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We derive an analytical approximation for the measured pulse width error in spectral shearing methods, such
as spectral phase interferometry for direct electric-field reconstruction (SPIDER), caused by an anomalous de-
lay between the two sheared pulse components. This analysis suggests that, as pulses approach the single-
cycle limit, the resulting requirements on the calibration and stability of this delay become significant, requir-
ing precision orders of magnitude higher than the scale of a wavelength. This is demonstrated by numerical
simulations of SPIDER pulse reconstruction using actual data from a sub-two-cycle laser. We briefly propose
methods to minimize the effects of this sensitivity in SPIDER and review variants of spectral shearing that
attempt to avoid this difficulty. © 2008 Optical Society of America
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1. INTRODUCTION

Steady progress in ultrafast laser sources over the past
several decades has led to the recent development of ro-
bust sources of few-cycle laser pulses. Sub-two-cycle
pulses can now be directly produced from oscillators, and
sources of single-cycle pulses are under development
[1,2]. Furthermore, as few-cycle lasers are increasingly
used to drive attosecond extreme-UV and x-ray pulses,
these applications will require an extremely accurate and
precise characterization of the few- and single-cycle pulse
envelopes used to drive the high harmonic generation pro-
cess [3].

The technology for measuring ultrashort optical pulses
must, of course, keep pace with the lasers themselves,
and few- and single-cycle pulses present unique difficul-
ties in this regard. The most obvious difficultly in a few-
cycle pulse measurement stems from the tremendous
bandwidths involved. All self-referenced pulse character-
ization methods involve nonlinear operations of some sort
[4], and in the case of few-cycle pulses one essentially has
to implement a specialized analog optical switch capable
of operating with hundreds of terahertz of bandwidth.
Any bandwidth filtering is especially relevant for tech-
niques where the amplitude of the trace is a critical pa-
rameter, such as interferometric autocorrelation (IAC) [5]
and frequency resolved optical gating (FROG) [6].

As pulses become shorter, the time scales of nonideali-
ties do not always scale with them. For example, the rela-
tive delays of satellite pulses due to secondary reflections
off dispersion-compensating mirrors do not scale with the
main pulse width. In fact, if anything they inversely scale
to the pulse width as mirrors become thicker to accommo-
date a wider spectral range. The spectral phase oscilla-
tion periods caused by such delays are usually on the or-
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der of 5—-10 THz. Thus, as bandwidths approach 200 THz
and beyond, the time-bandwidth product required for a
full characterization on even a well-compressed pulse can
exceed 20.

In addition, the extreme bandwidths involved result in
a higher-order material dispersion playing a significant
role in pulse shaping, yielding pulses that are typically
highly asymmetrical. As such, the commonly used tech-
nique of IAC, which is relatively insensitive to pulse
asymmetries [7], can miss details. The squared intensity
operation inherent to IAC greatly suppresses the effect of
satellite pulses, for instance. As such, iterative recon-
structions based on IAC (e.g., [5]) may fail to properly con-
verge in the presence of noise when higher-order disper-
sive effects are significant.

One of the dominant characterization methods for very
short pulses is spectral phase interferometry for direct
electric-field reconstruction (SPIDER). In many ways,
spectral shearing interferometry is uniquely suited to the
task of measuring few- and single-cycle pulses. However,
there is a calibration sensitivity with standard SPIDER
(and many of its variants) that needs to be taken into con-
sideration for pulses on the order of a single cycle.

We begin by briefly explaining the principle behind
spectral shearing and its advantages in the few-cycle re-
gime. Due to its importance to both accuracy and sensi-
tivity, we discuss the importance of choosing a proper
shear frequency and the considerations for doing so. Next,
we analyze the sensitivity of the measurement to the de-
lay reference inherent to spectral shearing, deriving an
analytical result and simple scaling law. We show that
relative measurement errors quadratically scale with the
pulse bandwidth, leading to extreme sensitivity to cali-
bration errors as pulse widths decrease past a few optical
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cycles. We then illustrate this principle on experimental
data from a sub-two-cycle oscillator, showing that a stan-
dard SPIDER apparatus would require mechanical stabil-
ity far exceeding the scale of the wavelengths involved.
Finally, we conclude by suggesting ways to mitigate the
sensitivity and survey some recent alternative spectral
shearing methods that attempt to eliminate it.

Our focus on spectral shearing is not meant to imply
that we feel it is alone in presenting challenges to the
characterization of pulses approaching a single cycle. In
fact, our feeling is that spectral shearing is otherwise so
well-suited to handling such pulses that it is worth exam-
ining these issues in some detail.

