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Introduction

These notes were typeset live from the online 18.415 lectures, taught by David Karger.

Remark. Though the course was originally designed as ‘Advanced Algorithms,’ it is probably better

to refer to it as ‘Classical Algorithms.’

The course doesn’t go into any cutting-edge algorithms; rather, it provides us a toolkit for algorithms

that we are expected to know. We’ll mostly be looking at combinatorical problems, and introducing

various models to be able to understand them as well as their efficiency.

Most course information can be found at the following link: courses.csail.mit.edu/6.854.

The core of the course are long and challenging PSETs, and is complemented by a peer grading

assignment and a final project. Collaboration is encouraged and essential, though they should be

small groups of size 3. Academic integrity is critical to the course, though in recent years people

have always been caught.

Due to current conditions, there are many experimental tactics in regards to lectures. Lectures

will be recorded, though live lectures will allow for questions. Playing previous lectures may also

happen, in where we can stop and ask questions. Self-study / giant office hours during lecture may

also be possible. Problem set structure may also be changed, due to lack of facility of collaboration.

Collaborators will be changed throughout the semester. There will be sufficient ‘slack points’ for

late PSET submissions, but extensions will be granted as well if necessary.

6
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1 Lecture 1: Fibonacci Heaps

1.1 MST problem review

Fibonacci Heaps were developed by Fredman and Tarjan in 1985, and were done so specifically to

solve the Shortest Path/Minimum Spanning Tree problems. Previously (in 18.410) two algorithms

for solving MST problems were introduced: Prim’s algorithm and Kruskal’s algorithm. Both of

these algorithms are greedy algorithms, with Prim’s relying on building up the tree one by one,

adding the closest neighbor to the tree. On the other hand, Kruskal’s builds up the tree through

connecting different components, adding in the shortest useful edge that connects two components.

There is actually another, ‘simpler’ algorithm that is taught much less often to solve the MST

problem: Boruvka’s algorithm, where we contract a minimum edge off of each vertex. It is

somewhat similar to Kruskal’s algorithm. It starts off by putting every vertex in its own component.

At every iteration, the minimum weight edge out of every component, that connects to a different

component, is added to the MST. Since each iteration reduces the number of components by a

factor of ≥ 2, this algorithm takes O(E log V ) time.

When we implement Prim’s algorithm, we want to use a priority queue, where we are able to insert

items, find/delete the minimum element, and decreasing the key (updating edge vertices). Prim’s

algorithm is actually isomorphic to Dijkstra’s algorithm; the only difference is the cost function.

The key is the distance to the source in Dijkstra’s, while it is the distance to the root in Prim’s.

What is the cost of Prim’s algorithm, in terms of n vertices and m edges? Let’s make a quick table

for everything when we use a heap as a priority queue:

operation number of operations runtime per operation

insert items n O(log n)

find/delete minimum n O(log n)

decrease key m O(log n)

The total runtime is O((m + n) log n).

Note 1.1
Heaps should have been covered in standard undergraduate algorithms courses. As a review,

a heap is a tree that satisfies the heap property, which states that if P is a parent node of

C, then the key of P satisfies some relation compared to the key of C. In a max heap, that
relation is ≥; in a min heap, that relation is ≤ . A standard heap uses O(log n) amortized time

for most operations.
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1.2 Using d-heaps for MST

Since the decrease key operation is the most expensive operation of our algorithm, and so any

modification to decrease this runtime would help us. This brings us to our key principle of balancing,
which is necessary for our heap structure. So, instead of using a standard heap, we would instead

use a d-heap, which is a heap with d children per node, with height logd(n). This brings the

insert/decrease runtime down toO(logd n), while the delete min operation requires timeO(d logd n),

ultimately changing the runtime to O(m logd n + nd logd n).

Question 1.2. How do we minimize runtime?

Claim 1.3
If we set m logd n = nd logd n, then we will get a factor of 2 within the minimum.

Proof. Exercise.

Either way, setting them equal (m = nd), the runtime becomes O(m logm/n n). This doesn’t seem

like a big improvement, but in a dense graph, this actually makes it a linear time algorithm!

1.3 Introduction to Fibonacci Heaps

Can we do better? The answer is yes, with Fibonacci heaps.

“Fibonacci Heaps are an excellent demonstration of laziness. You should never work

unless you have to, since there is too much work to do. Similarly, you should always

procrastinate. If you start early, then you end up doing work that potentially may be

never needed."

-D. Karger

The core idea of data structures is to put off work until later. When you’re forced to work, make

it count, not only to answer the question, but also to simplify the structure itself. A good model is

to use an adversary, which tries to make you work, and we try to optimize and amortize our work

versus theirs, which we formalize with a potential function.

So, let’s analyze our ‘Fibonacci heap’ (the name will become clear at the end of the analysis).

How do we be lazy with regard to insertion? We can use a linked list, and we can push with O(1)

time in this way.

8



Joke 1.4. A more time efficient way to do this, is simply to say “ok," to a request for insertion.

This uses 0 time, but obviously poses a problem in that every subsequent non-insertion operation

will return the wrong answer.

How about delete min? We need to scan for the minimum, which takes O(n) time for n elements.

But amortized, this is only O(1) per inserted item! This is actually faster than the priority queue,

which takes O(n log n) time, since the heap property has to be maintained. But obviously we have

a problem if a bunch of delete min operations are asked in succession, in where it will take O(n2)

time asymptotically.

So instead, we’ll go back to our original principle of trying to simplify the data structure. Each

comparison that we make in finding the minimum element also reveals to us information about

smaller/larger elements. We can use this information to simplify runtime - simply ignore the larger

elements when looking for the minimum element. To implement this, we’ll make a tree in where we

compare every element, and the larger element in the comparison is made the child of the smaller

element. This ends up making a heap-ordered tree (HoT) (also known as a caterpillar)! Now,

the minimum is at the root after creating this tree structure. After the first delete-min operation,

only roots of subtrees are possible candidates for the next delete-min operation! This is a big time

improvement, making the runtime proportional to the maximum number of children of the root.

But this is exactly the problem - our data structure is too inefficient when the root has many

children. If we start comparing the elements starting with the minimum, then we just get a tree of

height 2, with everything connected to the root minimum. After deleting the minimum node, then

this just turns into n − 1 isolated elements, and so we lose all the information that we obtained

regarding comparisons. Our previous approach put too much information on the minimum, which

is lost after deletion, and hence we want to limit the number of children/node. To solve this, we

can instead arrange a competition, in bracket style (similar to a binary tree). In this scheme, we

compare random pairs of elements, then compare the smaller ones of those pairs, then compare

the smaller ones of those, and so on and so forth. After rearranging everything then, we end up

getting a tree known as a binomial tree. This is because there are
(

log2(n)
k

)
elements at every tree

depth k , where n is the number of nodes. This also implies that deleting the minimum will only

produce
(

log2(n)
1

)
= log2(n) subtrees.

This binomial tree structure still does not solve all our problems, since insertions and delete-mins

can be interleaved, and we can’t run this bracket system each time. To get around this, we’ll

instead record each node’s degree, which is equal to the number of children that a node has, or

in other words, which ‘tournament round’ it is in (for example, a node that lost the first ‘round’

would have a degree of zero, while a node that won two rounds would have degree 2).

9



After delete-min is run, we will end up with a number of new HoTs, equal to the degree of the

previous minimum. These will all be added to our collection of HoTs. Afterwards, we’ll only face

off HoTs whose roots have the same degrees (known as the union by rank heuristic, similar to

the union-find data structure). To consolidate them through this heuristic, we will append HoTs

of degree d with each other, by connecting the root of one tree to be a child of the other. This

reduces two HoTs of degree d to one of degree d + 1. This process starts from the HoTs with

root degree 0, in order to end up with only one HoT of each root degree. By a similar analysis of

the union-by-rank heuristic as the one in union find, the maximum degree we have is O(log n) and

hence the total number of HoTs we have is also O(log n). This collection of HoTs is what we know

as the Fibonacci heap.

If we combine this with lazy insert, we’ll have insertion just add a degree 0 HoT to the collection

instead. On a delete-min, we will first delete the minimum element, and then put its children into

the collection of HoTs. We then consolidate to find the next minimum element, simultaneously

shrinking down to only having O(log n) HoTs.

