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We derive an analytical approximation for the measured pulse width error in spectral shearing methods, such
as spectral phase interferometry for direct electric-field reconstruction (SPIDER), caused by an anomalous de-
lay between the two sheared pulse components. This analysis suggests that, as pulses approach the single-
cycle limit, the resulting requirements on the calibration and stability of this delay become significant, requir-
ing precision orders of magnitude higher than the scale of a wavelength. This is demonstrated by numerical
simulations of SPIDER pulse reconstruction using actual data from a sub-two-cycle laser. We briefly propose
methods to minimize the effects of this sensitivity in SPIDER and review variants of spectral shearing that
attempt to avoid this difficulty. © 2008 Optical Society of America
OCIS codes: 320.7100, 120.5050.

d
a
f
e

a
r
h
n
a
o
s
s
v
s

s
e
s
t
t
(
s

s
g
t
s
w
l
a
r
p
b

. INTRODUCTION
teady progress in ultrafast laser sources over the past
everal decades has led to the recent development of ro-
ust sources of few-cycle laser pulses. Sub-two-cycle
ulses can now be directly produced from oscillators, and
ources of single-cycle pulses are under development
1,2]. Furthermore, as few-cycle lasers are increasingly
sed to drive attosecond extreme-UV and x-ray pulses,
hese applications will require an extremely accurate and
recise characterization of the few- and single-cycle pulse
nvelopes used to drive the high harmonic generation pro-
ess [3].

The technology for measuring ultrashort optical pulses
ust, of course, keep pace with the lasers themselves,

nd few- and single-cycle pulses present unique difficul-
ies in this regard. The most obvious difficultly in a few-
ycle pulse measurement stems from the tremendous
andwidths involved. All self-referenced pulse character-
zation methods involve nonlinear operations of some sort
4], and in the case of few-cycle pulses one essentially has
o implement a specialized analog optical switch capable
f operating with hundreds of terahertz of bandwidth.
ny bandwidth filtering is especially relevant for tech-
iques where the amplitude of the trace is a critical pa-
ameter, such as interferometric autocorrelation (IAC) [5]
nd frequency resolved optical gating (FROG) [6].
As pulses become shorter, the time scales of nonideali-

ies do not always scale with them. For example, the rela-
ive delays of satellite pulses due to secondary reflections
ff dispersion-compensating mirrors do not scale with the
ain pulse width. In fact, if anything they inversely scale

o the pulse width as mirrors become thicker to accommo-
ate a wider spectral range. The spectral phase oscilla-
ion periods caused by such delays are usually on the or-
0740-3224/08/06A111-9/$15.00 © 2
er of 5–10 THz. Thus, as bandwidths approach 200 THz
nd beyond, the time-bandwidth product required for a
ull characterization on even a well-compressed pulse can
xceed 20.

In addition, the extreme bandwidths involved result in
higher-order material dispersion playing a significant

ole in pulse shaping, yielding pulses that are typically
ighly asymmetrical. As such, the commonly used tech-
ique of IAC, which is relatively insensitive to pulse
symmetries [7], can miss details. The squared intensity
peration inherent to IAC greatly suppresses the effect of
atellite pulses, for instance. As such, iterative recon-
tructions based on IAC (e.g., [5]) may fail to properly con-
erge in the presence of noise when higher-order disper-
ive effects are significant.

One of the dominant characterization methods for very
hort pulses is spectral phase interferometry for direct
lectric-field reconstruction (SPIDER). In many ways,
pectral shearing interferometry is uniquely suited to the
ask of measuring few- and single-cycle pulses. However,
here is a calibration sensitivity with standard SPIDER
and many of its variants) that needs to be taken into con-
ideration for pulses on the order of a single cycle.

We begin by briefly explaining the principle behind
pectral shearing and its advantages in the few-cycle re-
ime. Due to its importance to both accuracy and sensi-
ivity, we discuss the importance of choosing a proper
hear frequency and the considerations for doing so. Next,
e analyze the sensitivity of the measurement to the de-

ay reference inherent to spectral shearing, deriving an
nalytical result and simple scaling law. We show that
elative measurement errors quadratically scale with the
ulse bandwidth, leading to extreme sensitivity to cali-
ration errors as pulse widths decrease past a few optical
008 Optical Society of America
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ycles. We then illustrate this principle on experimental
ata from a sub-two-cycle oscillator, showing that a stan-
ard SPIDER apparatus would require mechanical stabil-
ty far exceeding the scale of the wavelengths involved.
inally, we conclude by suggesting ways to mitigate the
ensitivity and survey some recent alternative spectral
hearing methods that attempt to eliminate it.