2. SPECTRAL SHEARING
INTERFEROMETRY

A. Theory

SPIDER was developed by Iaconis and Walmsley in 1999
[8]. It is a modification of spectral interferometry, where
both interfering components are obtained from the input
pulse and are slightly shifted in frequency. This obviates
the need for the reference pulse that is required in stan-
dard spectral interferometry. Called spectral shearing in-
terferometry, this general idea represents a fundamen-
tally unique mode of pulse measurement in that it
directly observes interference between two adjacent fre-
quency components. As such, it can be an extremely ro-
bust and direct method that avoids the need for iterative
inversion algorithms.

Figure 1 shows a conceptual schematic of SPIDER.
While the practical details greatly vary, all spectral shear-
ing methods involve a nonlinear interferometer, whereby
one arm experiences a different frequency shift than the
other. Interference is observed between the two by put-
ting some sort of phase shift on one of the arms. In the
case of standard SPIDER, a linear phase shift is realized
by interferometrically delaying the two pulse copies by 7.

By upconverting the pulse to be measured with a pair
of frequencies separated by (), any original wavelengths
in the pulse that are separated by this “shear” frequency
are mapped to the same wavelength in the output. One
may thus directly observe the phase delay between two
nearby wavelengths and thereby the spectral dispersion.
In standard SPIDER, the spectrally resolved output is
given by [8]
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Fig. 1. Conceptual schematic of SPIDER. This model intention-
ally abstracts away several practical details, such as the fact
that, in practice, both pulse copies are upconverted by slightly
different optical frequencies. However, these details are not im-
portant to an analysis of SPIDER.
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where E(o)=|E(w)|e7*¥® is the upconverted spectrum of
the pulse and 7 is the delay between the two upconverted
copies. [In practice E(w) will be shifted in frequency from
the fundamental, but its phase will be identical and its
phase is all we are concerned with.] The oscillating cosine
“carrier” fringe is the only element of interest, and its
phase encodes a finite difference of the pulse spectral
phase approximately proportional to the spectral group
delay. The method for isolating this phase is beyond the
scope of this paper and is not important to our end here.
It suffices to mention that as long as 7is sufficiently large,
the fringe phase may be reliably extracted by standard
signal processing techniques. Since the initial develop-
ment of SPIDER, many variants of spectral shearing in-
terferometry have been invented but all share the same
fundamental property of generating a carrier fringe in
some domain (perhaps in space or time, if not frequency),
which is shifted in proportion to the finite difference of
the spectral phase ¢(w—{2) - @(w). As such, spectral shear-
ing interferometry essentially “samples” the spectral
phase (up to a constant phase) with a discretization of ().

B. Application to Few-Cycle Pulses

The spectral shearing approach has three salient features
relevant in the context of few-cycle pulses. First, the up-
conversion of the short pulse with a monochromatic field
is fundamentally easier to perform than the full second-
harmonic operation inherent to IAC and FROG. To begin
with, the output relative bandwidth is roughly half that of
the input as the spectrum is simply shifted and is not con-
volved with itself as in the case with second-harmonic-
based methods. Most importantly, however, only one of
the field components in the nonlinear operation contains
the full bandwidth, which greatly facilitates phase match-
ing; type II upconversion can be engineered to have a sig-
nificant bandwidth in one of the input fields with a nar-
row bandwidth in the other, a perfect match for spectral
shearing interferometry (see [9] for an illustration of
this).

A second advantage comes from the use of phase to en-
code the spectral group delay. The spectral signal in Eq.
(1) produced by SPIDER can be viewed as a carrier wave
that is frequency modulated by a signal proportional to
the spectral group delay. Much as frequency modulation
is more robust to interference than amplitude modulation
for a given signal power [10], this modulation scheme ren-
ders SPIDER methods relatively impervious to phase-
matching bandwidth effects, as well as being highly im-
mune to experimental noise. This noise tolerance was
observed by Gallman et al. in [11] and by Jensen and
Anderson in [12]. Robustness to noise is especially impor-
tant given the relatively low efficiency of most spectral
shearing embodiments, wherein much of the measured
light is thrown away to create the chirped upconverting
signal. The phase modulation scheme also makes spectral
shearing tolerant to the presence of unwanted signals
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(such as the fundamental pulse or higher diffraction or-
ders from a grating spectrometer) that become increas-
ingly difficult to suppress as bandwidths exceed an oc-
tave.

