pulse reconstruction using actual data from a sub-two-cycle laser. We

briefly propose methods to minimize the effects of this sensitivity in SPIDER, and

review variants of spectral shearing which attempt to avoidthis difficulty. c© 2008

Optical Society of America

OCIS codes: 320.7100, 120.5050

1. Introduction

Steady progress in ultrafast laser sources over the past several decades has led to the recent de-

velopment of robust sources of few-cycle laser pulses. Sub-two cycle pulses can now be produced

directly from oscillators, and sources of single-cycle pulses are under development [1,2]. Further-

more, as few-cycle lasers are increasingly used to drive attosecond extreme-UV and X-ray pulses,

these applications will require extremely accurate and precise characterization of the few- and

single-cycle pulse envelopes used to drive the high harmonic generation process [3].

The technology for measuring ultrashort optical pulses must, of course, keep pace with the lasers

themselves, and few- and single-cycle pulses present unique difficulties in this regard. The most ob-

vious difficultly in few-cycle pulse measurement stems fromthe tremendous bandwidths involved.
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All self-referenced pulse characterization methods involve nonlinear operations of some sort [4],

and in the case of few-cycle pulses one essentially has to implement a specialized analog optical

switch capable of operating with hundreds of terahertz of bandwidth. Any bandwidth filtering is

especially relevant for techniques where theamplitude of the trace is a critical parameter, such as

interferometric autocorrelation (IAC) [5] and frequency resolved optical gating (FROG) [6].

As pulses become shorter, the time scales of nonidealities do not always scale with them. For

example, the relative delays of satellite pulses due to secondary reflections off dispersion compen-

sating mirrors do not scale with the main pulse width. In fact, if anything they scale inversely to the

pulse width as mirrors become thicker to accommodate wider spectral range. The spectral phase os-

cillation periods caused by such delays are usually on the order of 5–10 THz. Thus, as bandwidths

approach 200 THz and beyond, the time-bandwidth product required for a full characterization on

even a well-compressed pulse can exceed 20.

In addition, the extreme bandwidths involved result in higher-order material dispersion playing

a significant role in pulse shaping, yielding pulses which are typically highly asymmetric. As such,

the commonly used technique of IAC, which is relatively insensitive to pulse asymmetries [7],

can miss details. The squared intensity operation inherentto IAC greatly suppresses the effect of

satellite pulses, for instance. As such, iterative reconstructions based on IAC (e.g. [5]) may fail to

properly converge in the presence of noise when higher-order dispersive effects are significant.

One of the dominant characterization methods for very shortpulses is spectral phase interferom-

etry for direct electric-field reconstruction (SPIDER). In many ways, spectral shearing interferom-

etry is uniquely suited to the task of measuring few- and single-cycle pulses. However, there is a

calibration sensitivity with standard SPIDER (and many of its variants) that needs to be taken into

consideration for pulses on the order of a single cycle.

We begin by briefly explaining the principle behind spectralshearing and its advantages in the

few-cycle regime. Due to its importance to both accuracy andsensitivity, we discuss the importance

of choosing a proper shear frequency, and the considerations for doing so. Next, we analyze the

sensitivity of the measurement to the delay reference inherent to spectral shearing, deriving an an-

alytic result and simple scaling law. We show that relative measurement errors scale quadratically

with pulse bandwidth, leading to extreme sensitivity to calibration errors as pulse widths decrease

past a few optical cycles. We then illustrate this principleon experimental data from a sub-two-

cycle oscillator, showing that a standard SPIDER apparatuswould require mechanical stability far

exceeding the scale of the wavelengths involved. Finally, we conclude by suggesting ways to miti-

gate the sensitivity, and survey some recent alternative spectral shearing methods which attempt to

eliminate it.

Our focus on spectral shearing is not meant to imply that we feel it is alone in presenting chal-

lenges to the characterization of pulses approaching a single cycle. In fact, our feeling is that

spectral shearing is otherwise so well-suited to handling such pulses that it is worth examining

2



these issues in some detail.

2. Spectral Shearing Interferometry

2.A. Theory

Spectral phase interferometry for direct electric-field reconstruction, or SPIDER, was developed

by Iaconis and Walmsley in 1999 [8]. It is a modification of spectral interferometry, where both

interfering components are obtained from the input pulse and are slightly shifted in frequency.

