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1. Introduction

Steady progress in ultrafast laser sources over the pastatelecades has led to the recent de-
velopment of robust sources of few-cycle laser pulses.t@beycle pulses can now be produced
directly from oscillators, and sources of single-cyclesgglare under development [1, 2]. Further-
more, as few-cycle lasers are increasingly used to driesetbnd extreme-UV and X-ray pulses,
these applications will require extremely accurate anaipeecharacterization of the few- and
single-cycle pulse envelopes used to drive the high harcrgemeration process [3].

The technology for measuring ultrashort optical pulsestpmigourse, keep pace with the lasers
themselves, and few- and single-cycle pulses presenteidficulties in this regard. The most ob-
vious difficultly in few-cycle pulse measurement stems fiti tremendous bandwidths involved.
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All self-referenced pulse characterization methods wealonlinear operations of some sort [4],
and in the case of few-cycle pulses one essentially has temgnt a specialized analog optical
switch capable of operating with hundreds of terahertz oid@adth. Any bandwidth filtering is
especially relevant for techniques where #maplitude of the trace is a critical parameter, such as
interferometric autocorrelation (IAC) [5] and frequencgab/ed optical gating (FROG) [6].

As pulses become shorter, the time scales of nonidealitesotlalways scale with them. For
example, the relative delays of satellite pulses due torskany reflections off dispersion compen-
sating mirrors do not scale with the main pulse width. In,fdenything they scale inversely to the
pulse width as mirrors become thicker to accommodate wiaksstsal range. The spectral phase os-
cillation periods caused by such delays are usually on ttheraf 5-10 THz. Thus, as bandwidths
approach 200 THz and beyond, the time-bandwidth produciiredfor a full characterization on
even a well-compressed pulse can exceed 20.

In addition, the extreme bandwidths involved result in leighrder material dispersion playing
a significant role in pulse shaping, yielding pulses whi@htgpically highly asymmetric. As such,
the commonly used technique of IAC, which is relatively irséwe to pulse asymmetries [7],
can miss details. The squared intensity operation inhéoelC greatly suppresses the effect of
satellite pulses, for instance. As such, iterative recantibns based on IAC (e.g. [5]) may fail to
properly converge in the presence of noise when higherralidpersive effects are significant.

One of the dominant characterization methods for very ghdses is spectral phase interferom-
etry for direct electric-field reconstruction (SPIDER). lany ways, spectral shearing interferom-
etry is uniquely suited to the task of measuring few- andlshagcle pulses. However, there is a
calibration sensitivity with standard SPIDER (and manytefariants) that needs to be taken into
consideration for pulses on the order of a single cycle.

We begin by briefly explaining the principle behind specsta¢aring and its advantages in the
few-cycle regime. Due to its importance to both accuracysamgitivity, we discuss the importance
of choosing a proper shear frequency, and the considesafiimrdoing so. Next, we analyze the
sensitivity of the measurement to the delay reference artt¢o spectral shearing, deriving an an-
alytic result and simple scaling law. We show that relativesasurement errors scale quadratically
with pulse bandwidth, leading to extreme sensitivity talwaltion errors as pulse widths decrease
past a few optical cycles. We then illustrate this principfeexperimental data from a sub-two-
cycle oscillator, showing that a standard SPIDER apparatusd require mechanical stability far
exceeding the scale of the wavelengths involved. Finakkycanclude by suggesting ways to miti-
gate the sensitivity, and survey some recent alternatieetsgd shearing methods which attempt to
eliminate it.

Our focus on spectral shearing is not meant to imply that weifés alone in presenting chal-
lenges to the characterization of pulses approaching desoygle. In fact, our feeling is that
spectral shearing is otherwise so well-suited to handlinghulses that it is worth examining



these issues in some detail.

2. Spectral Shearing Interferometry
2.A. Theory

Spectral phase interferometry for direct electric-fieldomstruction, or SPIDER, was developed
by laconis and Walmsley in 1999 [8]. It is a modification of spal interferometry, where both
interfering components are obtained from the input pulst @e slightly shifted in frequency.
This obviates the need for the reference pulse that is redjuir standard spectral interferometry.
Called spectral shearing interferometry, this general idpeesents a fundamentally unique mode
of pulse measurement, in that it directly observes interfee between two adjacent frequency
components. As such, it can be an extremely robust and diretiiod that avoids the need for
iterative inversion algorithms.