Last, spectral shearing directly measures spectral
phase rather than the effects of it on the pulse envelope.
Together with the aforementioned noise immunity of the
encoding scheme, this makes spectral shearing methods
extremely sensitive to the kind of pulse asymmetries and
secondary pulses that are common in few-cycle lasers.

However, one issue that the original SPIDER does
share with its correlation-based cousins (e.g., IAC) is that
it requires the measured pulse to be split and delayed.
For pulses approaching an octave of bandwidth, it is not
yet possible to implement a dispersionless beam splitter,
and the dispersion of the beam splitter is imprinted on
the SPIDER measurement. Fortunately, this is not funda-
mental to spectral shearing; a few methods, to be dis-
cussed later, have been developed that involve nothing
but reflections for the measured pulse.

C. Choice of Shear Frequency

The shear frequency ) plays a critical role in both deter-
mining the sensitivity as well as the accuracy of a SPI-
DER measurement. Since it is the frequency spacing at
which we concatenate the spectral phase, it determines
the number of points at which we sample our spectrum
over its bandwidth. According to the Shannon sampling
theorem, the temporal window that we can handle with-
out aliasing is the reciprocal of twice the shear. The time-
bandwidth product that can be resolved is therefore
Aw/2Q.

Since the modulation of the SPIDER fringe in Eq. (1) is
proportional to the shear, one maximizes the signal-to-
noise ratio of a spectral shearing measurement by choos-
ing the largest shear that will avoid aliasing. As will be
shown later, this also results in the least sensitivity to
calibration errors. However, how can one determine,
a priori, what that is? In theory, there is no way to know
without actually making a measurement. Normally when
one samples a signal, the bandwidth is known. However,
in this case the “bandwidth” is the temporal extent of the
pulse, and there is no reliable way to know that without
having already done a pulse characterization. In practice,
however, one generally knows the range of dispersion ex-
pected. Furthermore, one can fairly assume that struc-
tures in the power spectral density will coincide with os-
cillations in the spectral phase. In most cases, especially
with few-cycle pulses, it is the latter that determines the
required spectral sampling resolution. Thus, picking a
shear that is sufficient to resolve the features of the am-
plitude spectrum will usually suffice. If in doubt, a se-
quence of shears can be used to effectively verify suffi-
cient sampling.

Most lasers produce pulses with satellite structures
and pedestals, to some extent or another. As such, in a
properly performed measurement of a well-compressed
pulse, with the spectral features sufficiently sampled, the
vast majority of the energy is contained in a relatively
small region of the resolvable temporal window. Given
such a result, it is tempting for the user to assume that a
larger shear can be safely used, with the argument being
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that if the power outside the main pulse region is negli-
gible, it will not hurt to ignore its effects when aliased.
However, what may appear negligible in intensity when
well-separated may have a significant effect when coher-
ently added to the main pulse. Consider the case of a mea-
surement where a pulse has distant satellite pulses that
are no more than 1% of the intensity of the main pulse.
Increasing the shear enough to alias the pedestal onto the
main pulse can potentially result in 20% relative changes
in the main pulse on an intensity basis. In general, the
only way to verify sufficient sampling is to take another
measurement at a different resolution.

3. SPECTRAL SHEARING DELAY
SENSITIVITY

A. Pulse Width Error Scaling

Unfortunately, the advantages enumerated herein come
at a certain cost. To gauge the phase of the fringe in Eq.
(1) we must know the nominal period of the fringe, given
by 1/7. Of course, all ultrafast measurement techniques
contain inherent length references that must be cali-
brated (such as the distance traveled by a delay stage in
an autocorrelation or the spectrometer grating period in
any spectrally resolved method). In most methods, the
calibrations affect the measurement in a proportional
way. However, it turns out that an error 67 in the inter-
pulse delay 7 will result in an additive measurement er-
ror, and thus this calibration becomes increasingly sensi-
tive as the pulses become shorter.