Our focus on spectral shearing is not meant to imply
hat we feel it is alone in presenting challenges to the
haracterization of pulses approaching a single cycle. In
act, our feeling is that spectral shearing is otherwise so
ell-suited to handling such pulses that it is worth exam-

ning these issues in some detail.

. SPECTRAL SHEARING
NTERFEROMETRY
. Theory
PIDER was developed by Iaconis and Walmsley in 1999

8]. It is a modification of spectral interferometry, where
oth interfering components are obtained from the input
ulse and are slightly shifted in frequency. This obviates
he need for the reference pulse that is required in stan-
ard spectral interferometry. Called spectral shearing in-
erferometry, this general idea represents a fundamen-
ally unique mode of pulse measurement in that it
irectly observes interference between two adjacent fre-
uency components. As such, it can be an extremely ro-
ust and direct method that avoids the need for iterative
nversion algorithms.

Figure 1 shows a conceptual schematic of SPIDER.
hile the practical details greatly vary, all spectral shear-

ng methods involve a nonlinear interferometer, whereby
ne arm experiences a different frequency shift than the
ther. Interference is observed between the two by put-
ing some sort of phase shift on one of the arms. In the
ase of standard SPIDER, a linear phase shift is realized
y interferometrically delaying the two pulse copies by �.
By upconverting the pulse to be measured with a pair

f frequencies separated by �, any original wavelengths
n the pulse that are separated by this “shear” frequency
re mapped to the same wavelength in the output. One
ay thus directly observe the phase delay between two

earby wavelengths and thereby the spectral dispersion.
n standard SPIDER, the spectrally resolved output is
iven by [8]

eiτω

OSA

eiΩt

t ω

E(t) D(ω)

ig. 1. Conceptual schematic of SPIDER. This model intention-
lly abstracts away several practical details, such as the fact
hat, in practice, both pulse copies are upconverted by slightly
ifferent optical frequencies. However, these details are not im-
ortant to an analysis of SPIDER.
�1�

here E���= �E��� �e−i���� is the upconverted spectrum of
he pulse and � is the delay between the two upconverted
opies. [In practice E��� will be shifted in frequency from
he fundamental, but its phase will be identical and its
hase is all we are concerned with.] The oscillating cosine
carrier” fringe is the only element of interest, and its
hase encodes a finite difference of the pulse spectral
hase approximately proportional to the spectral group
elay. The method for isolating this phase is beyond the
cope of this paper and is not important to our end here.
t suffices to mention that as long as � is sufficiently large,
he fringe phase may be reliably extracted by standard
ignal processing techniques. Since the initial develop-
ent of SPIDER, many variants of spectral shearing in-

erferometry have been invented but all share the same
undamental property of generating a carrier fringe in
ome domain (perhaps in space or time, if not frequency),
hich is shifted in proportion to the finite difference of

he spectral phase ���−��−����. As such, spectral shear-
ng interferometry essentially “samples” the spectral
hase (up to a constant phase) with a discretization of �.

. Application to Few-Cycle Pulses
he spectral shearing approach has three salient features
elevant in the context of few-cycle pulses. First, the up-
onversion of the short pulse with a monochromatic field
s fundamentally easier to perform than the full second-
armonic operation inherent to IAC and FROG. To begin
ith, the output relative bandwidth is roughly half that of

he input as the spectrum is simply shifted and is not con-
olved with itself as in the case with second-harmonic-
ased methods. Most importantly, however, only one of
he field components in the nonlinear operation contains
he full bandwidth, which greatly facilitates phase match-
ng; type II upconversion can be engineered to have a sig-
ificant bandwidth in one of the input fields with a nar-
ow bandwidth in the other, a perfect match for spectral
hearing interferometry (see [9] for an illustration of
his).

A second advantage comes from the use of phase to en-
ode the spectral group delay. The spectral signal in Eq.
1) produced by SPIDER can be viewed as a carrier wave
hat is frequency modulated by a signal proportional to
he spectral group delay. Much as frequency modulation
s more robust to interference than amplitude modulation
or a given signal power [10], this modulation scheme ren-
ers SPIDER methods relatively impervious to phase-
atching bandwidth effects, as well as being highly im-
une to experimental noise. This noise tolerance was

bserved by Gallman et al. in [11] and by Jensen and
nderson in [12]. Robustness to noise is especially impor-

ant given the relatively low efficiency of most spectral
hearing embodiments, wherein much of the measured
ight is thrown away to create the chirped upconverting
ignal. The phase modulation scheme also makes spectral
hearing tolerant to the presence of unwanted signals
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such as the fundamental pulse or higher diffraction or-
ers from a grating spectrometer) that become increas-
ngly difficult to suppress as bandwidths exceed an oc-
ave.