Figure 1 shows a conceptual schematic of SPIDER. While thetipahdetails vary greatly,
all spectral shearing methods involve a nonlinear interfester whereby one arm experiences a
different frequency shift than the other. Interferenceliseyved between the two by putting some
sort of phase shift on one of the arms. In the case of standaiDER, a linear phase shift is
realized by interferometrically delaying the two pulse iesy.

By upconverting the pulse to be measured with a pair of fregjesrseparated Ky, any original
wavelengths in the pulse which are separated by this “sHesgiiency are mapped to the same
wavelength in the output. One may thus directly observe tlase delay between two nearby wave-
lengths, and thereby the spectral dispersion. In stand@HdER, the spectrally resolved output is
given by [8]

D(w) = |Ew = Q) +|EW)[" + 2|E(w - Q) E(w)| cos[p(w — Q) = d(w) +7w], (1)
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whereE(w) = |E(w)|e™*«) is the upconverted spectrum of the pulse ansl the delay between
the two upconverted copies. (In practiE¢w) will be roughly doubled in frequency from the fun-
damental, but its phase will be identical and its phase walire concerned with.) The oscillating
cosine “carrier” fringe is the only element of interest, atsdphase encodes a finite difference of
the pulse spectral phase, approximately proportionalécsgectral group delay. The method for
isolating this phase is beyond the scope of this paper, anadtignportant to our end here. It suf-
fices to mention that so long ags sufficiently large, the fringe phase may be reliably exted by
standard signal processing techniques. Since the ingialdpment of SPIDER, many variants of
spectral shearing interferometry have been invented,|bshare the same fundamental property
of generating a carrier fringe in some domain (perhaps icepa time, if not frequency) which
is shifted in proportion to the finite difference of the spatphaseg(w — ) — ¢(w). As such,
spectral shearing interferometry essentially “samplbeg”dpectral phase (up to a constant phase)
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Fig. 1. (Color online) Conceptual schematic of SPIDER. This ehaatentionally
abstracts away several practical details, such as theaictim practice, both pulse
copies are upconverted by slightly different optical freqcies. However, these
details are not important to an analysis of SPIDER.

with a discretization of).

2.B. Application to Few-cycle Pulses

The spectral shearing approach has three salient featlegamt in the context of few-cycle pulses.
First, the upconversion of the short pulse with a monochtaniild is fundamentally easier to
perform than the full second-harmonic operation inherenAC and FROG. To begin with, the
output relative bandwidth is roughly half that of the inpstthe spectrum is simply shifted, as
the spectra is not convolved with itself as in the case witosd-harmonic-based methods. Most
importantly, however, only one of the field components inribalinear operation contains the full
bandwidth, which greatly facilitates phase matching; Tiipgpconversion can be engineered to
have significant bandwidth in one of the input fields with aroarbandwidth in the other, a perfect
match for spectral shearing interferometry (see [9] forllastration of this).

A second advantage comes from the use of phase to encodetiteasgroup delay. The spectral
signal (1) produced by SPIDER can be viewed as a carrier weaateag frequency modulated by
a signal proportional to the spectral group delay. Much egudency modulation is more robust
to interference than amplitude modulation for a given sigraver [10], this modulation scheme
renders SPIDER methods relatively impervious to phase mmajdandwidth effects, as well as
highly immune to experimental noise. This noise toleranas wbserved by Gallman and others
in [11], and by Jensen in [12]. Robustness to noise is espeaigbortant given the relatively low
efficiency of most spectral shearing embodiments, whereiomof the measured light is thrown
away to create the chirped upconverting signal. The phaskii@ion scheme also makes spectral
shearing tolerant to the presence of unwanted signals @sicthe fundamental pulse or higher
diffraction orders from a grating spectrometer), whichdrae increasingly difficult to suppress as



bandwidths exceed an octave.

Lastly, spectral shearing directly measures spectralgpteaber than the effects of it on the pulse
envelope. Together with the aforementioned noise immuwfithe encoding scheme, this makes
spectral shearing methods extremely sensitive to the kingulse asymmetries and secondary
pulses that are common in few-cycle lasers.