Question 1.5. What is the runtime of the delete-min operation?

Theorem 1.6
In the worst case, the runtime of the Fibonacci heap delete-min is just O(n), which happens

when there are n inserts (making n degree 0 HoTs) followed by a delete-min. This operation

is amortized O(1) due to the insertions, but also allows for restructuring of the entire data

structure to be a Fibonacci heap. Afterwards, the runtime for delete-min is proportional to the

number of HoTs we have, plus the number of new trees created by deleting the root, which is

O(log n).

Proof. At the beginning, when there are n HoTs of degree 0, each node needs to be compared

to build up the original Fibonacci heap, take O(n) time. Afterwards, due to the structure of the

Fibonacci heap, a deletion only requires consolidation of the remaining HoTs. There are at most

O(log n) HoTs originally, plus the number of children we have (bounded by the binomial heap

structure as O(log n), and so consolidation will take at most that much time.

To formalize this, we can go through an amortized analysis with a potential function.
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Note 1.7
As a review, in the potential method for amortized analysis, we have that

ai = ri + Φ(i)−Φ(i − 1)

where Φ(i) is our potential function, ri is the real cost, and ai is the amortized cost.

We have that
∑
ai =

∑
ri + Φ(final)−Φ(0) by telescoping. If Φ(final) ≥ Φ(0) then the sum of

amortized costs
∑
ai is greater than or equal to the sum of the real costs

∑
ri , and hence the

amortized cost becomes a upper bound on the actual cost. If the potential is always positive

and Φ(0) = 0 then this condition is automatically satisfied.

For our case here, we can let Φ(i) simply be equal to the number of HoTs we have. Then, the

amortized cost ai will equal the final number of HoTs we have, plus the number of children that we

make O(log n). Since the number of HoTs after a delete-min operation is log n, the final amortized

cost is simply O(log n)!!!

Hence, such a data structure provides O(1) insertion and O(log n) amortized delete-min. But this

is not good enough for us, since we’re still missing the decrease-key operation. This will be covered

in depth in the next lecture, but the algorithm is simple - just cut off that subtree and make it a

new HoT. The problem is that we can make trees that are not binomial trees, which is a problem

due to their size (the number of children).

Remark 1.8. Usually, the location of the minimum element is also marked in the delete-min oper-

ation, such that accessing the minimum will take O(1) time rather than the O(log n) time required

to look through the tree roots we have in Fibonacci heaps.
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2 Lecture 2: Fibonacci Heaps, Persistent Data Structs

2.1 Fibonacci Heaps Continued

We start off today with a review of how we defined the Fibonacci tree, that we defined last time

with our collection of HoTs. We had the potential function being equal to the number of trees

we had, and since the number of trees is O(log n), our amortized cost for delete-min is O(log n).

Finally, we closed off by mentioning the decrease-key operation, which was simply to cut off the

tree that decreases-key. However, this has the problem that if a node loses children over and over

again, we no longer have our log n) bound.

Remark 2.1. Prof. Karger mentions the movie “Saving Private Ryan,” in where four children went

to fight in war. The family ultimately decided that it was best to rescue the last of the children,

since it would be horrible if a family lost all their children.

And so we can do the same with the Fibonacci tree, to fix our decrease-key operation. “If a node

loses more than 1 child, then we will take it out of the line of fire” (i.e. make it a root node and

cut it off as well) To implement this, we will add a “mark bit” to each tree that represents if a child

has already been cut from a node. Then, a parent of the key which decrease-key is run on will be

cut from the tree if it was marked. This has the potential to cause a cascading cut, in where we

keep cutting until we find a clear mark bit.

Theorem 2.2
We will have a nice data structure with O(1) insertion and decrease-key and O(log n) for delete-

min, if we can prove the following:

1. Show that cascading cuts are “free” amortized.

2. Show that the tree size will be exponential in the degree of the root. The base of the

exponent doesn’t matter, since a size of n will correspond to a degree of O(logb n) =

O(log n).

Proof. Claim 1 To show the cascading cuts are free, we will make a potential function for the

marks, namely Φ = number of marked nodes, in all our trees in the data structure. Now, what is

the cost of the decrease-key operation? The cost is just simply equal to the number of cut nodes

c , plus O(1) for ‘housekeeping operations.’ The number of marked nodes decreases by c − 1, plus

the one new node we mark, for a total change in potential of 2− c. This means that the amortized

cost is constant O(1)!

But this has a problem. The potential function differs from the previous potential function, and
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that’s cheating, since we’re making a bunch of new HoTs in our Fibonacci heap as well. We need

to reconcile these potentials, and so we define the final potential to be Φ = (number of HoTs) +
2·(mark bits). The reason we have a factor of two in front is so we have one unit of work for the

cascading cut itself, and the other unit of work to account for the increase in the number of HoTs.

Going through with this analysis, we will then see that decrease-key will have amortized O(1) time.

Claim 2 To show a bound in the tree size, we’ll consider a node x and its current children

y1, y2, · · · , yk , where each yi is ordered by order of addition.

Lemma 2.3
yi has degree ≥ i − 2

Proof. Consider the arbitrary child yi . It was added after children y1, y2, · · · , yi−1.When yi is added,

then x itself had degree ≥ i − 1 since the other yi are children. Since we only consolidate nodes

of same degree, then the degree of yi ≥ i − 1 when it was added. Because yi is still in the tree,

then due to our rule for cutting, at most one child could have been cut from yi . This means that

the degree is ≥ i − 2.

Now that we have this bound on degree, we can figure out how big the tree itself is. If we let sk
be the minimum number of descendants (including children) of any subtree with a degree k root,

then we aim to find a bound on sk itself. We can easily find s0 = 1 and s1 = 2. We further have

that sk ≥
∑k

i=2 si−2 =
∑k−2

i=0 sk .

Solving this at inequality at equality, we get that sk − sk−1 = sk−2, and we see that rearranging it

shows that sk satisfies the Fibonacci recurrence! So sk = O(φk) and hence is exponential in the

degree of the tree.

So, we see that fib-heaps are pretty useful. We have O(1) insertion and decrease-key, and O(log n)

delete-min. We also have O(1) merging. This is actually optimal, since otherwise we could get a

comparison sort with time Ω(n log n), which is impossible.

Is it practical? Well, the constants of the operations aren’t bad, and sometimes they outperform

binary heaps. However, fib heaps use pointers to store everything, rather than arrays (in implicit
heaps). Additionally, CPUs also use caching, and memory-accesses are free in arrays rather than

all over the place pointers, and so we lose caching efficiency if we stick with Fibonacci heaps.
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2.2 Applications of Fibonacci Heaps

Recall that Fibonacci heaps were originally designed to solve the Prim/Dijkstra shortest path-

finding/minimum-spanning tree problems, and a regular heap could get time efficiency O(m log n).

With a Fibonacci heap, the decrease-key operations are all O(1), and so the runtime improves to

O(m + n log n), and this is linear except when the graph is really sparse.

Can we do better, even for sparse graphs, trying to get rid of the logarithmic term? Let’s look at

MSTs to start with - they’re still slow with Fibonacci heaps, since n delete-mins from a size n heap

will take O(n log n) time. To get around this, we should try to keep the heap size small, say less

than a constant k .

We’ll start of with a standard Prim’s algorithm: start from a node, and insert neighbors, delete min

from the heap, etc, until the heap size hits k. The heap itself contains the neighbors of the current

tree, and we will keep running the algorithm until we have ≥ k potential neighbors. To actually

find the MST then, we will go to another node that has not yet been added to the MST, and start

running Prim’s on that one, ending with the same condition or when we connect to a previously

established tree.

After one iteration of this procedure, we end up with many subtrees that have yet to be connected

to each other. This takes O(m+ t log k) time (through a Fib heap) where t is the number of nodes

we have by standard Prim’s algorithm. To combine all the trees, we can contract each created

subtree to a node (in O(m) time), and restart the MST algorithm with a new k (this will be known

as one phase). Then, if we make t log k = m =⇒ k = 2m/t , we get linear time in m per phase.

Now, how does these constants change at the conclusion of every phase? Since each contracted

node will have ≥ k incident edges, the number of vertices at the after contraction at the end of

every phase will be ≤ m
k
. This means that the number of nodes in the next phase is going to be

≤ m
k
, and so to achieve linear time per phase, the new k of the next phase can be 2m/t

′ ≥ 2k .