This obviates the need for the reference pulse that is required in standard spectral interferometry.

Called spectral shearing interferometry, this general idearepresents a fundamentally unique mode

of pulse measurement, in that it directly observes interference between two adjacent frequency

components. As such, it can be an extremely robust and directmethod that avoids the need for

iterative inversion algorithms.

Figure 1 shows a conceptual schematic of SPIDER. While the practical details vary greatly,

all spectral shearing methods involve a nonlinear interferometer whereby one arm experiences a

different frequency shift than the other. Interference is observed between the two by putting some

sort of phase shift on one of the arms. In the case of standard SPIDER, a linear phase shift is

realized by interferometrically delaying the two pulse copies byτ .

By upconverting the pulse to be measured with a pair of frequencies separated byΩ, any original

wavelengths in the pulse which are separated by this “shear”frequency are mapped to the same

wavelength in the output. One may thus directly observe the phase delay between two nearby wave-

lengths, and thereby the spectral dispersion. In standard SPIDER, the spectrally resolved output is

given by [8]

D(ω) = |E(ω − Ω)|2 + |E(ω)|2 + 2 |E(ω − Ω)E(ω)| cos[φ(ω − Ω) − φ(ω)
︸ ︷︷ ︸

φ′(ω−Ω/2)Ω+O[Ω2]

+ τω], (1)

whereE(ω) = |E(ω)|e−iφ(ω) is the upconverted spectrum of the pulse andτ is the delay between

the two upconverted copies. (In practiceE(ω) will be roughly doubled in frequency from the fun-

damental, but its phase will be identical and its phase is allwe are concerned with.) The oscillating

cosine “carrier” fringe is the only element of interest, andits phase encodes a finite difference of

the pulse spectral phase, approximately proportional to the spectral group delay. The method for

isolating this phase is beyond the scope of this paper, and isnot important to our end here. It suf-

fices to mention that so long asτ is sufficiently large, the fringe phase may be reliably extracted by

standard signal processing techniques. Since the initial development of SPIDER, many variants of

spectral shearing interferometry have been invented, but all share the same fundamental property

of generating a carrier fringe in some domain (perhaps in space or time, if not frequency) which

is shifted in proportion to the finite difference of the spectral phase,φ(ω − Ω) − φ(ω). As such,

spectral shearing interferometry essentially “samples” the spectral phase (up to a constant phase)
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Fig. 1. (Color online) Conceptual schematic of SPIDER. This model intentionally

abstracts away several practical details, such as the fact that, in practice, both pulse

copies are upconverted by slightly different optical frequencies. However, these

details are not important to an analysis of SPIDER.

with a discretization ofΩ.

2.B. Application to Few-cycle Pulses

The spectral shearing approach has three salient features relevant in the context of few-cycle pulses.

First, the upconversion of the short pulse with a monochromatic field is fundamentally easier to

perform than the full second-harmonic operation inherent to IAC and FROG. To begin with, the

output relative bandwidth is roughly half that of the input as the spectrum is simply shifted, as

the spectra is not convolved with itself as in the case with second-harmonic-based methods. Most

importantly, however, only one of the field components in thenonlinear operation contains the full

bandwidth, which greatly facilitates phase matching; TypeII upconversion can be engineered to

have significant bandwidth in one of the input fields with a narrow bandwidth in the other, a perfect

match for spectral shearing interferometry (see [9] for an illustration of this).

A second advantage comes from the use of phase to encode the spectral group delay. The spectral

signal (1) produced by SPIDER can be viewed as a carrier wave that is frequency modulated by

a signal proportional to the spectral group delay. Much as frequency modulation is more robust

to interference than amplitude modulation for a given signal power [10], this modulation scheme

renders SPIDER methods relatively impervious to phase matching bandwidth effects, as well as

highly immune to experimental noise. This noise tolerance was observed by Gallman and others

in [11], and by Jensen in [12]. Robustness to noise is especially important given the relatively low

efficiency of most spectral shearing embodiments, wherein much of the measured light is thrown

away to create the chirped upconverting signal. The phase modulation scheme also makes spectral

shearing tolerant to the presence of unwanted signals (suchas the fundamental pulse or higher

diffraction orders from a grating spectrometer), which become increasingly difficult to suppress as
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bandwidths exceed an octave.