Last, spectral shearing directly measures spectral
hase rather than the effects of it on the pulse envelope.
ogether with the aforementioned noise immunity of the
ncoding scheme, this makes spectral shearing methods
xtremely sensitive to the kind of pulse asymmetries and
econdary pulses that are common in few-cycle lasers.

However, one issue that the original SPIDER does
hare with its correlation-based cousins (e.g., IAC) is that
t requires the measured pulse to be split and delayed.
or pulses approaching an octave of bandwidth, it is not
et possible to implement a dispersionless beam splitter,
nd the dispersion of the beam splitter is imprinted on
he SPIDER measurement. Fortunately, this is not funda-
ental to spectral shearing; a few methods, to be dis-

ussed later, have been developed that involve nothing
ut reflections for the measured pulse.

. Choice of Shear Frequency
he shear frequency � plays a critical role in both deter-
ining the sensitivity as well as the accuracy of a SPI-
ER measurement. Since it is the frequency spacing at
hich we concatenate the spectral phase, it determines

he number of points at which we sample our spectrum
ver its bandwidth. According to the Shannon sampling
heorem, the temporal window that we can handle with-
ut aliasing is the reciprocal of twice the shear. The time-
andwidth product that can be resolved is therefore
� /2�.
Since the modulation of the SPIDER fringe in Eq. (1) is

roportional to the shear, one maximizes the signal-to-
oise ratio of a spectral shearing measurement by choos-

ng the largest shear that will avoid aliasing. As will be
hown later, this also results in the least sensitivity to
alibration errors. However, how can one determine,
priori, what that is? In theory, there is no way to know
ithout actually making a measurement. Normally when
ne samples a signal, the bandwidth is known. However,
n this case the “bandwidth” is the temporal extent of the
ulse, and there is no reliable way to know that without
aving already done a pulse characterization. In practice,
owever, one generally knows the range of dispersion ex-
ected. Furthermore, one can fairly assume that struc-
ures in the power spectral density will coincide with os-
illations in the spectral phase. In most cases, especially
ith few-cycle pulses, it is the latter that determines the

equired spectral sampling resolution. Thus, picking a
hear that is sufficient to resolve the features of the am-
litude spectrum will usually suffice. If in doubt, a se-
uence of shears can be used to effectively verify suffi-
ient sampling.

Most lasers produce pulses with satellite structures
nd pedestals, to some extent or another. As such, in a
roperly performed measurement of a well-compressed
ulse, with the spectral features sufficiently sampled, the
ast majority of the energy is contained in a relatively
mall region of the resolvable temporal window. Given
uch a result, it is tempting for the user to assume that a
arger shear can be safely used, with the argument being
hat if the power outside the main pulse region is negli-
ible, it will not hurt to ignore its effects when aliased.
owever, what may appear negligible in intensity when
ell-separated may have a significant effect when coher-
ntly added to the main pulse. Consider the case of a mea-
urement where a pulse has distant satellite pulses that
re no more than 1% of the intensity of the main pulse.
ncreasing the shear enough to alias the pedestal onto the
ain pulse can potentially result in 20% relative changes

n the main pulse on an intensity basis. In general, the
nly way to verify sufficient sampling is to take another
easurement at a different resolution.

. SPECTRAL SHEARING DELAY
ENSITIVITY
. Pulse Width Error Scaling
nfortunately, the advantages enumerated herein come
t a certain cost. To gauge the phase of the fringe in Eq.
1) we must know the nominal period of the fringe, given
y 1/�. Of course, all ultrafast measurement techniques
ontain inherent length references that must be cali-
rated (such as the distance traveled by a delay stage in
n autocorrelation or the spectrometer grating period in
ny spectrally resolved method). In most methods, the
alibrations affect the measurement in a proportional
ay. However, it turns out that an error �� in the inter-
ulse delay � will result in an additive measurement er-
or, and thus this calibration becomes increasingly sensi-
ive as the pulses become shorter.