Initially, we start with t = n by definition, and with k = max
(
m
n
, 2
)
(so we don’t start with a crazy

small k). What is our number of phases? Well, since by definition we will have an MST if k = n,

then we can simply look at the time it takes for k to reach n. With every phase, the number k gets

exponentially larger. We call this number of phases β(m, n) = min{i | log
(i)
2 (n) ≤ k0 = m/n}, and

it is easy to show that β(m, n) ≤ log∗(n). log∗(N) ≈ 8. where N is the number of atoms in the

universe. This is essentially linear.
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2.2.1 Further Improvements

But Theoreticians are never satisfied. This bound was improved to m · logβ(m, n) using edge

bundles. This was further improved by Chazelle to O(mα(n) logα(n)) where α(n) is the inverse

Ackermann Function, where α(N) ≈ 4.

We can get even better with randomization, into time O(m). It is unknown if this is able to be solved

in linear time yet, but surprisingly (!!!) we can actually get an optimal deterministic algorithm for

solving MSTs with unknown runtime. (proof by Pettie and Ramachandran: brute force all algorithms

for tiny spanning trees, choose the minimum, and the exhaustive search for best algorithm takes

linear time. Then generalize to larger trees.)

2.3 Introduction to Persistent Data Structures

Tarjan is basically the God of data structures. He is also one of the best writers of theory papers. He

and Sarnak also introduced the idea of persistent data structures. The general idea is to augment

the data structure to support operations in past versions as well. (for example, to answer questions

like: “what was the min yesterday?") The ability to query the requisite task is known as partial
persistence, but they even provide an ability to “insert a new key in the heap yesterday” and ask

“what was the min 3 hours ago?” incorporating the insertion of the key yesterday as well. This is

basically time travel, called full persistence, where we can query and modify the past.

They came up with a way to do this, without regard to the type of data structure that is used. Any

structure that is pointer based, which has fixed-size nodes whose fields hold values and pointers to

other nodes, can be augmented. (Glaring Exception: no arrays)

Now, the idea is to wrap the data structure and the primitive operations on it. When modifying,

we change the value or pointer in a node itself. Thus, if we can figure out how to make a node

persistent, then we can extend this to the entire data structure. Changing each field to an array

of time/value pairs (the fat-node method) allows us to do this. We pay a O(1) space cost per

insertion. The runtime of insertion is still O(1), however queries become longer, to O(log t) time

with binary search. This is a multiplicative slowdown, unacceptable for theoreticians, which we will

resolve in the next lecture.
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3 Lecture 3: Persistent Data Structs, Splay Trees

3.1 Persistent Data Structures Continued

Recall from the last lecture that data structures are mostly pointer based structures, which are

collections of O(1) size nodes that contain O(1) scalar values, as well as O(1) pointers to other

nodes. We want to make what we call atomic operations, query and modify operations, persistent;

doing this for every node makes the whole data structure persistent. We previously also talked

about the fat-node method, which was unacceptable due to the multiplicative O(log t) slowdown

for lookup (need to do this for every node).

To start off in looking at how we can implement this, let’s consider a binary search tree, when we

try to add a node to it. If we just overwrite the entire binary tree, then we lose persistence, even

partial persistence. A brute force approach would result in storing a copy of the binary tree at every

time step, the copy method, which is unfortunately quite slow. The lookup time is O(log t), where

this t is now the total number of modifications we ever made. But the good thing is that this is

an additive log t term, since we only need to find the root (rather than for every node), and then

we have a data structure to work with. The problem with this approach is that a modify operation

is O(n) and also takes O(n) space, which is highly unacceptable.

How do we get around this? The key idea is that almost the whole tree is the same after each

operation. This means that if we just keep track of changes, rather than the whole tree at each

time t, then we can improve our modify operation. We copy the new node, as well as everything

that changed because of this addition. The parent of the new node changes (it now has a pointer to

the new root), and the parent of that also changes (since its child now has an additional pointer),

and so on. So, if we make new nodes corresponding to the ones that need to be modified, with

pointers to the old unmodified nodes, then we maintain persistency with less time and space (still

unbounded: O(number of ancestors)). This method is known as path copying.

Tarjan found a way to combine the path-copying O(log t) additive slowdown with the O(1) modi-

fication in fat-nodes - to consider “plump nodes” instead. The idea is that fat nodes are bad, and

so if it’s too fat, then we do path-copy instead.

We’ll only go over this idea for tree structures, but it is not too hard to generalize to all pointer-

based data structures (one can see this in the original Tarjan paper). In each node, we will have one

extra timestamped field. We’ll use it to store the timestamp and action of the first modification

(even changes in pointers) of the node, and on the second modification we make a copy of this

node (with a new empty extra field). Once the second modification is made, then we will change

the time-stamped field of the parent to store the fact that its child changed to the new copied node
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at that time t. Thus, we will have two options when we traverse to this node, depending on the

time t - we will either point to the original child, or to the new node (this information is completely

stored in the extra field, so no information is lost). Then, at a later time, when we want to modify

that node, we will simply modify the new copy instead.

How do we implement the lookup operation? We can start at the root of the tree, and check if

the field has a timestamp of modification before or after time t. If it was, then we go to the new

node as specified by the extra field. Otherwise, we go to the previous node. This is the operation

of looking up a particular node, and since we only add a constant amount of operations, this is a

O(1) slowdown. But there is a slight problem, because we still need an array of roots ordered by

time. Every time the root is modified, then there is no parent that can store that change, and so

we need to make a copy of the node itself. As a result, there is an additive O(log t) slowdown since

we need to find the appropriate root to start with.

What about the new space that this uses? Let’s do an amortized analysis, with the potential being

equal to the number of live nodes that have a non-empty extra field. This is only a problem for

nodes that we may still modify, and we aren’t going to modify nodes back in time. Therefore, we

define a live node to simply be nodes reachable from the current root.

Let’s calculate the amortized space cost for an atomic modification. If we modify a node and the

extra field is empty, then we can simply do this with a constant space increase, and the potential

increases by 1. If we modify a node with a non-empty extra field, then we copy it, point the parent

to the new copy, and then the old node becomes ’dead,’ resulting in a decrease of 1 in the potential.

Then, since the copy operation increases by O(1) space but the potential decreases by 1, then this

is a free operation! These costs are going to cascade because it ends once we get to a node with

an empty field, so we just get an overall space cost of O(1) for modification.

3.2 The Planar Point Location Problem

This is a problem in computational geometry, which is a field we will return to later in the course,

but it can be solved with a persistent data structure approach!

Definition 3.1
Computational geometry involves problems dealing with points and lines in the plane or in

space, and ignores the algebra for computation. Instead, we focus on geometrical concepts,

and have operations such as checking for line intersections, checking if points are on lines or

not, and the length of the segment itself, as O(1) primitive operations.
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Definition 3.2
The Planar Point Location problem is where we have a planar subdivision, which is a splitting

of the plane into a bunch of polygons. The question is to determine which polygon is a certain

query point in. Line segments can emanate from any vertex, and can also end at any vertex,

and the input size is in n, the number of segments.

The 1D version is simple - it is simply to ask which segment a query point itself lies on. We can

easily solve this with binary search, and a binary search with sorted list of the endpoints can easily

answer each query in O(log n) time, with O(n log n) time and O(n) space to build.

A trick that’s often applied in computational geometry is dimensionality reduction, where we

try to change a 2D problem into a 1D problem. We’ll use it here. If we project all the vertices

of polygonal intersection onto a line, then we know which “slab” (x-coordinate region) the query

point is in. We can then binary-search the segments, asking if the query point is above or below a

specific line segment. The reason that the slabs are important is that it removes the ambiguity of

above/below, and restricting it to just one slab results in no ambiguity and a total ordering.

What is the cost of this? We have two costs - a build cost and a query cost. For the query cost,

we can find out which slab we are in in O(log n). After that, we can find the y region that we are

in also in O(log n). Therefore, we can find the query cost in O(log n) with two binary searches in

2D. This generalizes to n dimensions easily, becoming O(d log n).