Lastly, spectral shearing directly measures spectral phase rather than the effects of it on the pulse

envelope. Together with the aforementioned noise immunityof the encoding scheme, this makes

spectral shearing methods extremely sensitive to the kind of pulse asymmetries and secondary

pulses that are common in few-cycle lasers.

However, one issue that the original SPIDER does share with its correlation-based cousins (e.g.

IAC) is that it requires the measured pulse to be split and delayed. For pulses approaching an octave

of bandwidth, it is not yet possible to implement a dispersionless beamsplitter and the dispersion of

the beamsplitter is imprinted on the SPIDER measurement. Fortunately, this is not fundamental to

spectral shearing; a few methods, to be discussed later, have been developed which involve nothing

but reflections for the measured pulse.

2.C. Choice of Shear Frequency

The shear frequencyΩ plays a critical role in both determining the sensitivity, as well as the accu-

racy of a SPIDER measurement. SinceΩ determines the frequency spacing at which we concate-

nate the spectral phase, this ratio is equal to the number of points at which we sample our spectrum

over its bandwidth. According to the Shannon sampling theorem, the temporal window which we

can handle without aliasing is the reciprocal of twice the shear. The time-bandwidth product that

can be resolved is therefore∆ω/2Ω.

Since the modulation of the SPIDER fringe (1) is proportional to the shear, one maximizes the

signal to noise ratio of a spectral shearing measurement by choosing the largest shear that will

avoid aliasing. As will be shown later, this also results in the least sensitivity to calibration errors.

However, how can one determine, a priori, what that is? In theory, there is no way to know without

actually making a measurement. Normally when one samples a signal, the bandwidth is known.

However, in this case the “bandwidth” is the temporal extentof the pulse, and there is no reliable

way to know that without having already done a pulse characterization. In practice, however, one

generally knows the range of dispersion expected. Furthermore, one can fairly assume that struc-

tures in the power spectral density will coincide with oscillations in the spectral phase. In most

cases, especially with few-cycle pulses, it is the latter that determines the required spectral sam-

pling resolution. Thus, picking a shear that is sufficient toresolve the features of the amplitude

spectrum will usually suffice. If in doubt, a sequence of shears can be used to effectively verify

sufficient sampling.

Most lasers produce pulses with satellite structures and pedestals, to some extend or another. As

such, in a properly performed measurement of a well-compressed pulse, with the spectral features

sufficiently sampled, the vast majority of the energy is contained in a relatively small region of the

resolvable temporal window. Given such a result, it is tempting for the user to assume that a larger

shear can be safely used, with the argument being that if the power outside the main pulse region is
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negligible, it will not hurt to ignore its effects when aliased. However, what may appear negligible

in intensity when well-separated may have a significant effect when added coherently to the main

pulse. Consider the case of a measurement where a pulse has distant satellite pulses that are no

more than 1% of the intensity of the main pulse. Increasing the shear enough to alias the pedestal

onto the main pulse can potentially result in 20% relative changes in the main pulse on an intensity

basis. In general, the only way to verify sufficient samplingis to take another measurement at a

different resolution.

3. Spectral Shearing Delay Sensitivity

3.A. Pulse Width Error Scaling

Unfortunately, the advantages enumerated above come at a certain cost. In order to gauge the phase

of the fringe in (1) we must know the nominal period of the fringe, given by1/τ . Of course, all ul-

trafast measurement techniques contain inherent length references which must be calibrated (such

as the distance traveled by a delay stage in an autocorrelation or the spectrometer grating period

in any spectrally resolved method). In most methods, the calibrations affect the measurement in

a proportional way. However, it turns out that an errorδτ in the interpulse delayτ will result in

anadditive measurement error, and thus this calibration becomes increasingly sensitive as pulses

become shorter.