However, one issue that the original SPIDER does share tgittorrelation-based cousins (e.g.
IAC) is that it requires the measured pulse to be split andygela-or pulses approaching an octave
of bandwidth, it is not yet possible to implement a disperges beamsplitter and the dispersion of
the beamsplitter is imprinted on the SPIDER measurementiately, this is not fundamental to
spectral shearing; a few methods, to be discussed later [d&an developed which involve nothing
but reflections for the measured pulse.

2.C. Choice of Shear Frequency

The shear frequendy plays a critical role in both determining the sensitivity,veell as the accu-
racy of a SPIDER measurement. Sineeletermines the frequency spacing at which we concate-
nate the spectral phase, this ratio is equal to the numberiotfgoat which we sample our spectrum
over its bandwidth. According to the Shannon sampling teewpthe temporal window which we
can handle without aliasing is the reciprocal of twice theasshThe time-bandwidth product that
can be resolved is thereforeo /2().

Since the modulation of the SPIDER fringe (1) is proportidnahe shear, one maximizes the
signal to noise ratio of a spectral shearing measuremenhbgsing the largest shear that will
avoid aliasing. As will be shown later, this also resultshia teast sensitivity to calibration errors.
However, how can one determine, a priori, what that is? loryeéhere is no way to know without
actually making a measurement. Normally when one samplé&malsthe bandwidth is known.
However, in this case the “bandwidth” is the temporal extdrihe pulse, and there is no reliable
way to know that without having already done a pulse charaet#on. In practice, however, one
generally knows the range of dispersion expected. Furthexnone can fairly assume that struc-
tures in the power spectral density will coincide with dstibns in the spectral phase. In most
cases, especially with few-cycle pulses, it is the lattet thetermines the required spectral sam-
pling resolution. Thus, picking a shear that is sufficientdsolve the features of the amplitude
spectrum will usually suffice. If in doubt, a sequence of sh&an be used to effectively verify
sufficient sampling.

Most lasers produce pulses with satellite structures addgials, to some extend or another. As
such, in a properly performed measurement of a well-conspepulse, with the spectral features
sufficiently sampled, the vast majority of the energy is eord in a relatively small region of the
resolvable temporal window. Given such a result, it is tengptor the user to assume that a larger
shear can be safely used, with the argument being that ifdivepoutside the main pulse region is



negligible, it will not hurt to ignore its effects when aleas However, what may appear negligible

in intensity when well-separated may have a significantceffignen added coherently to the main

pulse. Consider the case of a measurement where a pulse tead deellite pulses that are no

more than 1% of the intensity of the main pulse. Increasiegstiear enough to alias the pedestal
onto the main pulse can potentially result in 20% relativenges in the main pulse on an intensity
basis. In general, the only way to verify sufficient samplisgo take another measurement at a
different resolution.

3. Spectral Shearing Delay Sensitivity
3.A. Pulse Width Error Scaling

Unfortunately, the advantages enumerated above come d@aaamst. In order to gauge the phase
of the fringe in (1) we must know the nominal period of the §ién given byl /7. Of course, all ul-
trafast measurement techniques contain inherent lenfgrereees which must be calibrated (such
as the distance traveled by a delay stage in an autocoorlatithe spectrometer grating period
in any spectrally resolved method). In most methods, thibredions affect the measurement in
a proportional way. However, it turns out that an erdorin the interpulse delay will result in

an additive measurement error, and thus this calibration becomesasitigly sensitive as pulses
become shorter.