For the build cost, let’s first consider the space cost. The number of slabs is proportional to the

number of the vertices, and for every slab we need to keep track of the ordering of the segments,

resulting in a total space cost proportional to O(vertices × segments). And this can easily become

O(n2), which is bad - this also means that our runtime is at least O(n2), unacceptable.

To solve this, we’ll use persistent data structures instead. Instead of considering the standard xy

plane, we’ll instead consider the x axis as a measure of time t, and keep track of a vertical line that

moves from left to right (this is known as the sweep line method). Our question is to find out

what the sweep line sees as time progresses. It sees intersections with some line segments, and

these intersections do change coordinates as the sweep line moves to the right. But we don’t care

about numbers, so we don’t need to keep track of them. The only thing that actually needs to be

taken care of are changes in the ordering of the segments, as well as the appearing/disappearing

of segments themselves. Segments can only appear/disappear/cross at vertices themselves, and

so the only topological changes we need to keep track of are precisely at the x coordinates of the

vertices! Each change is relatively small, and so we can keep a persistent binary search tree on the

segments in the sweep line.
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These modifications of addition/deletion/crossing are all cheap with persistent data structures. We

can use a balanced red-black tree, or more generally, any balanced binary search tree (BST). Each

update to the persistent BST will only take O(log n) time (as is standard for a red/black tree), and

a O(log n) space change (due to data structure persistency). As we sweep the line across the data

structure, we will at most be doing O(segments) = O(n) changes, and so all our insertions and

deletions will just be O(n log n) time and space!

With this implementation, when we get a query, we can just query a slab by looking at the by ‘time,’

the x coordinate. Lookup is going to be O(log n) as discussed earlier with persistent data structures,

and so we have the same query cost and the same building time cost as the 1D case. Space is still

O(n log n), but we can refine this by looking at how red-black trees work. They modify O(log n)

bits at each operation, but only do one rotation. We don’t care about the historical red-black

bits, since they don’t matter for anything except for rebalancing. We’ll only persist the rotations,

and since there’s only one per insert/delete operation, this improves the space usage to O(1) per

operation. Therefore, the space used by our red-black tree without persistently storing the color

bits is simply O(n), exactly equal to the 1D case. These time and space bounds are optimal!

3.3 Introduction to Splay Trees

Splay Trees, invented by Sleator and of course Tarjan, are another type of balanced binary search

tree, which maintain O(log n) operations. There have been many balanced BSTs developed: red-

black, AVL, scapegoat, 2-3 trees, etc. But all of these previous trees are kind of annoying, since you

have the hassle of tracking extra information. Sleator and Tarjan developed self-adjusting trees,

which don’t store any balance info, and are “absolutely astounding”.

These self adjusting BSTs don’t have any balance info, and are sometimes not even balanced, but

nevertheless take O(log n) amortized time. They even outperform regular BSTs in formalizable

ways, and contain more operations than a regular BST. They can be merged and split in O(log n),

and other more complicated operations can even be free.

The drawback of splay trees? A much more sophisticated analysis, involving “cleverness and black

magic.” The idea is to use a potential function to measure imbalance, and you need many insertions

to cause imbalance. However, searches will decrease the potential, and so are paid for even if there

is an imbalance. We’ll elaborate on this for the next lecture.
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4 Lecture 4: Splay Trees

We know how binary trees work - they will have all operations proportional to the depth, which

is usually O(log n) but can be as much as O(n), unless we use some sort of balancing. But splay

trees are special. They don’t store any auxillary information, and yet are still able to be provably

balanced. We’ll have a potential function Φ which measures how unbalanced the tree is, in order

to make any operation amortized O(log n). Splay trees, like the data structures we’ve seen so far,

are efficient because they are lazy.

4.1 Heuristics of Splay Trees

One of the primary heuristics in making the splay tree is by shortening long paths. Long paths take

a long time to traverse and have a large potential, and shortening them reduces the potential and

pays for the traversal itself. When we insert, the path increases, and the potential also increases

such that we have enough to pay for a search later.

Another heuristic is to rebalance with rotations. We’ll say that a tree is balanced if the left and

right subtrees of the root roughly have the same size. During a search, if the tree is balanced, then

searches are fast and searches can be O(log n) time. In general, if the subtree is less than some

constant factor of its parents’ size, then the tree is balanced.

4.2 Solving the Balancing Problem

The problem with trees appears when we have fat children. Then, when we descend, a search

through a fat child takes significant time, so we’ll say that fat children have a large potential.

Thus, to reduce the time of operations, we should eliminate fat children. One proposal to do this is

to rebalance through rotations, but this doesn’t work, since rotations may still leave behind a long

path.

What does work, however, is a double rotation. These double rotations will take different cases,

based on the relative positions of the wanted node, their parent, and their grandparent. We’ll define

a zig-zag operation of a node x to take place if x is the right child of its parent y , which is the

left child of the grandparent z . The zig-zag operation will involve first rotating x with y , and then

rotating x with z . The transformation is shown below:
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We’ll also define a zig-zig operation to take place if x is the left child of its parent y , which is

the left child of the grandparent z . Here, we’ll first perform a rotation between the y and z , and

then x and the now-parent z . Finally, a zag-zag operation is the symmetric variant of the zig-zig

operation, except with everything reversed, and takes place when x is the right child of y , which is

the right child of z . The zig-zig operation is shown below:

z
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A y

B z

C D

Where did the intuition for thinking double rotations may work come from? Prof. Karger doesn’t

really know himself:

“This is what separates the truly great. A few lightning strikes of insight are enough to

get you into the textbooks.”

4.3 Implementation and Analysis of Operations

We now define the splay operation of a node x to effect a double rotation of the node up the tree,

until it becomes the root node. If x eventually becomes the root’s child, then we just do a single

rotation at the end.

With the splay operation, we define the search operation to simply find the node x with standard

techniques. Afterwards, we splay x, bringing it to the root. This is O(log n).
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For our analysis, we will assume that each item x has a weight wx , which is not intrinsic to the

data structure, but will help with the analysis. For now, we’ll set all the weights wx to be equal

to 1, and we’ll additionally define the size function s(x) of a node x to give us the total weight of

the subtrees of x. For example, when all the weights wx are equal to 1, the size function simply

counts the number of nodes of the subtrees rooted at x. We will define the rank function r(x) to

be log2 s(x), which intuitively gives us the ‘height’ of the splay tree. Finally, we define the potential

Φ to be the sum of all ranks of all the nodes in the tree. Intuitively, Φ highly penalizes large deep

subtrees, and rotations/splays to raise the subtree itself will help us raise the potential.

We will now introduce a key lemma in our analysis:

Lemma 4.1 (Access Lemma)

The amortized time to splay a node x given the root t is equal to

3(r(t)− r(x)) + 1 = O(log(s(t)/s(x))),

where the functions r and s refer to the initial positions of x and t.We will also define a function

r ′(x) to refer to the rank of x after splaying, and so the Access Lemma can also be written as

follows:

3(r ′(x)− r(x)) + 1 = O(r ′(x)− r(x))

Proof. If we can prove that the amortized cost is 3(r ′(x)− r(x)) for a double rotation, then we can

simply telescope our sum to prove the key lemma. So, we will focus on a single double rotation.

The +1 in the lemma itself comes from the potential single rotation we may need to do at the end.

When we do a zig-zig rotation, the real cost is 2 rotations. The potential of all the nodes not being

rotated doesn’t change. Thus, the only potential changes we have to consider are that of x, y , z.

The change in potential is ∆Φ = (r ′(x) − r(x)) + (r ′(y) − r(y)) + (r ′(z) − r(z)). The rank of x

increases while the rank of z decreases, and the potential of y can either increase or decrease.

Intuitively, if r ′(x)� r(x), then the cost of rotation is easily paid. If r ′(x) ≈ r(x), then the cost of

rotation is not paid with x ’s rotation, but we do have the additional information that subtree A is

pretty fat, which means that the decrease in y and z potentials can be used to pay for the rotation.

To formalize this, we know that r ′(x) = r(z) by definition, and likewise r ′(y) < r ′(x) and r(y) <

r(x). The actual cost is as follows:

cost = 2 + ∆Φ ≤ 2(r ′(z)− r(x)) + (r ′(x)− r(x)).
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We will prove our lemma then if

2 + (r ′(z)− r(x)) ≤ 2(r ′(x)− r(x))⇐⇒ log2

(
s ′(z)

s ′(x)

)
+ log2

(
s(x)

s ′(x)

)
≤ −2

Letting |S| denote s(S), looking at the effect of rotation, we have that

s ′(z) + s(x) = |A|+ |B|+ |C|+ |D| < s ′(x) = |A|+ |B|+ |C|+ |D|+ 2.