In this section we derive a rough scaling law for the worst case errorδt in the measured pulse

width as a function ofδτ by considering the characterization of a Gaussian pulse with a spectral

1/e2 half-width of∆ω (a figure which we use for mathematical simplicity, and whichis within ten

percent of the commonly used full-width-half-maximum, or FWHM). We assume that the pulse

we’re measuring is dispersed solely by an amount of second-order dispersion given byφ′′, and we

are concerned with the error in estimating the pulse width inthe presence of a given uncertainly

δτ in the interpulse delay. The complex spectrum of the pulse isgiven by

E(ω) = e−(ω/∆ω)2+ 1

2
iφ′′ω2

. (2)

From (1) we can see that any unaccounted delayδτ occurring between the two upconverted

pulses will be associated, to first-order, with the group delay and thus be interpreted by the recon-

struction as an erroneous linear group delay,

δφ′(ω) =
δτ ω

Ω
. (3)

Taking the derivative of both sides of this equation with respect toω gives us an expression for the

erroneous dispersion contributing to the measurement as a result of the delay error,

δφ′′ =
δτ

Ω
. (4)
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To consider the effect of this extra dispersion we begin withthe well-known result (see [13],

for example) for the temporal width (where we have translated the formula so that it is in terms of

1/e2 width) of a pulse broadened by second-order dispersion,

T = T0

√

1 +

(
φ′′∆ω

2

)2

, (5)

with T andT0 the dispersed and Fourier limited widths, respectively. The actual measured pulse

width, T + δT , can be written by replacing the dispersion in (5) with the measured dispersion

δφ′′ + φ′′. Using the expression forδφ′′ given in (4), this means the pulse width actually measured

is simply

T + δT = T0

√

1 +

(
δτ∆ω

2Ω
+

φ′′∆ω

2

)2

. (6)

We consider the scenario where we erroneously measure a chirped pulse to be shorter than its

true width. This implies we consider the situation whereφ′′ (the true dispersion) is enough to

significantly broaden the pulse, andδτ/Ω (the erroneous dispersion added by the measurement) is

of opposite sign so as to diminish our estimate. Because of thesecond-order nature of broadening

in (6), the measured pulse width can be very close to transform limited, and yet still include enough

dispersion such that the effects of extra delay are well approximated by a linear treatment of the

dispersion curve. To derive a rough scaling law of the sensitivity of the measurement, then, we

consider the first-order change in (6) toδτ . Performing a series expansion of (6) with respect toδτ

and then solving forδT gives

δT =

(

φ′′

√

4/∆ω4 + (φ′′)2

)(
δτ ∆ω

Ω

)

+ O[δτ 2]. (7)

Strictly speaking, this first-order expression is only accurate forφ′′ ≫ −δτ/Ω, but it turns out to

be off by no more than 25% as long as|φ′′| > |δτ/Ω|. However, this expression is only an accurate

prediction if we can estimate the actual dispersion of the pulse (as in the case of an intentionally

chirped pulse) and we know our delay error is small relative to it. Nonetheless, the prefactor is

close to one for any significant actual chirp (the case we mustworry about). For example, it is

already about 0.45 for a pulse that is 12% wider than its transform limit. Therefore, we have a

worst case error that roughly scales as

δT ≈
∆ω

Ω
δτ. (8)

The final result is rather intuitive, and simply states that the absolute measurement error is ap-

proximately the uncertainty in the interpulse delay times the dimensionless quantity∆ω/Ω, found

earlier to be proportional to the number of spectral samples, and thus also the time-bandwidth

product. Again, this formula is an overestimate in the case where our measured pulse is transform
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limited (sinceφ′′ = −δτ/Ω). However, in reality this is somewhat offset by the fact that very short

pulses usually have residual higher-order dispersion which cannot be perfectly compensated. In

practice, this formula is thus fairly accurate, as illustrated later in Section 5.

A corollary of (8) is that the relative error in measurement scales with the square of the spectrum,

δT

T + δT
≈

∆ω2

2Ω
δτ, (9)

which was obtained by multiplying both sides of (8) by the bandwidth and using the Fourier un-

certainty relation, where we have assumed that the pulseas measured is close to the Fourier limit.

One might hope that as pulses become shorter, the number of sampling points could be kept

constant by increasingΩ in proportion to the bandwidth. Unfortunately, this is generally not the

case for few-cycle pulses, as explained in Section 4. As bandwidths increase in an optical system,

the temporal window which we must resolve becomes limited bythe pulse pedestal and secondary

pulses, and at this point the shear must remain fixed and the number of sampling points must grow

with the spectrum. Thus, while (9) would indicate a linear scaling with bandwidth if everything in

a laser scaled in unison, in practice this is not the case, andwe must conservatively assume that the

scaling is square in the bandwidth.