In this section we derive a rough scaling law for the worseaasordt in the measured pulse
width as a function of by considering the characterization of a Gaussian pulde avipectral
1/e? half-width of Aw (a figure which we use for mathematical simplicity, and whgtvithin ten
percent of the commonly used full-width-half-maximum, M/AM). We assume that the pulse
we’re measuring is dispersed solely by an amount of secotekaispersion given by”’, and we
are concerned with the error in estimating the pulse widtthepresence of a given uncertainly
o7 in the interpulse delay. The complex spectrum of the pulgé/en by

E(w) _ e—(w/Aw)z-l-%i(iJ”wQ. (2)

From (1) we can see that any unaccounted deétaypccurring between the two upconverted
pulses will be associated, to first-order, with the groumgeind thus be interpreted by the recon-
struction as an erroneous linear group delay,

B 0T w

09 (w) =~ 3

Taking the derivative of both sides of this equation withpess tow gives us an expression for the
erroneous dispersion contributing to the measurementesudt of the delay error,

oT

5(]5’/:9. (4)



To consider the effect of this extra dispersion we begin \thin well-known result (see [13],
for example) for the temporal width (where we have trandléite formula so that it is in terms of
1/¢? width) of a pulse broadened by second-order dispersion,

T:TO\/H— (WQA”) , (5)

with 7" and T}, the dispersed and Fourier limited widths, respectivelye @btual measured pulse
width, T" + 67T, can be written by replacing the dispersion in (5) with theaswed dispersion
d¢" + ¢". Using the expression foiy” given in (4), this means the pulse width actually measured

is simply
/! 2
T+5T:TO\/1+(572?ZW+¢2AW> . (6)

We consider the scenario where we erroneously measurepedhiulse to be shorter than its
true width. This implies we consider the situation whefe(the true dispersion) is enough to
significantly broaden the pulse, atid/(2 (the erroneous dispersion added by the measurement) is
of opposite sign so as to diminish our estimate. Because afdbend-order nature of broadening
in (6), the measured pulse width can be very close to tramsfiatited, and yet still include enough
dispersion such that the effects of extra delay are well@pprated by a linear treatment of the
dispersion curve. To derive a rough scaling law of the seitgitof the measurement, then, we
consider the first-order change in (6)%o. Performing a series expansion of (6) with respecdtto
and then solving fodT" gives

ol T Aw 5
" (wx/w T <¢~>2> (757) ot )

Strictly speaking, this first-order expression is only aateifor¢” > —di7 /S, but it turns out to
be off by no more than 25% as long[ag| > |07/¢2|. However, this expression is only an accurate
prediction if we can estimate the actual dispersion of tHeg(as in the case of an intentionally
chirped pulse) and we know our delay error is small relativé.tNonetheless, the prefactor is
close to one for any significant actual chirp (the case we wosty about). For example, it is
already about 0.45 for a pulse that is 12% wider than its toanslimit. Therefore, we have a
worst case error that roughly scales as

5T ~ %57. (8)

The final result is rather intuitive, and simply states tin&t absolute measurement error is ap-
proximately the uncertainty in the interpulse delay tintesdimensionless quantityw /<2, found
earlier to be proportional to the number of spectral sam@ad thus also the time-bandwidth
product. Again, this formula is an overestimate in the calser& our measured pulse is transform
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limited (sincep” = —7/(2). However, in reality this is somewhat offset by the fact trexy short
pulses usually have residual higher-order dispersion vbannot be perfectly compensated. In
practice, this formula is thus fairly accurate, as illusgtalater in Section 5.

A corollary of (8) is that the relative error in measuremarales with the square of the spectrum,

o1 N Aw?
T+6T 29

which was obtained by multiplying both sides of (8) by the dhaith and using the Fourier un-
certainty relation, where we have assumed that the @gls@asured is close to the Fourier limit.
One might hope that as pulses become shorter, the numbemgplisg points could be kept
constant by increasing in proportion to the bandwidth. Unfortunately, this is geally not the
case for few-cycle pulses, as explained in Section 4. As\batlds increase in an optical system,
the temporal window which we must resolve becomes limitethbypulse pedestal and secondary
pulses, and at this point the shear must remain fixed and tihé&uof sampling points must grow
with the spectrum. Thus, while (9) would indicate a linealsgy with bandwidth if everything in
a laser scaled in unison, in practice this is not the casewandust conservatively assume that the
scaling is square in the bandwidth.

oT, %)

3.B. Tolerance on Delay Uncertainty for Compressed Pulses

In the preceding section, a rough intuitive scaling law wasved where several approximations
were made, most notably that some residual measured dmpeesnains. We now address the sit-
uation where the pulse has been perfectly compressed @amgaoodhe measurement. In this case,
we can exactly determine how much delay uncertainty can lbeved while still being assured
of having a compressed pulse to within some tolerance. §a& as our tolerance for deviation
from the transform limited width, the allowable delay urtearty 755, can be found without ap-
proximation by takingl” — 1.057y and¢” — 759,/ in (5). Solving forisy gives

Q To

=0.32—. 1
A 0.3 N (10)
whereN is the number of spectral sampling points within the banthwtiice the time-bandwidth
product).