In this section we derive a rough scaling law for the
orst case error �t in the measured pulse width as a func-

ion of �� by considering the characterization of a
aussian pulse with a spectral 1/e2 half-width of �� [a
gure that we use for mathematical simplicity and which

s within 10% of the commonly used full-width at half-
aximum (FWHM)]. We assume that the pulse we are
easuring is solely dispersed by an amount of second-

rder dispersion given by ��, and we are concerned with
he error in estimating the pulse width in the presence of
given uncertainty �� in the interpulse delay. The com-

lex spectrum of the pulse is given by

E��� = e−��/���2+�1/2�i���2
. �2�

From Eq. (1) we can see that any unaccounted delay ��
ccurring between the two upconverted pulses will be as-
ociated, to first order, with the group delay and thus in-
erpreted by the reconstruction as an erroneous linear
roup delay:

������ =
���

�
. �3�

aking the derivative of both sides of Eq. (3) with respect
o � gives us an expression for the erroneous dispersion
ontributing to the measurement as a result of the delay
rror:

��� =
��

�
. �4�
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To consider the effect of this extra dispersion we begin
ith the well-known result (see [13], for example) for the

emporal width (where we have translated the formula so
hat it is in terms of 1/e2 width) of a pulse broadened by
he second-order dispersion,

T = T0�1 + �����

2 �2

, �5�

ith T and T0 the dispersed and Fourier limited widths,
espectively. The actual measured pulse width, T+�T, can
e written by replacing the dispersion in Eq. (5) with the
easured dispersion ���+��. Using the expression for

�� given in Eq. (4), this means that the pulse width ac-
ually measured is simply

T + �T = T0�1 + �����

2�
+

����

2 �2

. �6�

We consider the scenario where we erroneously mea-
ure a chirped pulse to be shorter than its true width.
his implies that we consider the situation where �� (the

rue dispersion) is enough to significantly broaden the
ulse, and �� /� (the erroneous dispersion added by the
easurement) is of the opposite sign so as to diminish our

stimate. Because of the second-order nature of broaden-
ng in Eq. (6), the measured pulse width can be very close
o transform limited and yet still include enough disper-
ion such that the effects of extra delay are well approxi-
ated by a linear treatment of the dispersion curve. To

erive a rough scaling law of the sensitivity of the mea-
urement, then, we consider the first-order change in Eq.
6) to ��. Performing a series expansion of Eq. (6) with re-
pect to �� and then solving for �T gives

�T = � ��

�4/��4 + ����2������

�
� + O���2�. �7�

Strictly speaking, this first-order expression is only ac-
urate for ���−�� /�, but it turns out to be off by no more
han 25% as long as ��� � � ��� /��. However, this expres-
ion is only an accurate prediction if we can estimate the
ctual dispersion of the pulse (as in the case of an inten-
ionally chirped pulse), and we know that our delay error
s small relative to it. Nonetheless, the prefactor is close
o one for any significant actual chirp (the case we must
orry about). For example, it is already about 0.45 for a
ulse that is 12% wider than its transform limit. There-
ore, we have a worst-case error that roughly scales as

�T 	
��

�
��. �8�

The final result is rather intuitive and simply states
hat the absolute measurement error is approximately
he uncertainty in the interpulse delay times the dimen-
ionless quantity �� /�, found earlier to be proportional
o the number of spectral samples, and thus also the time-
andwidth product. Again, this formula is an overesti-
ate in the case where our measured pulse is transform

imited (since ��=−�� /�). However, in reality this is
omewhat offset by the fact that very short pulses usually
ave residual higher-order dispersion that cannot be per-
ectly compensated. In practice, this formula is thus fairly
ccurate as illustrated in Section 5.
A corollary of Eq. (8) is that the relative error in mea-

urement scales with the square of the spectrum:

�T

T + �T
	

��2

2�
��, �9�

hich was obtained by multiplying both sides of Eq. (8) by
he bandwidth and using the Fourier uncertainty rela-
ion, where we have assumed that the pulse as measured
s close to the Fourier limit.

One might hope that as pulses become shorter, the
umber of sampling points could be kept constant by in-
reasing � in proportion to the bandwidth. Unfortunately,
his is generally not the case for few-cycle pulses as ex-
lained in Section 4. As bandwidths increase in an optical
ystem, the temporal window that we must resolve be-
omes limited by the pulse pedestal and secondary pulses,
nd at this point the shear must remain fixed and the
umber of sampling points must grow with the spectrum.
hus, while Eq. (9) would indicate a linear scaling with

he bandwidth if everything in a laser scaled in unison, in
ractice this is not the case, and we must conservatively
ssume that the scaling is square in the bandwidth.