In this section we derive a rough scaling law for the
worst case error & in the measured pulse width as a func-
tion of &7 by considering the characterization of a
Gaussian pulse with a spectral 1/e2 half-width of Aw [a
figure that we use for mathematical simplicity and which
is within 10% of the commonly used full-width at half-
maximum (FWHM)]. We assume that the pulse we are
measuring is solely dispersed by an amount of second-
order dispersion given by ¢”, and we are concerned with
the error in estimating the pulse width in the presence of
a given uncertainty o7 in the interpulse delay. The com-
plex spectrum of the pulse is given by

2 s 2
E(w) - e—(w/Aa)) +(1/2)i¢" w . (2)

From Eq. (1) we can see that any unaccounted delay o7
occurring between the two upconverted pulses will be as-
sociated, to first order, with the group delay and thus in-
terpreted by the reconstruction as an erroneous linear
group delay:

OTw

8¢’ (w) = o (3)

Taking the derivative of both sides of Eq. (3) with respect
to o gives us an expression for the erroneous dispersion
contributing to the measurement as a result of the delay
error:

or
od" = 6 (4)
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To consider the effect of this extra dispersion we begin
with the well-known result (see [13], for example) for the
temporal width (where we have translated the formula so
that it is in terms of 1/e2 width) of a pulse broadened by
the second-order dispersion,

qS”Aa) 2
) s (5)

T=T, 1+< 5

with T and T, the dispersed and Fourier limited widths,
respectively. The actual measured pulse width, T+ 8T, can
be written by replacing the dispersion in Eq. (5) with the
measured dispersion §¢"+¢”. Using the expression for
8¢" given in Eq. (4), this means that the pulse width ac-
tually measured is simply

StAw  P'Aw\?
T+6T=Ty\/1+| ——+ . (6)
20

2

We consider the scenario where we erroneously mea-
sure a chirped pulse to be shorter than its true width.
This implies that we consider the situation where ¢” (the
true dispersion) is enough to significantly broaden the
pulse, and 67/Q (the erroneous dispersion added by the
measurement) is of the opposite sign so as to diminish our
estimate. Because of the second-order nature of broaden-
ing in Eq. (6), the measured pulse width can be very close
to transform limited and yet still include enough disper-
sion such that the effects of extra delay are well approxi-
mated by a linear treatment of the dispersion curve. To
derive a rough scaling law of the sensitivity of the mea-
surement, then, we consider the first-order change in Eq.
(6) to o7. Performing a series expansion of Eq. (6) with re-
spect to 67 and then solving for 6T gives

ST o4 ( 57'Aa)) Of 57 .
= 6 .
V4/Aw4 +(¢")? Q +0ler] (0

Strictly speaking, this first-order expression is only ac-
curate for ¢"> —57/(), but it turns out to be off by no more
than 25% as long as |¢"| >|87/Q)|. However, this expres-
sion is only an accurate prediction if we can estimate the
actual dispersion of the pulse (as in the case of an inten-
tionally chirped pulse), and we know that our delay error
is small relative to it. Nonetheless, the prefactor is close
to one for any significant actual chirp (the case we must
worry about). For example, it is already about 0.45 for a
pulse that is 12% wider than its transform limit. There-
fore, we have a worst-case error that roughly scales as

Aw
OT = —6r. (8)
Q

The final result is rather intuitive and simply states
that the absolute measurement error is approximately
the uncertainty in the interpulse delay times the dimen-
sionless quantity Aw/(), found earlier to be proportional
to the number of spectral samples, and thus also the time-
bandwidth product. Again, this formula is an overesti-
mate in the case where our measured pulse is transform
limited (since ¢"=-67/Q). However, in reality this is
somewhat offset by the fact that very short pulses usually
have residual higher-order dispersion that cannot be per-
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fectly compensated. In practice, this formula is thus fairly
accurate as illustrated in Section 5.

A corollary of Eq. (8) is that the relative error in mea-
surement scales with the square of the spectrum:

oT Aw?
~——or, 9)
T+6T 20

which was obtained by multiplying both sides of Eq. (8) by
the bandwidth and using the Fourier uncertainty rela-
tion, where we have assumed that the pulse as measured
is close to the Fourier limit.

One might hope that as pulses become shorter, the
number of sampling points could be kept constant by in-
creasing () in proportion to the bandwidth. Unfortunately,
this is generally not the case for few-cycle pulses as ex-
plained in Section 4. As bandwidths increase in an optical
system, the temporal window that we must resolve be-
comes limited by the pulse pedestal and secondary pulses,
and at this point the shear must remain fixed and the
number of sampling points must grow with the spectrum.
Thus, while Eq. (9) would indicate a linear scaling with
the bandwidth if everything in a laser scaled in unison, in
practice this is not the case, and we must conservatively
assume that the scaling is square in the bandwidth.