Since the maximum value of the function log2(x) + log2(1− x) is −2, after substitution, we have

that

log2

(
s ′(z)

s ′(x)

)
+log2

(
s(x)

s ′(x)

)
≤ log2

(
|C|+ |D|

|A|+ |B|+ |C|+ |D|

)
+log2

(
|A|+ |B|

|A|+ |B|+ |C|+ |D|

)
≤ −2

which proves the Access Lemma for a zig-zig rotation.

The zig-zag case is left as an exercise.

With this lemma, we can prove our desired result:

Corollary 4.2 (Balance Theorem)

A splay operation takes amortized time O(log n)

Proof. If all the weights are equal to 1, we know that r ′(x) = log n. By the Access Lemma, the

splay time is then O(log n). Since the splay time is doing much more work than a find operation,

then the entire search operation is O(log n).

4.4 Results with the Access Lemma

When the weights are not all equal to 1, we can try to bound the potential in order to derive more

results about the splay tree. The actual cost is the amortized cost minus the change in potential,

which supposing we have m operations, is O(m log n)−∆Φ. How large is this change in potential?

We can derive a few simple bounds. Letting the weights be wx and having total sum W, we have

that Φ(0) ≤ n logW, which corresponds to the case where everything is a root. Likewise, we can

also get a nice lower bound of Φ(m) ≥
∑

logwx , where everything is a leaf. Thus, Φ(0)−Φ(m),

the extra amortized cost, is
∑

log W
wx
. Notice that the terms in the summation log W

wx
are upper

bounded by the time it takes to splay the node x ! This tells us that the change in potential for the

amortized cost is negligible and the real cost of splaying is approximately equal to the amortized

cost.
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With the access lemma, we can prove many results, for example, the static optimality theorem:

Example 4.3
Suppose we perform m operations, such that item x is accessed with probability px . To optimize

the time of performing the operations, the best thing to do is to put the most-accessed items

near the root. Since each level k has 2k spots, any item with px ≥ 2−k can go to level k. Thus,

the overall search cost is m
∑
−px log2 px = mS, where S = −

∑
px log2 px is the entropy.

Theorem 4.4 (Static Optimality Theorem)

Splay trees achieve this search cost as well, without knowing the individual px .

Proof. Let the weights wx = px . By the access lemma, the cost of each element access is log2
W
wx

=

log 1
px
. The conclusion follows.

We will define a static finger, which comes from the idea of locality of reference. The idea is that

nearby data will most likely be accessed, and so we may start a search from a ‘finger’ rather than

a root. For certain types of accesses, starting from a ‘finger’ rather than the root is much faster,

and splay trees do just as well. Additionally, even if the finger is dynamic and can move around,

the splay tree also matches the time complexity.

What can’t we do with splay trees? Well, we think that they’re actually always optimal - there is

a long standing unresolved conjecture about them:

Conjecture 4.5 (Dynamic Optimality Conjecture)

Define a binary search tree strategy to be one in which we can do whatever operations we

want in a binary tree, with complete knowledge of node requests. No matter what binary search

tree strategy we have, splay trees will match the performance. No counterexamples have been

found so far.

Joke 4.6. This conjecture will be a homework problem; anyone who solves it gets an A.

Remark 4.7. The current state of the art towards the conjecture is from Demaine (another MIT

prof), who introduced Tango Trees, which were provably shown to perform within O(log log n) of

the optimal binary search tree strategy.
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5 Lecture 5: Splay Updates, Buckets

5.1 Wrapping up Splay Trees

Recall that previously we showed that the find operation in splay trees was amortized O(log n) time

and we also got other bounds by changing the weights in our potential function. While we could just

use a standard insert/delete operation, this is unacceptable, since without a splay a linked-list-like

splay tree will have O(n) insertion. So, we can just extend this easily - for an insertion, we first

insert the element, then splay, for an amortized runtime of O(log n). However, since we inserted a

new item, this also leads to an increase in potential and our analysis has to be made much more

complicated. The analysis for delete is even worse, since we need to choose what exactly to splay.

Let’s try alternatives. Specifically, we’ll define the split and join operations as follows:

Definition 5.1
A split operation takes in a node as an argument, and returns two trees - one of which contains

the items with key ≤ x, and the other containing the items with key > x.

A converse operation, join, will take in two trees T, S such that T has all items with key less

than any element in S, and return their union.

To implement these two operations, it is much simpler than our previous idea. For a split, we

simply splay x (or its predecessor if x doesn’t exist), and then remove the right subtree, creating

two subtrees that satisfy the requisite conditions. The amortized time is O(log n), and the potential

obviously. For a join, we simply splay the minimum element of tree S to the root, and then joins

tree T as a child of the minimum element of S. The potential increases by O(log n) which is fine,

so the amortized cost is still O(log n).

Now that we have the split and join operations defined, we will implement insertion by simply calling

split(T, x), giving us subtrees A and B with A < B, then calling join(A, join(x, B)). For deletion,

we can first split(T,x), creating subtrees A→ x and B. Removing the element x and then joining

A and B effects deletion. Both take time O(log n)

When we implement splay trees in practice, we can use top-down splaying and to splay only on a

long path, to improve runtime by a constant factor. The decrease in time is actually due to memory

structures itself, since reading memory is much faster than writing memory. Another heuristic is to

stop splaying after a while, which works since splay trees keep frequently accessed elements on the

top. This heuristic is dangerous, however, if the probability distribution of inputs change.
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Note 5.2
Another usage of splay trees is actually as a compression algorithm. Suppose that you want to

compress a sequence of characters. We store them as a splay tree, but instead of sending a

character over the communication link, we send the path in the tree, and then splay the element

afterwards. The number of bits sent over the communication is equal to the search time, and

so this is a way to show an information-theoretic result with data structures.

5.2 Buckets and Indirect Addressing

Previously, the things we have done were all with pointer-based structures, and we could essentially

replace any arrays that we had with a pointer-based structure. But there are actually applications

where arrays are optimal, for example, shortest paths when the edge weights are integers in [1, C].

Recall that the shortest path problem can be solved in time O(m + n log n) with Fibonacci heaps,

or O(m log n) with standard methods. If C = 1, then a BFS works an just takes O(m) time. To

generalize, we can split up a weight w into just a chain of w edges, and this takes time O(mC),

which beats the previous algorithm for small C.

Let’s go back to our ideas about priority queues, which we used in Dijkstra’s algorithm. One thing

to note is that in the priority queue, the minimum distance is nondecreasing. If we can make a

specialized priority queue for this case, then we may be able to simplify.

Dial said to simply make an array of buckets to do so. In bucket d, we put all the items of distance

estimate d. For example, if we start with source s, then we just insert the neighbors in their requisite

buckets, and then remove the source from the array. Afterwards, as in Dijkstra’s, we need to find

the new min. This we can do simply by going to the next bucket, via a forward scan! We need

to do a forward scan here, since there are too many overlapping min neighbors from deleting the

other elements, and it is hard to keep track of the min auxillarily.

Our algorithm will work as follows: When we have a node in the priority queue, then we will do a

forward scan to the minimum, remove the minimum, and then insert the minimum’s neighbors in

our bucket. We repeat this, with our forward scan starting from the previous minimum.

The time it takes for neighbor updates is O(m), and the time for scans should just require

O(max distance) = O(D). D itself is bounded by nC, and so the overall runtime is O(m + nC)

which is better than before!

The space we require is O(n + D) = O(nC). But we can do better. The range of relevant values

within the array is from d to d + C. So, if we store our array in a circle mod C + 1, by using the
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same index to hold different values, none of the values will be occupied at the same time. Thus,

with a circular array, we only need O(n + C) space, which is optimal.

Joke 5.3. This algorithm, Dial’s Algorithm, was invented in ’73, when people could get things

named after themselves with only arrays. Now, we need fancy data structures to get something

named after ourselves.