. Tolerance on Delay Uncertainty for Compressed
ulses
n Subsection 3.A, a rough intuitive scaling law was de-
ived, where several approximations were made, most no-
ably that some residual measured dispersion remains.
e now address the situation where the pulse has been

erfectly compressed according to the measurement. In
his case, we can exactly determine how much delay un-
ertainty can be allowed while still being assured of hav-
ng a compressed pulse to within some tolerance. Taking
% as our tolerance for deviation from the transform lim-
ted width, the allowable delay uncertainty ��5% can be
ound without approximation by taking T→1.05T0 and
�→�5%/� in Eq. (5). Solving for ��5% gives

��5% = 0.64
�

��2 = 0.32
T0

N
, �10�

here N is the number of spectral sampling points within
he bandwidth (twice the time-bandwidth product).

. CALIBRATION OF SPIDER IN PRACTICE
. Required Precision
y way of example, we consider the prospect of measuring
single-cycle Gaussian pulse whose full-width 1/e2 band-
idth is �f=282 THz. Using a shear of �=2�	5 THz will

esult in a resolvable time-bandwidth product of roughly
0 (using the FWHM values). Based on our experience
ith few-cycle lasers, this would be a conservative reso-

ution requirement for a single-cycle laser. In practice, for
ew-cycle pulses and below, the spectra tend to be highly
tructured, with the number of spectral samples required
n the order of 20–100. See, for example, [2,14,15]. For a
tandard SPIDER configuration, this shear implies a de-
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ay of around �=200 fs. (This is to ensure that sufficient
hirp is used such that the upconversion can be consid-
red a pure shift.)

According to Eq. (10), in order to limit our maximum
rror to within 5% (roughly 0.14 fs), the interpulse delay
rror must be measured and maintained to within 25 at-
oseconds (as), corresponding to a delay of 7.5 nm. Re-
ently, the shortest isolated pulses ever published [2]
ere measured using a modified SPIDER (modified to
mplify the chirped pulses) with a shear of �=2�
4.11 THz, which implies a tolerance of about 21 as or

.3 nm.

. Sources of Delay Error
here are several avenues through which unaccounted for

nterpulse delays can arise in practice with a standard
PIDER setup. It is our hope that by enumerating them,
esearchers can mitigate their effects simply by keeping
ware of them during the construction and operation of a
PIDER apparatus.
1. Delay calibration. The most obvious source of delay

rror is simple error in the calibration measurement. In
ur example, a relative precision measurement of 0.025%
s required over 4 orders of magnitude. This is not exactly
rivial but certainly achievable using interferometric
eans. As pointed out by Dorrer in [16], however, errors

n the calibration of the spectrometer will translate into
rrors in the effective � used. Thus, the spectrometer used
n the measurement must be free of relative errors (over
he pulse bandwidth) to within the same precision unless
he errors can be canceled out by self-calibration (see be-
ow).

2. Thermal drift. A perhaps more worrisome source of
elay error is thermal drift in the setup over time. Taking,
or instance, the thermal expansion coefficient of alumi-
um �2.5	10−5� and considering a relatively small Mich-
lson interferometer with arm lengths of 2.5 cm, a tem-
erature differential of 0.006°C between the two arms
ill cause a problematic change in delay. Uniform tem-
erature shifts should not pose a problem; an interferom-
ter of any size will be able to withstand a uniform tem-
erature shift of up to 5°C before a noticeable delay
ccurs.

3. Alignment drift. Another source of delay is alignment
rift of the incoming laser beam. Any misalignment in the
eam will change the delay by � times the cosine of the
ngle error. Assuming perfect alignment to begin with,
his means that 15 mrad of change in laser pointing will
ause noticeable errors for a single-cycle pulse. This is not
n issue for passive stability of the laser but suggests that
ny tuning of the laser itself will require a recalibration of
he SPIDER for few-cycle pulses.

4. Unmeasured path difference. Calibrating the inter-
ulse delay often involves changing the experimental con-
guration somewhat [such as rotating the nonlinear crys-
al to produce a type I second-harmonic generation
SHG)]. Thus, care must be taken such that the measured
elay is identical to the delay actually used. For example,
f the SHG interference fringe is to be used to calibrate
ut the delay phase, it is even more important that the
otal distance traveled by the beam not change from the
alibration configuration to the measurement configura-
ion. This could be a potential issue with noncollinear ar-
angements, where the SHG geometry will be fundamen-
ally different than that used for the sum-frequency
eneration (SFG) employed during the actual measure-
ent. Assuming the two pulse copies are only known to be

ollinear to within 1 mrad, changing the total propagation
ength by more than 2 cm would put the unknown delay
ut of tolerance for a single-cycle pulse.

. Avoiding Delay Error
he most obvious lesson from the preceeding is that for a

ew-cycle pulse characterization with standard SPIDER,
new calibration should be performed immediately pre-

eding each measurement to avoid issues of delay stabil-
ty, leaving only the matter of delay measurement.