3.B. Tolerance on Delay Uncertainty for Compressed Pulses

In the preceding section, a rough intuitive scaling law was derived where several approximations

were made, most notably that some residual measured dispersion remains. We now address the sit-

uation where the pulse has been perfectly compressed according to the measurement. In this case,

we can exactly determine how much delay uncertainty can be allowed while still being assured

of having a compressed pulse to within some tolerance. Taking 5% as our tolerance for deviation

from the transform limited width, the allowable delay uncertainty δτ5% can be found without ap-

proximation by takingT → 1.05T0 andφ′′ → τ5%/Ω in (5). Solving forδτ5% gives

δτ5% = 0.64
Ω

∆ω2
= 0.32

T0

N
. (10)

whereN is the number of spectral sampling points within the bandwidth (twice the time-bandwidth

product).

4. Calibration of SPIDER in Practice

4.A. Required Precision

By way of example, we consider the prospect of measuring a single-cycle gaussian pulse whose full

width1/e2 bandwidth is∆f = 282 THz. Using a shear ofΩ = 2π·5 THz will result in a resolvable

time-bandwidth product of roughly 30 (using the FWHM values). Based on our experience with

few-cycle lasers, this would be a conservative resolution requirement for a single-cycle laser. In
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practice, for few-cycle pulses and below, the spectra tend to be highly structured, with the number

of spectral samples required on the order of 20–100. See, forexample, Refs. [14, 2, 15]. For a

standard SPIDER configuration, this shear implies a delay ofaroundτ = 200 fs. (This is to ensure

that sufficient chirp is used such that the upconversion can be considered a pure shift.)

According to (10), in order to limit our maximum error to within five percent (roughly 0.14 fs),

the interpulse delay error must be measured and maintained to within 25 attoseconds, correspond-

ing to a delay of 7.5 nm. Recently, the shortest isolated pulses ever published [2] were measured us-

ing a modified SPIDER (modified to amplify the chirped pulses)with a shear ofΩ = 2π·4.11 THz,

which implies a tolerance of about 21 as, or 6.3 nm.

4.B. Sources of Delay Error

There are several avenues through which unaccounted for interpulse delays can arise in practice

with a standard SPIDER setup. It is our hope that by enumerating them, researchers can mitigate

their effects simply by keeping aware of them during construction and operation of a SPIDER

apparatus.

1. Delay calibration. The most obvious source of delay error is simple error in the calibration

measurement. In our example, a relative measurement precision of 0.025% is required, over

four orders of magnitude. This is not exactly trivial, but certainly achievable using interfer-

ometric means. As pointed out by Dorrer in [16], however, errors in the calibration of the

spectrometer will translate into errors in the effectiveτ used. Thus, the spectrometer used

in the measurement must be free of relative errors (over the pulse bandwidth) to within the

same precision unless the errors can be canceled out by self-calibration (see below).

2. Thermal drift. A perhaps more worrisome source of delay error is thermal drift in the setup

over time. Taking, for instance, the thermal expansion coefficient of aluminum (2.5× 10−5),

and considering a relatively small Michelson interferometer with arm lengths of 2.5 cm, a

temperature differential of 0.006 degrees Celsius between the two arms will cause a prob-

lematic change in delay. Uniform temperature shifts shouldnot pose a problem; an interfer-

ometer of any size will be able to withstand a temperature shift of up to 5 degrees Celsius

before a noticeable delay occurs.

3. Alignment drift. Another source of delay is alignment drift of the incoming laser beam.

Any misalignment in the beam will change the delay byτ times the cosine of the angle error.