B. Tolerance on Delay Uncertainty for Compressed
Pulses

In Subsection 3.A, a rough intuitive scaling law was de-
rived, where several approximations were made, most no-
tably that some residual measured dispersion remains.
We now address the situation where the pulse has been
perfectly compressed according to the measurement. In
this case, we can exactly determine how much delay un-
certainty can be allowed while still being assured of hav-
ing a compressed pulse to within some tolerance. Taking
5% as our tolerance for deviation from the transform lim-
ited width, the allowable delay uncertainty 759, can be
found without approximation by taking 7'— 1.057, and
¢ — 154,/Q in Eq. (5). Solving for d75¢, gives

0 T,
6159, = 0.64— =0.32—, 10
5% Ao N (10)

where N is the number of spectral sampling points within
the bandwidth (twice the time-bandwidth product).

4. CALIBRATION OF SPIDER IN PRACTICE

A. Required Precision

By way of example, we consider the prospect of measuring
a single-cycle Gaussian pulse whose full-width 1/e? band-
width is Af=282 THz. Using a shear of Q=27 x5 THz will
result in a resolvable time-bandwidth product of roughly
30 (using the FWHM values). Based on our experience
with few-cycle lasers, this would be a conservative reso-
lution requirement for a single-cycle laser. In practice, for
few-cycle pulses and below, the spectra tend to be highly
structured, with the number of spectral samples required
on the order of 20-100. See, for example, [2,14,15]. For a
standard SPIDER configuration, this shear implies a de-
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lay of around 7=200 fs. (This is to ensure that sufficient
chirp is used such that the upconversion can be consid-
ered a pure shift.)

According to Eq. (10), in order to limit our maximum
error to within 5% (roughly 0.14 fs), the interpulse delay
error must be measured and maintained to within 25 at-
toseconds (as), corresponding to a delay of 7.5 nm. Re-
cently, the shortest isolated pulses ever published [2]
were measured using a modified SPIDER (modified to
amplify the chirped pulses) with a shear of Q=27
X 4.11 THz, which implies a tolerance of about 21 as or
6.3 nm.

B. Sources of Delay Error

There are several avenues through which unaccounted for
interpulse delays can arise in practice with a standard
SPIDER setup. It is our hope that by enumerating them,
researchers can mitigate their effects simply by keeping
aware of them during the construction and operation of a
SPIDER apparatus.

1. Delay calibration. The most obvious source of delay
error is simple error in the calibration measurement. In
our example, a relative precision measurement of 0.025%
is required over 4 orders of magnitude. This is not exactly
trivial but certainly achievable using interferometric
means. As pointed out by Dorrer in [16], however, errors
in the calibration of the spectrometer will translate into
errors in the effective 7 used. Thus, the spectrometer used
in the measurement must be free of relative errors (over
the pulse bandwidth) to within the same precision unless
the errors can be canceled out by self-calibration (see be-
low).

2. Thermal drift. A perhaps more worrisome source of
delay error is thermal drift in the setup over time. Taking,
for instance, the thermal expansion coefficient of alumi-
num (2.5 X 107%) and considering a relatively small Mich-
elson interferometer with arm lengths of 2.5 cm, a tem-
perature differential of 0.006°C between the two arms
will cause a problematic change in delay. Uniform tem-
perature shifts should not pose a problem; an interferom-
eter of any size will be able to withstand a uniform tem-
perature shift of up to 5°C before a noticeable delay
occurs.

3. Alignment drift. Another source of delay is alignment
drift of the incoming laser beam. Any misalignment in the
beam will change the delay by 7 times the cosine of the
angle error. Assuming perfect alignment to begin with,
this means that 15 mrad of change in laser pointing will
cause noticeable errors for a single-cycle pulse. This is not
an issue for passive stability of the laser but suggests that
any tuning of the laser itself will require a recalibration of
the SPIDER for few-cycle pulses.

4. Unmeasured path difference. Calibrating the inter-
pulse delay often involves changing the experimental con-
figuration somewhat [such as rotating the nonlinear crys-
tal to produce a type I second-harmonic generation
(SHG)]. Thus, care must be taken such that the measured
delay is identical to the delay actually used. For example,
if the SHG interference fringe is to be used to calibrate
out the delay phase, it is even more important that the
total distance traveled by the beam not change from the
calibration configuration to the measurement configura-
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tion. This could be a potential issue with noncollinear ar-
rangements, where the SHG geometry will be fundamen-
tally different than that used for the sum-frequency
generation (SFG) employed during the actual measure-
ment. Assuming the two pulse copies are only known to be
collinear to within 1 mrad, changing the total propagation
length by more than 2 cm would put the unknown delay
out of tolerance for a single-cycle pulse.