(57’5% = 0.64

4. Calibration of SPIDER in Practice
4.A. Required Precision

By way of example, we consider the prospect of measuring destygle gaussian pulse whose full
width 1/e? bandwidth isA f = 282 THz. Using a shear df = 27-5 THz will resultin a resolvable

time-bandwidth product of roughly 30 (using the FWHM valud&sed on our experience with
few-cycle lasers, this would be a conservative resoluteuirement for a single-cycle laser. In
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practice, for few-cycle pulses and below, the spectra terthighly structured, with the number
of spectral samples required on the order of 20—100. Seesx@mple, Refs. [14, 2, 15]. For a
standard SPIDER configuration, this shear implies a delayaindr = 200 fs. (This is to ensure
that sufficient chirp is used such that the upconversion eatobsidered a pure shift.)

According to (10), in order to limit our maximum error to witthifive percent (roughly 0.14 fs),
the interpulse delay error must be measured and maintanetin 25 attoseconds, correspond-
ing to a delay of 7.5 nm. Recently, the shortest isolated p@ger published [2] were measured us-
ing a modified SPIDER (modified to amplify the chirped pulseith a shear of) = 27-4.11 THz,
which implies a tolerance of about 21 as, or 6.3 nm.

4.B. Sources of Delay Error

There are several avenues through which unaccounted fpuise delays can arise in practice
with a standard SPIDER setup. It is our hope that by enunmgyditiem, researchers can mitigate
their effects simply by keeping aware of them during corgdiom and operation of a SPIDER
apparatus.

1. Delay calibration. The most obvious source of delay error is simple error in didation
measurement. In our example, a relative measurement jpreois0.025% is required, over
four orders of magnitude. This is not exactly trivial, butteely achievable using interfer-
ometric means. As pointed out by Dorrer in [16], howeverpesiin the calibration of the
spectrometer will translate into errors in the effectivesed. Thus, the spectrometer used
in the measurement must be free of relative errors (over dleegandwidth) to within the
same precision unless the errors can be canceled out byaddfation (see below).

2. Thermal drift. A perhaps more worrisome source of delay error is thermélidrihe setup
over time. Taking, for instance, the thermal expansionfaoefit of aluminum 2.5 x 107°),
and considering a relatively small Michelson interferoenetith arm lengths of 2.5 cm, a
temperature differential of 0.006 degrees Celsius betweerntvwo arms will cause a prob-
lematic change in delay. Uniform temperature shifts shooldpose a problem; an interfer-
ometer of any size will be able to withstand a temperaturlt shup to 5 degrees Celsius
before a noticeable delay occurs.

3. Alignment drift. Another source of delay is alignment drift of the incomingdabeam.
Any misalignment in the beam will change the delayfiymes the cosine of the angle error.
Assuming perfect alignment to begin with, this means thanilbradians of change in laser
pointing will cause noticeable errors for a single-cycléspuThis is not an issue for passive
stability of the laser, but suggests that any tuning of teeréself will require a recalibration
of the SPIDER for few-cycle pulses.



4. Unmeasured path difference. Calibrating the interpulse delay often involves changirgy th
experimental configuration somewhat (such as rotatinganémear crystal to produce Type
| second-harmonic generation). Thus, care must be takdntbat the delay measured is
identical to the delay actually used. For example, if the Skt€ference fringe is to be used
to calibrate out the delay phase, it is even important thatdkal distance travelled by the
beam not change from the calibration configuration to thesmesment configuration. This
could be a potential issue with noncollinear arrangemehesrgithe SHG geometry will be
fundamentally different from the SFG geometry. Assuming tivo pulse copies are only
known to be collinear to within 1 milliradian, changing tlegal propagation length by more
than two centimeters would put the unknown delay out of toilee for a single cycle pulse.