Assuming perfect alignment to begin with, this means that 15milliradians of change in laser

pointing will cause noticeable errors for a single-cycle pulse. This is not an issue for passive

stability of the laser, but suggests that any tuning of the laser itself will require a recalibration

of the SPIDER for few-cycle pulses.
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4. Unmeasured path difference. Calibrating the interpulse delay often involves changing the

experimental configuration somewhat (such as rotating the nonlinear crystal to produce Type

I second-harmonic generation). Thus, care must be taken such that the delay measured is

identical to the delay actually used. For example, if the SHGinterference fringe is to be used

to calibrate out the delay phase, it is even important that the total distance travelled by the

beam not change from the calibration configuration to the measurement configuration. This

could be a potential issue with noncollinear arrangements where the SHG geometry will be

fundamentally different from the SFG geometry. Assuming the two pulse copies are only

known to be collinear to within 1 milliradian, changing the total propagation length by more

than two centimeters would put the unknown delay out of tolerance for a single cycle pulse.

4.C. Avoiding Delay Error

The most obvious lesson from the above is that for few-cycle pulse characterization with stan-

dard SPIDER, a new calibration should be performed immediately preceding each measurement

to avoid issues of delay stability, leaving only the matter of delay measurement.

Fortunately, the issue of the delay calibration becoming enmeshed with the spectrometer cali-

bration has been previously addressed. In [16], Dorrer shows in that if the delay is calibrated using

the interference of the individual second harmonic of each pulse copy using the same spectrome-

ter which will be used for the SPIDER measurement, then any spectrometer error will cancel out.

When making measurements of few-cycle pulses using a standard SPIDER, it is thus imperative

that the delay phase be removed in such a self-calibrated way. Otherwise, the delay calibration

sensitivity translates into the more difficult issue of calibrating the spectrometer to within at least

four orders of magnitude relative precision and measuring afringe period to the same degree. One

potential issue with this is that the SHG signals must cover the same bandwidth as the sheared

upconverted signals. Given the difference in phasematching between the SHG and SFG signal, this

could present a difficulty, and may explain why a self-calibrating SPIDER measurement has not

been demonstrated (to our knowledge) for a few-cycle pulse.

Ideally, for the sake of avoiding any possibility of delay drift, the calibration of the delay would

be done simultaneously with the measurement. Dorrer has developed a method [17] to do just that

by taking advantage of multiple diffraction orders in a grating spectrometer. His method is also

self-calibrating in the sense described above, since both the calibration fringe at the fundamental

frequency and the SPIDER fringe at the upconverted frequency share the same wavelength range

on the detector.

When standard SPIDER is used, and when the pulse lengths are not so short that dispersion is

an issue, beamsplitting may be done using an etalon (as in [18]) to eliminate issues of thermal

sensitivity.

Lastly, the effects of beam pointing can be greatly mitigated by ensuring that the interferometer

generating the pulse copies is well-aligned, such that pointing errors introduce only second-order
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delay errors. Collinear SPIDER implementations, which relyon pulse shaping to create the pulse

copies [19], and those which use no delay (see 6.C below), have an advantage in this regard.

5. Numerical Simulations

In the derivation of Section 3.A, we relied on Gaussian analysis. However, the spectra in real lasers

tend to have more complicated spectra that are often closer to rectangular than Gaussian. To test

the validity of our analytic results, we simulated the effect of a spurious delayδτ on a standard

SPIDER measurement of a sub-two-cycle pulse, using spectral data from an actual Ti:sapphire

laser.

We recently constructed a sub-two-cycle ring laser [20] andcharacterized it using 2DSI [21], the

spectrum and phase of which are shown for reference in Figure2. The power and phase spectrum

are both rather oscillatory, caused by SPM and extra reflections from the intracavity dispersion

compensating mirrors. In order to resolve the finest oscillations, a shear of 4.5 THz was required.

Using the spectral phase measured by 2DSI, we simulated the case where a standard SPIDER

measurement shows a very slightly chirped pulse of 4.94 fs FWHM. This is nearly as compressed

as can be achieved by bulk material compensation. We then computed what the actual pulse was

assuming a worst-case interpulse delay error due to severallengths of extra path length. The en-

velopes were computed using a padded FFT of the complex spectrum, neglecting any carrier offset

(since we are only interested in the pulse envelope). The pulse RMS width (over a 40 fs window)

and the FWHM were computed. The latter was calculated by usinga Newton method to solve for

the intersection of a cubic spline with the50% point. The resulting pulses are shown in Figure

3, with results tabulated in Table 1. (The RMS widths are much larger due to significant satellite

pulses and pedestal.)