Fortunately, the issue of the delay calibration becoming
nmeshed with the spectrometer calibration has been pre-
iously addressed. In [16], Dorrer shows that if the delay
s calibrated using the interference of the individual sec-
nd harmonic of each pulse copy using the same spec-
rometer, which will be used for the SPIDER measure-
ent, then any spectrometer error will cancel out. When
aking measurements of few-cycle pulses using a stan-

ard SPIDER, it is thus imperative that the delay phase
e removed in such a self-calibrated way. Otherwise, the
elay calibration sensitivity translates into the more dif-
cult issue of calibrating the spectrometer to within at

east 4 orders of magnitude relative precision and mea-
uring a fringe period to the same degree. One potential
ifficulty with this is that the SHG signals must cover the
ame bandwidth as the sheared upconverted signals.
iven the difference in phase matching between the SHG
nd SFG signals, this could present a difficulty and may
xplain why a self-calibrating SPIDER measurement has
ot been demonstrated (to our knowledge) for a few-cycle
ulse.
Ideally, for the sake of avoiding any possibility of delay

rift, the calibration of the delay would be simultaneously
one with the measurement. Dorrer has developed a
ethod [17] to do just that by taking advantage of mul-

iple diffraction orders in a grating spectrometer. His
ethod is also self-calibrating in the sense described
erein, since both the calibration fringe at the fundamen-
al frequency and the SPIDER fringe at the upconverted
requency share the same wavelength range on the detec-
or. When standard SPIDER is used, and when the pulse
engths are not so short that dispersion is an issue, beam
plitting may be done using an etalon (as in [18]) to elimi-
ate issues of thermal sensitivity.
Last, the effects of beam pointing can be greatly miti-

ated by ensuring that the interferometer generating the
ulse copies is well-aligned such that pointing errors in-
roduce only second-order delay errors. Collinear SPIDER
mplementations, which rely on pulse shaping to create
he pulse copies [19], and those that use no delay (see
ubsection 6.C) have an advantage in this regard.

. NUMERICAL SIMULATIONS
n the derivation of Subsection 3.A, we relied on a
aussian analysis. However, the spectra in real lasers

end to have more complicated spectra that are often
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loser to rectangular than Gaussian. To test the validity
f our analytical results, we simulated the effect of a spu-
ious delay �� on a standard SPIDER measurement of a
ub-two-cycle pulse, using spectral data from an actual
i:sapphire laser.
We recently constructed a sub-two-cycle ring laser [20]

nd characterized it using two-dimensional spectral
hearing interferometry (2DSI) [21], the spectrum and
hase of which are shown for reference in Fig. 2. The
ower and phase spectrum are both rather oscillatory, ow-
ng to self-phase modulation (SPM) and extra reflections
rom the intracavity dispersion compensating mirrors. To
esolve the finest oscillations, a shear of 4.5 THz was re-
uired. Using the spectral phase measured by 2DSI, we
imulated the case where a standard SPIDER measure-
ent shows a very slightly chirped pulse of 4.94 fs
WHM. This is nearly as compressed as can be achieved
y a bulk material compensation. We then computed what
he actual pulse was, assuming a worst case interpulse
elay error due to several lengths of extra path length.
he envelopes were computed using a padded fast Fourier
ransform (FFT) of the complex spectrum, neglecting any
arrier offset (since we are only interested in the pulse en-
elope). The pulse rms width (over a 40 fs window) and
he FWHM were computed. The latter was calculated by
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ig. 2. Spectral power density and spectral phase for an actual
ub-two-cycle Ti:sapphire oscillator measured with 2DSI.
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ig. 3. Simulated pulse intensity as measured (solid curve) and
n truth (dashed and dashed–dotted curves) for the Ti:sapphire
aser whose spectra are shown in Fig. 2, assuming delay errors of
5 and 50 nm.
sing a Newton method to solve for the intersection of a
ubic spline with the 50% point. The resulting pulses are
hown in Fig. 3 with results tabulated in Table 1. (The
ms widths are much larger due to significant satellite
ulses and pedestal.)
Note that it only took an extra delay of 30 nm, or