4.C. Avoiding Delay Error

The most obvious lesson from the above is that for few-cyclsg characterization with stan-
dard SPIDER, a new calibration should be performed immedgiateceding each measurement
to avoid issues of delay stability, leaving only the mattedelay measurement.

Fortunately, the issue of the delay calibration becomingeshed with the spectrometer cali-
bration has been previously addressed. In [16], Dorrer shiowhat if the delay is calibrated using
the interference of the individual second harmonic of eadeecopy using the same spectrome-
ter which will be used for the SPIDER measurement, then aagtspmeter error will cancel out.
When making measurements of few-cycle pulses using a s@SRIDER, it is thus imperative
that the delay phase be removed in such a self-calibrated @thgrwise, the delay calibration
sensitivity translates into the more difficult issue of bediting the spectrometer to within at least
four orders of magnitude relative precision and measurifigpge period to the same degree. One
potential issue with this is that the SHG signals must colersame bandwidth as the sheared
upconverted signals. Given the difference in phasemagdietween the SHG and SFG signal, this
could present a difficulty, and may explain why a self-calibrg SPIDER measurement has not
been demonstrated (to our knowledge) for a few-cycle pulse.

Ideally, for the sake of avoiding any possibility of delayfdithe calibration of the delay would
be done simultaneously with the measurement. Dorrer hadased a method [17] to do just that
by taking advantage of multiple diffraction orders in a grgtspectrometer. His method is also
self-calibrating in the sense described above, since Ibetlcadlibration fringe at the fundamental
frequency and the SPIDER fringe at the upconverted frequshare the same wavelength range
on the detector.

When standard SPIDER is used, and when the pulse lengths tase sbort that dispersion is
an issue, beamsplitting may be done using an etalon (as Jhtd&liminate issues of thermal
sensitivity.

Lastly, the effects of beam pointing can be greatly mitigdig ensuring that the interferometer
generating the pulse copies is well-aligned, such thattipgrerrors introduce only second-order
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delay errors. Collinear SPIDER implementations, which getypulse shaping to create the pulse
copies [19], and those which use no delay (see 6.C belowg, dimadvantage in this regard.

5. Numerical Simulations

In the derivation of Section 3.A, we relied on Gaussian asialy\However, the spectra in real lasers
tend to have more complicated spectra that are often clogeictangular than Gaussian. To test
the validity of our analytic results, we simulated the effeta spurious delayr on a standard
SPIDER measurement of a sub-two-cycle pulse, using spetata from an actual Ti:sapphire
laser.

We recently constructed a sub-two-cycle ring laser [20]@ratacterized it using 2DSI [21], the
spectrum and phase of which are shown for reference in FRyuree power and phase spectrum
are both rather oscillatory, caused by SPM and extra refiestirom the intracavity dispersion
compensating mirrors. In order to resolve the finest osimha, a shear of 4.5 THz was required.
Using the spectral phase measured by 2DSI, we simulatedatdes where a standard SPIDER
measurement shows a very slightly chirped pulse of 4.94 fs M\WFhis is nearly as compressed
as can be achieved by bulk material compensation. We thepwech what the actual pulse was
assuming a worst-case interpulse delay error due to sdeagths of extra path length. The en-
velopes were computed using a padded FFT of the complexrapgateglecting any carrier offset
(since we are only interested in the pulse envelope). Theed@®MS width (over a 40 fs window)
and the FWHM were computed. The latter was calculated by wsiNgwton method to solve for
the intersection of a cubic spline with tl6% point. The resulting pulses are shown in Figure
3, with results tabulated in Table 1. (The RMS widths are machdr due to significant satellite
pulses and pedestal.)

Note that it only took an extra delay 8% nm, or 100 as, to cause an error over 5%. Furthermore,
this example was actually conservative in that the measuuest was well compressed and thus
the nonlinear relation of the FWHM width to dispersion helptgee same data also imply that
had the actual pulse been 12.8 fs long, only 30 nm of spurielsydvould’'ve appeared to be
only 5.25 fs long. The point here is that if spectral sheaishgsed to measure pulses that are
intentionally chirped (as in the case of pulses used in @fierontrol or those precompensated
for material dispersion) the measurement will be maximsdigsitive, such that (8) is an accurate
estimate.