Note that it only took an extra delay of30 nm, or100 as, to cause an error over 5%. Furthermore,

this example was actually conservative in that the measuredpulse was well compressed and thus

the nonlinear relation of the FWHM width to dispersion helped; the same data also imply that

had the actual pulse been 12.8 fs long, only 30 nm of spurious delay would’ve appeared to be

only 5.25 fs long. The point here is that if spectral shearingis used to measure pulses that are

intentionally chirped (as in the case of pulses used in coherent control or those precompensated

for material dispersion) the measurement will be maximallysensitive, such that (8) is an accurate

estimate.

To test the applicability of the analytic results from Section 3.A, the relative error was simulated

for a range ofδτ between zero and 60 nanometers, and compared with that predicted by (9), taking

the 1/e2 half width ∆ω to be2π · 138 THz (about half of the full range of the measured spec-

trum). The results are shown in Figure 4. After enough dispersion, the FWHM behaves severely

nonlinearly as subpulses grow past 50%. As anticipated by the fact that this pulse is nearly trans-

form limited as measured, the linear scaling law overestimates the errors. However, the error is not
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Fig. 2. The spectral power density and spectral phase for an actual sub-two-cycle

Ti:sapphire oscillator measured with 2DSI.

large, and it is generally within a factor of two of the RMS width. By comparison, the exact 5%

tolerance predicted by (10) isδτ5% = 81 nm, a significant underestimate of that actually achieved

(due to the residual higher order dispersion in this measured pulse). This is because (10) assumes a

smooth spectrum with no high order dispersion. Thus, if our laser is representative, the sensitivity

estimates given in Section 4.A for a single-cycle laser may be conservative.

Table 1. Summary of simulated Ti:sapphire measurements

δτ

Meas. 15 nm/c 30 nm/c 60 nm/c

FWHM 4.94 fs 5.032 fs 5.26 fs 12.8 fs

RMS 10.95 fs 11.31 fs 11.85 fs 13.31 fs

6. Alternative Spectral Shearing Methods

We have already presented an outline of various ways to mitigate systematic errors related to

spurious delays in spectral shearing. For cases where the sensitivity or pulse splitting of SPIDER

cannot be tolerated, several alternative modes of spectralshearing have been developed in the past

several years which address these issues.
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6.A. Arbitrary Shear Methods

As discussed before, the shear plays a crucial role in the sensitivity of the measurement. This ap-

plies to any spectral shearing method. Since the errorδT is proportional to the absolute uncertainty

δτ , and not the relative uncertainty, the effect of calibration errors can be minimized by choosing

as small aτ as possible while still allowing decoding of the fringe phase. Similarly, we want to

choose aslarge anΩ as is consistent with the Nyquist criterion of the spectral phase.

In standard SPIDER, unfortunately, the delay and shear are linked through the dispersion used to

produce the monochromatic signal used for upconversion. From [8] this relation isτ = −Ωφ′′

chirp.

It can be shown that the amount of chirp needed to avoid artifacts is proportional to1/Ω2. However,

the minimum requirement onτ is actually quite complicated, and it is best found empirically. Thus,

SPIDER does not, in general, offer sufficient degrees of freedom to optimally chooseτ andΩ.

However, there are several spectral shearing variants thatdo allow for independent selection of

τ andΩ. The first to do so was HOT SPIDER [22], which uses a homodyne technique to allow two

measurements against a local oscillator to be combined to yield a normal SPIDER trace. While

this method requires a second source that covers the upconversion wavelengths, it also has the

benefit of implicitly calibrating the delay. However, this method may be of limited use for very

short pulses because of the requirement for a separate source with the same bandwidth but at twice

the frequency (the main source can also be used, but this would be highly inefficient and against

the point of homodyning).

6.B. Zero-dispersion Methods

Another approach that is capable of arbitrary shears is ZAP-SPIDER [23], developed by Baum,

which introduced the idea of using dual chirped pulses to upconvert a single short pulse. This

means that the pulse to be measured never has to pass through any material (other than the thin

nonlinear crystal before it is upconverted) and hence this method adds Zero Additional Phase. To

our knowledge, ZAP-SPIDER was the first demonstration of a self-referencing pulse characteriza-

tion method that involved no added dispersion to the measured pulse. One potentially issue is that

the noncollinear nature of ZAP-SPIDER may present difficulties in measuringτ , at least in a self-

calibrating way. SEA-SPIDER [24] and 2DSI [21] also use two chirped pulses to avoid dispersion

on the measured pulse, and furthermore both set the delay to zero. This brings us to another way

to address the delay calibration: avoid it altogether.