C. Avoiding Delay Error

The most obvious lesson from the preceeding is that for a
few-cycle pulse characterization with standard SPIDER,
a new calibration should be performed immediately pre-
ceding each measurement to avoid issues of delay stabil-
ity, leaving only the matter of delay measurement.

Fortunately, the issue of the delay calibration becoming
enmeshed with the spectrometer calibration has been pre-
viously addressed. In [16], Dorrer shows that if the delay
is calibrated using the interference of the individual sec-
ond harmonic of each pulse copy using the same spec-
trometer, which will be used for the SPIDER measure-
ment, then any spectrometer error will cancel out. When
making measurements of few-cycle pulses using a stan-
dard SPIDER, it is thus imperative that the delay phase
be removed in such a self-calibrated way. Otherwise, the
delay calibration sensitivity translates into the more dif-
ficult issue of calibrating the spectrometer to within at
least 4 orders of magnitude relative precision and mea-
suring a fringe period to the same degree. One potential
difficulty with this is that the SHG signals must cover the
same bandwidth as the sheared upconverted signals.
Given the difference in phase matching between the SHG
and SFG signals, this could present a difficulty and may
explain why a self-calibrating SPIDER measurement has
not been demonstrated (to our knowledge) for a few-cycle
pulse.

Ideally, for the sake of avoiding any possibility of delay
drift, the calibration of the delay would be simultaneously
done with the measurement. Dorrer has developed a
method [17] to do just that by taking advantage of mul-
tiple diffraction orders in a grating spectrometer. His
method is also self-calibrating in the sense described
herein, since both the calibration fringe at the fundamen-
tal frequency and the SPIDER fringe at the upconverted
frequency share the same wavelength range on the detec-
tor. When standard SPIDER is used, and when the pulse
lengths are not so short that dispersion is an issue, beam
splitting may be done using an etalon (as in [18]) to elimi-
nate issues of thermal sensitivity.

Last, the effects of beam pointing can be greatly miti-
gated by ensuring that the interferometer generating the
pulse copies is well-aligned such that pointing errors in-
troduce only second-order delay errors. Collinear SPIDER
implementations, which rely on pulse shaping to create
the pulse copies [19], and those that use no delay (see
Subsection 6.C) have an advantage in this regard.

5. NUMERICAL SIMULATIONS

In the derivation of Subsection 3.A, we relied on a
Gaussian analysis. However, the spectra in real lasers
tend to have more complicated spectra that are often
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Fig. 2. Spectral power density and spectral phase for an actual
sub-two-cycle Ti:sapphire oscillator measured with 2DSI.

closer to rectangular than Gaussian. To test the validity
of our analytical results, we simulated the effect of a spu-
rious delay 67 on a standard SPIDER measurement of a
sub-two-cycle pulse, using spectral data from an actual
Ti:sapphire laser.

We recently constructed a sub-two-cycle ring laser [20]
and characterized it using two-dimensional spectral
shearing interferometry (2DSI) [21], the spectrum and
phase of which are shown for reference in Fig. 2. The
power and phase spectrum are both rather oscillatory, ow-
ing to self-phase modulation (SPM) and extra reflections
from the intracavity dispersion compensating mirrors. To
resolve the finest oscillations, a shear of 4.5 THz was re-
quired. Using the spectral phase measured by 2DSI, we
simulated the case where a standard SPIDER measure-
ment shows a very slightly chirped pulse of 4.94fs
FWHM. This is nearly as compressed as can be achieved
by a bulk material compensation. We then computed what
the actual pulse was, assuming a worst case interpulse
delay error due to several lengths of extra path length.
The envelopes were computed using a padded fast Fourier
transform (FFT) of the complex spectrum, neglecting any
carrier offset (since we are only interested in the pulse en-
velope). The pulse rms width (over a 40 fs window) and
the FWHM were computed. The latter was calculated by

1
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|
08| — — — 3t=25/c nm l
E - — =41 =50/c nm
o 06}
£
2
204}
2
£
0.2
0 .
-50 0 50

t (fs)
Fig. 3. Simulated pulse intensity as measured (solid curve) and
in truth (dashed and dashed-dotted curves) for the Ti:sapphire

laser whose spectra are shown in Fig. 2, assuming delay errors of
25 and 50 nm.
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Table 1. Summary of Simulated Ti:sapphire

Measurements
or
Measurements 15nm/c 30nm/c 60 nm/c
(fs) (fs) (fs) (fs)
FWHM 4.94 5.032 5.26 12.8
rms 10.95 11.31 11.85 13.31

using a Newton method to solve for the intersection of a
cubic spline with the 50% point. The resulting pulses are
shown in Fig. 3 with results tabulated in Table 1. (The
rms widths are much larger due to significant satellite
pulses and pedestal.)