5.2.1 Improvements

This is an algorithm that cannot be beaten with a fancy data structure, since the constants are

good. However, if C is large, then there is possibility for improvement. The largest time cost that

we have is with the forward scan, and we can optimize this. We’ll do so with a 2-level bucket
scheme, where we auxillarily make blocks of size b that records how many buckets in each block

which are nonempty, that are updated when elements are deleted/added. Now, on a scan, we can

simply traverse blocks until we get to a nonempty bucket, and then traverse the nonempty bucket.

What are the improvements of runtime? The neighbor updates are still O(m). The bucket scan is

O(b) per delete-min, for a total time of O(nb). The block scan takes time O(nC/b), since we go

to at most bucket nC and can skip b buckets every time. Choosing b =
√
C causes the total time

to be reduced to O(m + n
√
C)

But if we can do it once, we can do it multiple times. Let’s try a 3-level bucket scheme, where we
have superblocks that store blocks, which store buckets. Then, we scan for a non-empty superblock,

then scan it for a non-empty block, then scan that for a nonempty bucket. The optimal time is from

setting the block size to be C1/3 and the superblocks size C2/3, for a total runtime of O(m+nC1/3)

When we have a k-level bucket scheme, then we can make the exponent of C very small. But

this is a problem, since when we have more and more layers, we need O(k) time to update from all

our insertions, and also need to scan k layers. The overall runtime becomes O(k(m + n · C1/k)).

5.2.2 Formalization with Tries

This idea can be formalized to a trie, which is a depth k tree over sibling arrays of size ∆. Essentially,

every element within the trie is an array of size ∆, which itself also contains a subtrie of depth k−1.

We have a range of C possible values (once again, thinking in a circle). Ideally, we choose C+1 = ∆k

to store all the elements under consideration, and hopefully ∆ is a power of two (we’ll see why later).

Let’s consider finding minima in this trie. Insertion and Deletion is O(k) per operation, since that’s

just the time needed to traverse down the trie. For the delete-min operation, we need to first find

the minimum nonempty child of root, which takes time ∆. Then, we can go down to look at the

27



array pointed to by that element, and so on, until we reach the bottom layer of the trie. This takes

time O(k∆). The overall runtime is then O(mk + nk∆), which when minimized for k , becomes

O(m logm/n C). This is linear for a dense graph and equal to O(m logC) for a sparse graph.

5.2.3 Laziness wins again

How do we make this even better? Be lazy! Denardo and Fox (’79) proposed to modify the insert

operation to procrastinate more and be more lazy: “Don’t push items down until we must.” We’ll

only make a child in the trie if we have more than one element in the node itself, essentially only

expanding as necessary. This is a good thing to do, but if we’re only doing inserts and deletes, we

don’t even need to compare things for inserts and deletes! Therefore, we will only invest time into

expanding a node into its child array if we need to scan that bucket when we do a delete-min. We

will then only have one “active” trie node per level, which are on the path to the current min. For

the other elements, we just let them stay in the bucket in the lowest active node they belong to. To

quickly check emptiness, we will keep track of the number of items in each layer (not descendants).

In implementation, for insert, we start at the top of the trie. We walk down until we land in a

non-minimum bucket, and increment that level’s item count, and then stop. For the decrease-key

operation, we may remove it from the current bucket, and find its new bucket, which is either

behind or below its current bucket. For implementation, we simply check to see if our element

can fit into the nearest previous bucket, and if they do, we may need to go down another layer.

Since the min is monotonic, then we have no risk of going beyond our expanded bucket structure.

The delete-min operation can be implemented by actually removing the min, and then checking the

number of items in each layer. If the layer is non-empty, then we just do a forward scan. If the layer

is empty, then we go up a layer, and do a forward scan to find the bucket in the layer above, and

then expanding the bucket of the new min. Overall, we keep going up until we get to a non-empty

layer, forward scan for the first non-empty bucket, and then expand it to the bottom.

The real cost for insert or decrease-key is O(k), since we simply traverse down the trie. If we

amortize the decrease-key cost into the insertion, then decrease-keys become O(1). For a delete-

min, we need O(∆) to scan, then O(k) to go up and down the trie, for a total time of O(k + ∆).

Thus, with laziness, the runtime is O(m + n(k + ∆)), which when balanced (here a power of 2

for ∆ is nice), becomes O
(
m + n logC

log logC

)
. It’s not a big improvement, but it is from simple data

structure, and log log factors are relatively important in data structures. This can be improved even

further with a priority queue on the scan, which we’ll implement in the next lecture.
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6 Lecture 6: VEB queues, Hashing

6.1 Improvements to the Denardo and Fox queue

When we do a delete-min in our Denardo and Fox queue from previously, we have to do a forward

scan to find the smallest non-empty bucket. But this may take a decent time, while it is just

a problem in finding the next smaller number, a perfect application for a priority queue! So,

Cherkassky, Goldberg, and Silverstein capitalized on this insight by making a Denardo and Fox

queue, plus adding a standard heap to find the min entry at each level. (This is known as a HoT
queue, heap on top queue.) Essentially, the top layer of the trie is made much bigger and into a

heap. If we make the size of the heap 2∆, the cost of heap traversal is negligible compared to the

rest of the structure, but the advantage is that we can actually reduce the number of layers needed

to store values. This ultimately changes the runtime to O
(
m + n(logC)1/3

)
.

Remark 6.1. Goldberg, one of the inventors of this improvement, is a big practitioner of Experi-

mental Algorithms. Expermientalists actually implement the algorithm and then see how it can be

improved - what heuristics can improve access time, etc? These can also lead to new theorems,

and Goldberg’s papers are a great demonstration of these techniques.

Remark 6.2. Silverstein was Prof. Karger’s brother’s roommate and also Prof. Karger’s classmate

in graduate school. Silverstein dropped out of graduate school to work at Google, and now is doing

great work at Khan Academy, showing how a deep study of algorithms can lead to many places.

6.2 VEB queues

This insight in the HoT queue actually comes from a previously introduced data structure, van
Emde Boas trees (1973). The general idea of VEB trees is to implement a priority queue as a

two-layer trie, with each layer having
√
C elements. We will work with b-bit words (C = 2b).

The structure of the queue Q is as follows:

• Q.min: This is stored in Q, but not in the tree itself (this is critical!)
• Q.low : This is an array of size

√
C. The intuition is that each will have b/2 bits. Each of

the values in the array point to another VEB queue on
√
C values in range.

• Q.high: This is another VEB queue, which stores the indexes of nonempty level-2 blocks.

The maximum size of Q.high is
√
C, each with b/2 bits.

This gives us a priority queue in Q.high, which allows us to easily access the minimum elements, as

wanted. Also, note that the number of layers we have is log b = log logC, a significant improvement.
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Let’s now implement our operations as follows:

• For our insertion, if x < Q.min, we will just swap x and Q.min, and the problem reduces

to just inserting an element greater than the min. Now, we will say that x = 2b/2xh + xl .

We check if the queue Q.low [xh] is nonempty. If it is nonempty, we simply insert xl into

Q.low [xh]. Otherwise, we just make a VEB queue there, which we can insert xl into, making

sure to also insert xh into Q.high to keep track of the new queue.
• For delete-min, we can simply query Q.min. We remove it, and then we need to replace it

with the minimum of the recursive structure. To do this, we look at Q.high.min, the index

of the first nonempty level-2 block (or equivalently, the high bits of the new min). A special

case occurs if Q.high.min = nul l , this means that the recursive structure is empty, and so

there are no more elements in the queue. Otherwise, Q.high.min tells us xh, and deleting

the min from Q.low [xh] gives us xl . Finally, if deleting the min from the second layer results

in an empty queue, we need to delete it from Q.high in order to keep our queue consistent.

The new minimum is 2b/2xh + xl .

Let’s do a quick runtime analysis. Insertion of a b bit integer is T (b) = 1 + 2T (b/2), which occurs

when Q.low [xh] is not made yet, needing to insert two integers on size b/2 queues. Using Master’s

Theorem tells us that insertion is O(b). However, we can improve on this recurrence formula, since

insertion xl of into an empty queue (happening if Q.low [xh] is previously empty) only takes time

O(1)! Our recurrence then becomes T (b) = 1 + T (b/2) = O(log b) = O(log logC).