00 as, to cause an error over 5%. Furthermore, this ex-
mple was actually conservative in that the measured
ulse was well-compressed and thus the nonlinear rela-
ion of the FWHM width to dispersion helped; the same
ata also imply that, had the actual pulse been 12.8 fs
ong, only 30 nm of spurious delay would have made it ap-
ear to be only 5.25 fs long. The point here is that if spec-
ral shearing is used to measure pulses that are inten-
ionally chirped (as in the case of pulses used in coherent
ontrol or those precompensated for material dispersion)
he measurement will be maximally sensitive such that
q. (8) is an accurate estimate.
To test the applicability of the analytical results from

ubsection 3.A, the relative error was simulated for a
ange of �� between 0 and 60 nm and compared with that
redicted by Eq. (9), taking the 1/e2 half-width �� to be
�	138 THz (approximately half of the full range of the
easured spectrum). The results are shown in Fig. 4. Af-

er enough dispersion, the FWHM behaves severely non-
inearly as subpulses grow past 50%. As anticipated by
he fact that this pulse is nearly transform limited as
easured, the linear scaling law overestimates the er-

ors. However, the error is not large, and it is generally
ithin a factor of 2 of the rms width. By comparison, the
xact 5% tolerance predicted by Eq. (10) is ��5%=81 nm, a
ignificant underestimate of that actually achieved. This
s because Eq. (10) assumes a smooth spectrum with no

Table 1. Summary of Simulated Ti:sapphire
Measurements

��

Measurements 15 nm/c 30 nm/c 60 nm/c
(fs) (fs) (fs) (fs)

WHM 4.94 5.032 5.26 12.8
ms 10.95 11.31 11.85 13.31

ig. 4. Measured pulse FWHM and rms widths of the pulse in
ig. 3 for a range of �� values compared with that predicted by
q. (8) using the half-width of the spectrum as ��.



h
t
c

6
M
W
m
s
s
t
t

A
A
t
s
t
u
m
l
c
t

s
t
t
a
t
t
T
g

t
fi
D
m
y
a
l
d
v
r
q
b
i

B
A
z
B
c
m
t
t
z
w
c
s
n
t

t
[
m
z
c

C
I
d
b
t
f
s
1
f
r
d

[
[
s
m
e

d
e
g
e
p
t
a

a
r
T
p
s
d
a
p
s
n
d

o
a
t
p
c
c

s
f
m
p
a
e
p
a
b

J. R. Birge and F. X. Kärtner Vol. 25, No. 6 /June 2008/J. Opt. Soc. Am. B A117
igh-order dispersion. Thus, if our laser is representative,
he sensitivity estimates given in Subsection 4.A may be
onservative for a single-cycle laser.

. ALTERNATIVE SPECTRAL SHEARING
ETHODS
e have already presented an outline of various ways to
itigate systematic errors related to spurious delays in

pectral shearing. For cases where the sensitivity or pulse
plitting of SPIDER cannot be tolerated, several alterna-
ive modes of spectral shearing have been developed in
he past several years that address these issues.

. Arbitrary Shear Methods
s previously discussed, the shear plays a crucial role in

he sensitivity of the measurement. This applies to any
pectral shearing method. Since the error �T is propor-
ional to the absolute uncertainty ��, and not the relative
ncertainty, the effect of calibration errors can be mini-
ized by choosing as small a � as possible while still al-

owing decoding of the fringe phase. Similarly, we want to
hoose as large an � as is consistent with the Nyquist cri-
erion of the spectral phase.

In standard SPIDER, unfortunately, the delay and
hear are linked through the dispersion used to produce
he monochromatic signal used for upconversion. In [8]
his relation is �=−��chirp� . It can be shown that the
mount of chirp needed to avoid artifacts is proportional
o 1/�2. However, the minimum requirement on � is ac-
ually quite complicated, and it is best found empirically.
hus, SPIDER does not, in general, offer sufficient de-
rees of freedom to optimally choose � and �.

However, there are several spectral shearing variants
hat do allow for independent selections of � and �. The
rst to do so was homodyne optical technique (HOT) SPI-
ER [22], which uses a homodyne technique to allow two
easurements against a local oscillator to be combined to

ield a normal SPIDER trace. While this method requires
second source that covers the upconversion wave-

engths, it also has the benefit of implicitly calibrating the
elay. However, this method may be of limited use for
ery short pulses because of the requirement for a sepa-
ate source with the same bandwidth but at twice the fre-
uency (the main source can also be used, but this would
e highly inefficient and against the point of homodyn-
ng).