To test the applicability of the analytic results from SentB.A, the relative error was simulated
for a range obr between zero and 60 nanometers, and compared with thatfaedy (9), taking
the 1/¢? half width Aw to be2x - 138 THz (about half of the full range of the measured spec-
trum). The results are shown in Figure 4. After enough d&par the FWHM behaves severely
nonlinearly as subpulses grow past 50%. As anticipated ®&yatt that this pulse is nearly trans-
form limited as measured, the linear scaling law overesgmthe errors. However, the error is not
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Fig. 2. The spectral power density and spectral phase focamalasub-two-cycle
Ti:sapphire oscillator measured with 2DSI.

large, and it is generally within a factor of two of the RMS wWidBy comparison, the exact 5%
tolerance predicted by (10) &85, = 81 nm, a significant underestimate of that actually achieved
(due to the residual higher order dispersion in this measpuése). This is because (10) assumes a
smooth spectrum with no high order dispersion. Thus, if aget is representative, the sensitivity
estimates given in Section 4.A for a single-cycle laser newgdnservative.

Table 1. Summary of smulated Ti:sapphire measurements

ot
Meas. 15nmdy 30 nmt& 60 nme
FWHM 494fs 5.032fs b5.26fs 12.8 fs
RMS 1095fs 11.31fs 11.85fs 13.31fs

6. Alternative Spectral Shearing Methods

We have already presented an outline of various ways to abigystematic errors related to
spurious delays in spectral shearing. For cases where tisdigiy or pulse splitting of SPIDER
cannot be tolerated, several alternative modes of spesttearing have been developed in the past
several years which address these issues.
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Fig. 3. (Color online) Simulated pulse intensity as meas\setid) and in truth
(various hashed) for the Ti:sapphire laser whose specshawn in Figure 2, as-
suming delay errors of 25 and 50 nm.
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Fig. 4. (Color online) The measured pulse FWHM and RMS widthdhefpulse
in Fig. 3 for a range obr values, compared with that predicted by (8) using the
half-width of the spectrum aAw.

13



6.A. Arbitrary Shear Methods

As discussed before, the shear plays a crucial role in thatsaty of the measurement. This ap-
plies to any spectral shearing method. Since the éffas proportional to the absolute uncertainty
o1, and not the relative uncertainty, the effect of calibmnatrors can be minimized by choosing
as small ar as possible while still allowing decoding of the fringe phaSimilarly, we want to
choose asarge an(? as is consistent with the Nyquist criterion of the specthrage.

In standard SPIDER, unfortunately, the delay and shearrdtedithrough the dispersion used to
produce the monochromatic signal used for upconversi@mH8] this relation isr = —Qg¢7,; .
It can be shown that the amount of chirp needed to avoid ettifa proportional ta /Q?. However,
the minimum requirement onis actually quite complicated, and it is best found empilycahus,
SPIDER does not, in general, offer sufficient degrees ofliveeto optimally choose and(2.

However, there are several spectral shearing variantslthallow for independent selection of
7 and(. The first to do so was HOT SPIDER [22], which uses a homodyeteigue to allow two
measurements against a local oscillator to be combinedetd g normal SPIDER trace. While
this method requires a second source that covers the upstmvevavelengths, it also has the
benefit of implicitly calibrating the delay. However, thissthod may be of limited use for very
short pulses because of the requirement for a separateessiihcthe same bandwidth but at twice
the frequency (the main source can also be used, but thigdvibeuhighly inefficient and against
the point of homodyning).

6.B. Zero-dispersion Methods

Another approach that is capable of arbitrary shears is BRHEER [23], developed by Baum,
which introduced the idea of using dual chirped pulses toopert a single short pulse. This
means that the pulse to be measured never has to pass thmughaterial (other than the thin
nonlinear crystal before it is upconverted) and hence tlathod adds Zero Additional Phase. To
our knowledge, ZAP-SPIDER was the first demonstration offareéerencing pulse characteriza-
tion method that involved no added dispersion to the medguukse. One potentially issue is that
the noncollinear nature of ZAP-SPIDER may present diffiegltn measuring, at least in a self-
calibrating way. SEA-SPIDER [24] and 2DSI [21] also use twaged pulses to avoid dispersion
on the measured pulse, and furthermore both set the delarado Ehis brings us to another way
to address the delay calibration: avoid it altogether.