Likewise, for a deletion, the recurrence also looks like T (b) = 1 + 2T (b/2), but the deletion of the

level-2 min is just O(1), and so the actual recurrence is T (b) = 1 + T (b/2) = O(log logC). Note

that here, if Q.min was not stored separately, we could not do the simplification of the recurrence.

VEBs are exponentially better than every other heap structure we’ve seen. But it has a drawback

in the space required. For a b bit queue, we need approximately 2b/2 space for the top layer, and

then another 2b/2 space for every item we insert.

Can we do better? Well, the arrays themselves are only used for guaranteeing O(1) lookup. If

we can find another data structure to do O(1) lookup with significantly better lookup efficiency

(spoiler alert: hash tables), then the space complexity becomes much better.
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6.3 Hashing

Note 6.3
Hashing is an important topic to understand; one reason is since it involves randomization, which

was a stated prerequisite of the course. We’ll use hashing to create dictionaries, which are data

structures that store key/value pairs, with insertion, deletion, and lookup key operations. While

hashing should have been covered in standard undergraduate algorithms courses, we will now

prove important results without the assumptions made in those previous courses.

For our model, we will make our keys integers in [m] = {1, 2, . . . , m}, which can be stored in an

array of size m with O(1) lookup. But we can do better. Supposing that we only have n keys to

insert, the question is to ask if we can use s > n space to store everything in O(1).

To do so, we’ll use a hash function h : [m]→ [s], and to store each key k in an array at position

h(k). The problem with a standard hash function is with collision of values (h(k1) = h(k2)). We

can get around it by storing all the values that hash to one particular value in a linked list, but then

this makes the access time potentially not O(1).

We need a good hash function, one that causes few collisions. However, this is impossible:

Theorem 6.4
There are no good hash functions.

Proof. This is impossible due to the pigeonhole principle, which says that at least one bucket will

have at least m
s
elements. If we choose the input keys devilishly, the lookup time for that bucket is

O(m/s) = o(1), which means that that hash function is not good.

To get around this, we’ll instead use randomization, with a hash family, which is simply a set of

hash functions such that we can pick a good one for any set of items.

What if we just pick a random function from our hash family?

Theorem 6.5
If n keys randomly distributed in [s] are hashed, then the expected access time in our hashing

function is O(1 + n
s

).

Proof. We will define the indicator random variable Ci j as follows: Ci j =

1 if items i , j collide

0 otherwise
.
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The time to find element i is simply 1 +
∑

j Ci j . The expected time to find an element is then

E[1 +
∑

j Ci j ] = 1 +
∑
E[Ci j ] = 1 +

∑
P[collision between i and j ] by linearity of expectation.

The probability that two randomly assigned elements i , j ∈ [s] collide is simply 1
s
. Then, the

expectation value of required time simply becomes 1 + n
s
, as desired.

Even though we’ve proven that nice theorem, this doesn’t help us, since remembering all these

random functions take a huge amount of space! Specifically, there are ms functions from [m]→ [s],

taking up m log s space (this bound comes from information theory).

Getting around this, Carter and Wegman introduced 2-universal hash families. This comes from

the observation that we don’t need a completely random hash function, but rather just a function

that is pairwise independent, such that any two elements in [s] will have a probability 1
s
of collision.

Thus, if we can find a way to generate pairwise independent hash functions with less space, then

we get around the bottleneck that our previous attempt at random hash functions had. While

pairwise independence sounds like it would trivially lead to mutual independence (independence

of all elements), the following example demonstrates that this assumption is false:

Example 6.6
Let’s consider flipping three coins x, y , z. The probability that any pair of two coin flips are the

same is just 1
2
.

What if we’re lazy? Let’s just flip two coins x, y , and set z = x ⊕ y (exclusive or). The

probability that any pair of two coin flips are the same is still 1
2
! But these values are obviously

not independent.

This example shows that with just two bits, we can make three pairwise independent variables,

which provides an avenue to produce the space needed for our hash function storage.
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7 Lecture 7: Hashing, Max Flows

7.1 Hashing with Less Space

Let’s try to come up with a way to generate pairwise random independent functions. We’ll suppose

that the hash table size is a prime number p. The Carter-Wegman assumption was to map each

key according to hab : x 7→ ax + b mod p.

Theorem 7.1
If a, b are uniformly randomly chosen from 0, . . . , p−1, then for fixed x 6= y , hab(x) and hab(y)

are uniform and pairwise independent over 0, . . . , p − 1.

Proof. To show this claim, we need to prove that P[hab(x) = s and hab(x) = t] = 1
p2 for any fixed

s, t ∈ {0, . . . , p − 1}.

Working in Fp, this event happens if and only if ax + b = s and ay + b = t, which when expressed

in matrix notation is just when (
x 1

y 1

)(
a

b

)
=

(
s

t

)
Since the determinant of the square matrix is x − y 6= 0, this means that the inverse of the square

matrix exists, and hence there is only one pair of (a, b) that will lead to our desired event happening.

There are p2 pairs of (a, b), and since our (a, b) are random, we are done.

This means that if our hash table is prime-sized, we can get O(1) expected lookups, even when we

choose n = s. What about if the size of the hash table is non prime-sized?

Theorem 7.2
O(1) lookups even if the hash table size s is not prime are possible, when we choose p � s and

assuming that x ∈ Fp. The hash functions are defined as hab : x 7→ ((ax + b) mod p) mod s.

Proof. We know from previously that the function (ax + b) mod p results in a uniform distribution

in the range 0, . . . , p − 1. Then, when we take mod s, out of the p total values in Fp, the number

of values that map to a certain residue mod s is either
⌊
p
s

⌋
or
⌊
p
s

⌋
+ 1. The maximum difference

of residue probabilities is then 1
p
, which we can make arbitrarily small by choosing p to be large

(for example, letting p = n.) This minor perturbation in probabilities still guarantees us O(1)

lookups.
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Remark 7.3. Usually in cases like these, p could also be a prime power and everything could still

work out, for example, p = 264.

We’ve now shown that O(1) expected lookup is achievable. What about the maximum load, the
most items that any one bucket holds in a hash table?

Claim 7.4
The maximum load is O(

√
n) with probability 1− 1

n
, when n = s.

Proof. Exercise.

Some items will probably have a larger load, but this shouldn’t affect runtime, since it is unlikely

that a certain key is accessed many times.

Remark 7.5. There are pairwise independent hash families where having O(
√
n) max load is very

likely, but this doesn’t affect the average load at all. So no worries!

7.2 Perfect Hash Functions

Question 7.6. Can we guarantee worst-case O(1) lookups, with no collisions, if we are given the

keys in advance? (this is known as a perfect hash function)

Well, let’s first check the chance of no collisions happening if a random hash function is used. We’ll

try to calculate the expected total number of pairs of collisions:

E

(∑
i<j

Ci j

)
=
∑
i<j

E(Ci j) =
∑
i<j

1

s
=

(
n

2

)
1

s
≈
n2

2s

If s ≥ n2, then the expected number of pairs of collisions happening will be 1
2
. How do we convert

this expectation to a probability? The answer is Markov’s Inequality:

Lemma 7.7 (Markov’s Inequality)

If X ≥ 0 is a random variable, then P[X ≥ t] ≤ E[X]
t
.

With Markov’s Inequality, we get that the probability of a collision happening is less than 1
2
. This

probability of 1
2
is far from guarantee, but we can simply try again if we fail. After n tries of a

perfect hash function, the probability we succeed is 1− 1
2n
.

How long does this generation take? We need to take into account how many times we need to try

to find the perfect hash function, as well as the time it takes to generate and test a perfect hash
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function. The time it takes to test the perfect hash function is O(n) and the expected number of

times we go through the loop is just 2, so the expected time for hash function generation is O(n).

Note 7.8
The procedure above to generate one hash function is a Monte-Carlo algorithm, which is a

fast algorithm that is likely to succeed. A Las Vegas algorithm is one which is often fast and

always works, which describes our overall perfect hash function generation. We can turn any

Monte-Carlo algorithm into a Las Vegas algorithm similarly to above, just repeating until we

succeed. We can also go the other way, though this is a bit harder to describe.

This ‘perfect hash function,’ though, is not perfect at all, since we are using n2 space for n items.