. Zero-Dispersion Methods
nother approach that is capable of arbitrary shears is
ero-additional-phase (ZAP) SPIDER [23], developed by
aum et al., which introduced the idea of using dual
hirped pulses to upconvert a single short pulse. This
eans that the pulse to be measured never has to pass

hrough any material (other than the thin nonlinear crys-
al before it is upconverted), and hence this method adds
ero additional phase. To our knowledge, ZAP SPIDER
as the first demonstration of a self-referencing pulse

haracterization method that involved no added disper-
ion to the measured pulse. One potential issue is that the
oncollinear nature of ZAP SPIDER may present difficul-
ies in measuring �, at least in a self-calibrating way. Spa-
ially encoded arrangement (SEA) SPIDER [24] and 2DSI
21] also use two chirped pulses to avoid dispersion on the
easured pulse, and furthermore both set the delay to

ero. This brings us to another way to address the delay
alibration, avoid it altogether.

. Zero-Delay Methods
n the SPIDER interferogram, described in Eq. (1), the
ense fringe created by the delay phase �� allows for ro-
ust and unambiguous extraction of the ����−���−��
erm in which we are interested. However, this carrier
ringe need not be in the spectral domain; the phase
hown in the lower arm of the SPIDER schematic in Fig.
does not have to be a function of optical frequency. In

act, having any component of it in the spectral domain is
eally the origin of the entire calibration sensitivity issue
iscussed in this paper.
To this end, SEA SPIDER, developed by Kosik et al.

24] and demonstrated for sub-10 fs pulses by Wyatt et al.
25], is a version of SPIDER that creates a fringe in the
patial domain on an imaging spectrometer. A related
ethod, 2DSI developed by Birge et al. [21], uses a collin-

ar output and creates a fringe in the time domain.
In theory, these two methods should be immune to the

elay uncertainty errors discussed in this paper. How-
ver, in practice things may not be so simple. The error
iven in Eq. (8) is true for any spectral shearing method,
ven those with nominally zero delay between the two
ulse copies. Thus, any incidental path length difference
hat occurs will contribute to measurement errors in ex-
ctly the same way as with standard SPIDER.
In the case of SEA SPIDER, the spatial fringe is cre-

ted by sending the two upconverted pulses along sepa-
ate routes in a plane before meeting at the spectrometer.
his creates a spatially dependent delay in an axis per-
endicular to the axis over which the spectrum is re-
olved. Any deviation of these pulses out of the plane, or
elays incurred during their separate travels, will create
�� that must be either calibrated or avoided to the same
recision as for standard SPIDER. Furthermore, if the
pectrometer grating axis is rotated with respect to the
ominal spatial fringe, this will have the same effect as a
elay and may have to be calibrated.
In 2DSI, the fringe is produced by scanning the phase

f one of the chirped pulses, and a 2D fringe is produced
s a function of wavelength and this phase. The only
hing that matters in the 2DSI fringe is the absolute
hase of the fringe at a given wavelength, and thus no
alibration is needed. The cost of this is that 2DSI is in-
apable of single-shot measurements.

The two upconverted pulses in 2DSI originate from the
ame point and are collinear, so it should not be possible
or a delay to occur between the pulse copies. However,
isalignment and nonidealities in the imaging of the

ulses into the spectrometer could potentially introduce
n unwanted delay. Nonetheless, we have not seen any
vidence of this after several measurements of few-cycle
ulses [26,27]. In fact, we have recently directly measured
4.9 fs pulse from an oscillator and verified it against

oth an IAC and a simulation of the laser [20,15,28].
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. Multiple Shearing
inally, for those methods where multiple shears can be
roduced (and where changing the shear can be guaran-
eed to have no effect on the delay) the issue of delay cali-
ration can be eliminated by making two or more mea-
urements with different shear frequencies. By
ubtracting the phase of two spectral shearing measure-
ents made with different shears, the phase of the delay

rops out and one is essentially left with a SPIDER mea-
urement performed with the difference in the shears. A
ovel version of SPIDER that relies on this principle for a
ontinuum of shears was recently presented by Gorza et
l. [29].
As long as one of the measurements is done with a

hear that is consistent with the sampling theorem, the
ubsequent “calibration” measurements can be made with
uch larger shears, with the only requirement being that

hey are integer multiples of the shear used for the final
easurement.

. CONCLUSION
e have shown, through analysis and numerical simula-

ion, that as pulses approach the single-cycle limit, the
PIDER technique involves a calibration that is exceed-

ngly difficult. However, given the unique position of SPI-
ER as the only direct method of phase measurement,
nd given its inherent bandwidth advantages over other
ethods, it is worthwhile to search for mitigation strate-

ies. We conclude that for most cases, awareness of the
alibration sensitivity and careful adherence to the prin-
iple that calibrations must be done before every mea-
urement are sufficient to yield accurate results. For ex-
remely short pulses, however, it may be best to employ
ne of the variants of SPIDER discussed in Section 6 that
emove the delay calibration issue.
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