6.C. Zero-delay Methods

In the SPIDER interferogram, described in (1), the denseéicreated by the delay phase
allows for robust and unambiguous extraction of the) — ¢(w — Q) term in which we are
interested. However, this “carrier” fringe need not be iae #pectral domain; the phase shown in
the lower arm of the SPIDER schematic in Figure 1 does not baee a function of optical
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frequency. In fact, having any component of it in the spéatcanain is really the origin of the
entire calibration sensitivity issue discussed in thisgrap

To this end, SEA-SPIDER, developed by Kosik [24] and demaitestk for sub-10 fs pulses by
Wyatt [25], is a version of SPIDER that creates a fringe in spatial domain on an imaging
spectrometer. A related method, 2DSI [21], developed byatithors, uses a collinear output and
creates a fringe in the time domain.

In theory, these two methods should be immune to the delagrtainty errors discussed in this
paper. However, in practice things may not be so simple. Tioe given in equation (8) is true for
any spectral shearing method, even those with nominally delay between the two pulse copies.
Thus, any incidental path length difference that occur$ edhtribute to measurement errors in
exactly the same way as with standard SPIDER.

In the case of SEA-SPIDER, the spatial fringe is created bglisgrthe two upconverted pulses
along separate routes in a plane before meeting at the speatar. This creates a spatially depen-
dent delay in an axis perpendicular to the axis over whiclsgeetrum is resolved. Any deviation
of these pulses out of the plane, or delays incurred durieig $keparate travels, will creatéathat
must be either calibrated or avoided to the same precisidoratandard SPIDER. Furthermore,
if the spectrometer grating axis is rotated with respech&rtominal spatial fringe, this will have
the same effect as a delay, and may have to be calibrated.

In 2DSI, the fringe is produced by scanning the phase of oriteeo€hirped pulses, and a two-
dimensional fringe is produced as a function of wavelengtth this phase. The only thing that
matters in the 2DSI fringe is the absolute phase of the fratge given wavelength, and thus no
calibration is needed. The cost of this is that 2DSI is inbépaf single-shot measurements.

The two upconverted pulses in 2DSI originate from the san& pod are collinear, so it should
not be possible for a delay to occur between the pulse cdpg@sever, misalignment and nonide-
alities in the imaging of the pulses into the spectrometetcpotentially introduce an unwanted
delay. Nonetheless, we have not seen any evidence of tarssafteral measurements of few-cycle
pulses [26, 27]. In fact, we have recently measured a 4.9If&emlirectly from an oscillator, and
verified it against both an IAC and a simulation of the laséx, [5, 28].

6.D. Multiple Shearing

Finally, for those methods where multiple shears can beym®d-and where changing the shear
can be guaranteed to have no affect on the delay—the isswgayf chlibration can be eliminated
by making two or more measurements with different sheamkaqgies. By subtracting the phase
of two spectral shearing measurements made with diffetezdrs, the phase of the delay drops
out and one is essentially left with a SPIDER measuremeirfiopeed with the difference in the
shears.

As long as one of the measurements is done with a shear thahssstent with the sampling
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theorem, the subsequent “calibration” measurements caradde with much larger shears with the
only requirement being that they are integer multiples efghear used for the final measurement.
A novel version of SPIDER which relies on this principle foc@ntinuum of shears was recently
presented by Gorza [29].

7. Conclusion

We have shown, though analysis and numerical simulatianahpulses approach the single-cycle
limit, the SPIDER technique involves a calibration thatiseedingly difficult. However, given the
unique position of SPIDER as the only direct method of phasasurement, and given its inherent
bandwidth advantages over other methods, it is worthwhiketrch for mitigation strategies. We
conclude that for most cases, awareness of the calibragimsitavity and careful adherence to the
principle that calibrations must be done before every mesasent are sufficient to yield accurate
results. For extremely short pulses, however, it may bestrtploy one of the variants of SPIDER
discussed in Section 6 that remove the delay calibratiareiss
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