Note that it only took an extra delay of 30 nm, or
100 as, to cause an error over 5%. Furthermore, this ex-
ample was actually conservative in that the measured
pulse was well-compressed and thus the nonlinear rela-
tion of the FWHM width to dispersion helped; the same
data also imply that, had the actual pulse been 12.8fs
long, only 30 nm of spurious delay would have made it ap-
pear to be only 5.25 fs long. The point here is that if spec-
tral shearing is used to measure pulses that are inten-
tionally chirped (as in the case of pulses used in coherent
control or those precompensated for material dispersion)
the measurement will be maximally sensitive such that
Eq. (8) is an accurate estimate.

To test the applicability of the analytical results from
Subsection 3.A, the relative error was simulated for a
range of 67 between 0 and 60 nm and compared with that
predicted by Eq. (9), taking the 1/e? half-width Aw to be
27X 138 THz (approximately half of the full range of the
measured spectrum). The results are shown in Fig. 4. Af-
ter enough dispersion, the FWHM behaves severely non-
linearly as subpulses grow past 50%. As anticipated by
the fact that this pulse is nearly transform limited as
measured, the linear scaling law overestimates the er-
rors. However, the error is not large, and it is generally
within a factor of 2 of the rms width. By comparison, the
exact 5% tolerance predicted by Eq. (10) is 6754,=81 nm, a
significant underestimate of that actually achieved. This
is because Eq. (10) assumes a smooth spectrum with no
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Fig. 4. Measured pulse FWHM and rms widths of the pulse in
Fig. 3 for a range of 57 values compared with that predicted by
Eq. (8) using the half-width of the spectrum as Aw.
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high-order dispersion. Thus, if our laser is representative,
the sensitivity estimates given in Subsection 4.A may be
conservative for a single-cycle laser.

6. ALTERNATIVE SPECTRAL SHEARING
METHODS

We have already presented an outline of various ways to
mitigate systematic errors related to spurious delays in
spectral shearing. For cases where the sensitivity or pulse
splitting of SPIDER cannot be tolerated, several alterna-
tive modes of spectral shearing have been developed in
the past several years that address these issues.

A. Arbitrary Shear Methods

As previously discussed, the shear plays a crucial role in
the sensitivity of the measurement. This applies to any
spectral shearing method. Since the error 6T is propor-
tional to the absolute uncertainty 7, and not the relative
uncertainty, the effect of calibration errors can be mini-
mized by choosing as small a 7 as possible while still al-
lowing decoding of the fringe phase. Similarly, we want to
choose as large an () as is consistent with the Nyquist cri-
terion of the spectral phase.

In standard SPIDER, unfortunately, the delay and
shear are linked through the dispersion used to produce
the monochromatic signal used for upconversion. In [8]
this relation is 7=-Qdf;,,. It can be shown that the
amount of chirp needed to avoid artifacts is proportional
to 1/Q2%. However, the minimum requirement on 7 is ac-
tually quite complicated, and it is best found empirically.
Thus, SPIDER does not, in general, offer sufficient de-
grees of freedom to optimally choose 7 and ().

However, there are several spectral shearing variants
that do allow for independent selections of 7 and Q). The
first to do so was homodyne optical technique (HOT) SPI-
DER [22], which uses a homodyne technique to allow two
measurements against a local oscillator to be combined to
yield a normal SPIDER trace. While this method requires
a second source that covers the upconversion wave-
lengths, it also has the benefit of implicitly calibrating the
delay. However, this method may be of limited use for
very short pulses because of the requirement for a sepa-
rate source with the same bandwidth but at twice the fre-
quency (the main source can also be used, but this would
be highly inefficient and against the point of homodyn-
ing).

B. Zero-Dispersion Methods

Another approach that is capable of arbitrary shears is
zero-additional-phase (ZAP) SPIDER [23], developed by
Baum et al., which introduced the idea of using dual
chirped pulses to upconvert a single short pulse. This
means that the pulse to be measured never has to pass
through any material (other than the thin nonlinear crys-
tal before it is upconverted), and hence this method adds
zero additional phase. To our knowledge, ZAP SPIDER
was the first demonstration of a self-referencing pulse
characterization method that involved no added disper-
sion to the measured pulse. One potential issue is that the
noncollinear nature of ZAP SPIDER may present difficul-
ties in measuring 7, at least in a self-calibrating way. Spa-
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tially encoded arrangement (SEA) SPIDER [24] and 2DSI
[21] also use two chirped pulses to avoid dispersion on the
measured pulse, and furthermore both set the delay to
zero. This brings us to another way to address the delay
calibration, avoid it altogether.