6.C. Zero-delay Methods

In the SPIDER interferogram, described in (1), the dense fringe created by the delay phaseτω

allows for robust and unambiguous extraction of theφ(ω) − φ(ω − Ω) term in which we are

interested. However, this “carrier” fringe need not be in the spectral domain; the phase shown in

the lower arm of the SPIDER schematic in Figure 1 does not haveto be a function of optical

14



frequency. In fact, having any component of it in the spectral domain is really the origin of the

entire calibration sensitivity issue discussed in this paper.

To this end, SEA-SPIDER, developed by Kosik [24] and demonstrated for sub-10 fs pulses by

Wyatt [25], is a version of SPIDER that creates a fringe in thespatial domain on an imaging

spectrometer. A related method, 2DSI [21], developed by theauthors, uses a collinear output and

creates a fringe in the time domain.

In theory, these two methods should be immune to the delay uncertainty errors discussed in this

paper. However, in practice things may not be so simple. The error given in equation (8) is true for

any spectral shearing method, even those with nominally zero delay between the two pulse copies.

Thus, any incidental path length difference that occurs will contribute to measurement errors in

exactly the same way as with standard SPIDER.

In the case of SEA-SPIDER, the spatial fringe is created by sending the two upconverted pulses

along separate routes in a plane before meeting at the spectrometer. This creates a spatially depen-

dent delay in an axis perpendicular to the axis over which thespectrum is resolved. Any deviation

of these pulses out of the plane, or delays incurred during their separate travels, will create aδτ that

must be either calibrated or avoided to the same precision asfor standard SPIDER. Furthermore,

if the spectrometer grating axis is rotated with respect to the nominal spatial fringe, this will have

the same effect as a delay, and may have to be calibrated.

In 2DSI, the fringe is produced by scanning the phase of one ofthe chirped pulses, and a two-

dimensional fringe is produced as a function of wavelength and this phase. The only thing that

matters in the 2DSI fringe is the absolute phase of the fringeat a given wavelength, and thus no

calibration is needed. The cost of this is that 2DSI is incapable of single-shot measurements.

The two upconverted pulses in 2DSI originate from the same point and are collinear, so it should

not be possible for a delay to occur between the pulse copies.However, misalignment and nonide-

alities in the imaging of the pulses into the spectrometer could potentially introduce an unwanted

delay. Nonetheless, we have not seen any evidence of this after several measurements of few-cycle

pulses [26, 27]. In fact, we have recently measured a 4.9 fs pulse directly from an oscillator, and

verified it against both an IAC and a simulation of the laser [20,15,28].

6.D. Multiple Shearing

Finally, for those methods where multiple shears can be produced–and where changing the shear

can be guaranteed to have no affect on the delay–the issue of delay calibration can be eliminated

by making two or more measurements with different shear frequencies. By subtracting the phase

of two spectral shearing measurements made with different shears, the phase of the delay drops

out and one is essentially left with a SPIDER measurement performed with the difference in the

shears.

As long as one of the measurements is done with a shear that is consistent with the sampling
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theorem, the subsequent “calibration” measurements can bemade with much larger shears with the

only requirement being that they are integer multiples of the shear used for the final measurement.

A novel version of SPIDER which relies on this principle for acontinuum of shears was recently

presented by Gorza [29].

7. Conclusion

We have shown, though analysis and numerical simulation, that as pulses approach the single-cycle

limit, the SPIDER technique involves a calibration that is exceedingly difficult. However, given the

unique position of SPIDER as the only direct method of phase measurement, and given its inherent

bandwidth advantages over other methods, it is worthwhile to search for mitigation strategies. We

conclude that for most cases, awareness of the calibration sensitivity and careful adherence to the

principle that calibrations must be done before every measurement are sufficient to yield accurate

results. For extremely short pulses, however, it may best toemploy one of the variants of SPIDER

discussed in Section 6 that remove the delay calibration issue.
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