C. Zero-Delay Methods

In the SPIDER interferogram, described in Eq. (1), the
dense fringe created by the delay phase 7w allows for ro-
bust and unambiguous extraction of the @(w)-p(w-Q)
term in which we are interested. However, this carrier
fringe need not be in the spectral domain; the phase
shown in the lower arm of the SPIDER schematic in Fig.
1 does not have to be a function of optical frequency. In
fact, having any component of it in the spectral domain is
really the origin of the entire calibration sensitivity issue
discussed in this paper.

To this end, SEA SPIDER, developed by Kosik et al.
[24] and demonstrated for sub-10 fs pulses by Wyatt et al.
[25], is a version of SPIDER that creates a fringe in the
spatial domain on an imaging spectrometer. A related
method, 2DSI developed by Birge et al. [21], uses a collin-
ear output and creates a fringe in the time domain.

In theory, these two methods should be immune to the
delay uncertainty errors discussed in this paper. How-
ever, in practice things may not be so simple. The error
given in Eq. (8) is true for any spectral shearing method,
even those with nominally zero delay between the two
pulse copies. Thus, any incidental path length difference
that occurs will contribute to measurement errors in ex-
actly the same way as with standard SPIDER.

In the case of SEA SPIDER, the spatial fringe is cre-
ated by sending the two upconverted pulses along sepa-
rate routes in a plane before meeting at the spectrometer.
This creates a spatially dependent delay in an axis per-
pendicular to the axis over which the spectrum is re-
solved. Any deviation of these pulses out of the plane, or
delays incurred during their separate travels, will create
a o7 that must be either calibrated or avoided to the same
precision as for standard SPIDER. Furthermore, if the
spectrometer grating axis is rotated with respect to the
nominal spatial fringe, this will have the same effect as a
delay and may have to be calibrated.

In 2DSI, the fringe is produced by scanning the phase
of one of the chirped pulses, and a 2D fringe is produced
as a function of wavelength and this phase. The only
thing that matters in the 2DSI fringe is the absolute
phase of the fringe at a given wavelength, and thus no
calibration is needed. The cost of this is that 2DSI is in-
capable of single-shot measurements.

The two upconverted pulses in 2DSI originate from the
same point and are collinear, so it should not be possible
for a delay to occur between the pulse copies. However,
misalignment and nonidealities in the imaging of the
pulses into the spectrometer could potentially introduce
an unwanted delay. Nonetheless, we have not seen any
evidence of this after several measurements of few-cycle
pulses [26,27]. In fact, we have recently directly measured
a 4.9fs pulse from an oscillator and verified it against
both an IAC and a simulation of the laser [20,15,28].
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D. Multiple Shearing

Finally, for those methods where multiple shears can be
produced (and where changing the shear can be guaran-
teed to have no effect on the delay) the issue of delay cali-
bration can be eliminated by making two or more mea-
surements with different shear frequencies. By
subtracting the phase of two spectral shearing measure-
ments made with different shears, the phase of the delay
drops out and one is essentially left with a SPIDER mea-
surement performed with the difference in the shears. A
novel version of SPIDER that relies on this principle for a
continuum of shears was recently presented by Gorza et
al. [29].

As long as one of the measurements is done with a
shear that is consistent with the sampling theorem, the
subsequent “calibration” measurements can be made with
much larger shears, with the only requirement being that
they are integer multiples of the shear used for the final
measurement.

7. CONCLUSION

We have shown, through analysis and numerical simula-
tion, that as pulses approach the single-cycle limit, the
SPIDER technique involves a calibration that is exceed-
ingly difficult. However, given the unique position of SPI-
DER as the only direct method of phase measurement,
and given its inherent bandwidth advantages over other
methods, it is worthwhile to search for mitigation strate-
gies. We conclude that for most cases, awareness of the
calibration sensitivity and careful adherence to the prin-
ciple that calibrations must be done before every mea-
surement are sufficient to yield accurate results. For ex-
tremely short pulses, however, it may be best to employ
one of the variants of SPIDER discussed in Section 6 that
remove the delay calibration issue.
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