Is it possible that our n2

2s
upper bound on the number of collisions is not tight? Let’s demonstrate

that this is false with a quick example:

Example 7.9 (Birthday Paradox)

We will hash every person into 365 buckets according to their birthday. When we have ≥ 23

people, the probability of collision is 1
2
. When we have 37 people (the class size today), it is

almost certain that we have a collision. It turns out that the probability of no collision happening

is extraordinarily small, and our n2

2s
bound is actually pretty tight.

To show this, we’ll check the probability that we have no collision is(
1−

1

s

)(
1−

2

s

)
· · ·
(

1−
n − 1

s

)
≤ e−

1
s
− 2
s
−···− n−1

s ≤ e−n2/s

and so if we don’t make our hash table quadratic in size, we are almost certain to see collisions.

Joke 7.10. As MIT students, we can abuse this paradox and bet that there exists two people with

the same birthday in a bar, almost certainly getting a free drink.

We get around this problem with a two-level hashing idea introduced by Fredman, Komlos, and

Szemered, who are all well-known algorithmists. First, we’ll try to hash our n items into O(n)

space. Consider the previously mentioned hashing with chaining method, where we have a linked

list to resolve collisions. But why do we even use a linked list? Why not replace it with a perfect

hash table on each bucket?

Definition 7.11
For our analysis and convenience, we will define the Iverson Bracket of a logical statement to

be equal to 1 if the statement is true and 0 otherwise. For example, [x > 0] = 1 if x > 0.
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Theorem 7.12
Supposing that we make k secondary hash tables with size bk , this hashing scheme takes O(n)

expected space and maintains O(1) lookup.

Proof. For lookup, simply go to the perfect hash table specified by the first hash function, and then

find the element in O(1) time. The space usage for the secondary buckets is

∑
k

b2
k =

∑
k

(∑
i

[i ∈ bk ]

)2

=
∑
k

(∑
i ,j

[i ∈ bk ][j ∈ bk ]

)
=
∑
i ,j

(∑
k

[i ∈ bk ][j ∈ bk ]

)
=
∑
i ,j

Ci j

The expected space usage is then

E

(
n +

∑
i ,j

Ci j

)
= n + E

(∑
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= O(n).

Corollary 7.13
This hashing scheme can be modified to take O(n) worst-case space.

Proof. We’ll take a similar approach as we did with regard to the quadratic perfect hash function

itself. We will generate a perfect hash table according to above, and check its space usage. If

it is greater than two times the expected, then we repeat our procedure. A simple application of

Markov’s Inequality then guarantees that we can generate a O(n) space perfect hash table.

Note 7.14
The expected space usage is approximately 13n if we proceed as indicated above. With a few

optimizations, this space is cut to approximately 6n. In the original paper, however, this space

was cut to (1 + o(1))n space, a truly remarkable achievement. This is achieved by using the

empty buckets in the primary hash table to hold information about the secondary hash functions,

something that should “never be done in practice,” but is fine from a theoretical perspective.

This method of perfect hashing required us to check whether everything is perfect or not. But this

is impossible if we don’t know the keys - for example, if we want to support insertion or deletion.

This isn’t actually too hard, and will probably be on the PSET next week. The method works by

just recreating the hash table when there are too many imperfect things, and all we need to show

is that we don’t need to do this too often.
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7.3 Combinatorical Optimization

We’ve now wrapped up the data-structure part of the course, and now we’re going to move onto

combinatorical optimization. A combinatorical optimization problem is one in which we have a

set of feasible solutions, in which each has a cost or a value. Our goal is to maximize the value or

minimize the cost of the solution, and this is our output. When we work with such problems, we’re

now not going to care about runtime of an operation. We just care about the runtime of making

the correct output.

Our general workflow for tackling combinatorical optimization problems are as follows:

1. First, understand feasibility - what does it mean when a solution is actually feasible?

2. Then, develop an algorithm to determine if a solution is feasible or not.

3. Afterwards, with our algorithm, we can find a certain feasible solution, showing that they

exist.

4. We then develop an algorithm to verify the optimality of a feasible solution.

5. Finally, we compute our optimal solution.

7.4 Introduction to the Max Flow Problem

Definition 7.15
The max flow problem involves a directed graph G with m edges and n vertices, where we

have a source vertex s and a sink vertex t. Each edge e has a capacity ue ≥ 0. We will define

a flow fe, a number per edge, and we will call the flow feasible if 0 ≤ fe ≤ ue.

Additionally, all vertices v 6= s, t need to satisfy the conservation constraint, which states that∑
w f (v , w) − f (w, v) = 0. In other words, whatever flow comes in must go out. We define

the value of a flow to be
∑

v f (s, v)− f (v , s), which is the amount of flow leaving the source.

Our problem is in finding the max value of the flow.

This problem is known as the ‘central problem’ in combinatorical optimization, and was first intro-

duced by Ford and Fulkerson in 1956, due to its wide variety of solutions and applications. Many

problems can be reduced to a max flow problem. Currently, our best algorithms can run in almost

linear time.
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8 Lecture 8: Max Flows I

As we mentioned previously, to solve this combinatorical optimization problem of max flow, we first

need to feasibility conditions. While earlier we defined the ‘gross flow’ per vertex, there is also

another definition of flow based on edges, the ‘net flow.’

Definition 8.1
We define the net flow on an edge e connecting nodes u, v to be g(v , w) = f (v , w)− f (w, v),

where f (v , w) is the amount of flow from v to w.

This net flow will have certain properties:

• g(v , w) = −g(v , w) (skew-symmetry)
•
∑
g(v , w) = 0 (conservation)

• g(u, v) ≤ ue.

Our simplest feasible flow is just the 0 flow, which is generally always feasible. The next simplest

flow is just a straight path from the source to the sink, where each edge has the same flow that is

less than the capacities of each of the edges:

s t

In general, we can have many separate flows, which can be broken down into what we call as s − t
paths and cycles, which are respectively flow paths that go from the source to the sink and paths

which go in a cycle.

Lemma 8.2 (Path Decomposition Lemma)

In fact, these are the only types of basic flows. Any s − t flow can be decomposed as a sum of

s − t paths and cycles.

Proof. We will induct on the number of edges carrying nonzero flow. Given a nonzero flow, our

plan will be to find a nonzero path, and then remove it from the flow, which then will show the

Path Decomposition Lemma through (backwards) induction.

We start at the source node s. Since the flow is nonzero, the edge leaving s is carrying flow. Let’s

say that the flow goes to some vertex v . The edge leaving v is also carrying flow by conservation,

and we can continue along this edge until we reach t or we reach a cycle (this has to happen since

there are only finitely many nodes, and only the flow that can ‘disappear’ is at t).

38



In either case, we’ve either found a valid s − t path or a valid cycle. Now, we will look at the min

flow edge, and decrease the flow on each edge on this path/cycle by that much.

We finally just have to verify that what remains is still a flow. Clearly the capacity constraints still

hold. Since we’re not changing the net flow between each vertex (except at the source and the

sink), the conservation requirements still hold.

Since we zero the flow on the min edge in each iteration, this process terminates. In fact, this

argument also proves that we can decompose a flow into ≤ m paths and cycles.

Now that we’ve shown some conditions on feasible flows, our next question to ask is a decision

problem: Is there a nonzero flow in G?

Theorem 8.3
A nonzero flow only exists if and only if t is reachable from s through edges of nonzero capacity.

Proof. If t is reachable from s, then this means that there is a s − t path. We can simply follow

the flow along this s− t path (guaranteed to have nonzero flow) to show that a nonzero flow exists

on the graph.

For the other direction, we use the flow decomposition lemma. If we have any path from s to t,

then t is obviously reachable from s. Otherwise, if we only have cycles, we know that any cycle

through s gives net flow zero. This means that the total flow is 0. Thus, the only time a nonzero

flow exists is when there is a s − t path.

Let’s turn this question around now - suppose that we have no feasible flow. How do we show

so, to someone else? (note: this is called a certificate, which is some data that allows for easy

checking of feasibility).

To do so, we’ll partition the graph vertices into two sets, where the set S of vertices are all those

that can be reached from the source, and the set S is the complement of S. We call in general any

partition a cut of the graph. In this case, there is no edge connecting S and S ,and this cut (S, S)

can act as a certificate for showing that no flow exists.

Now let’s change these ideas a bit to verify optimality in the max flow problem. We can find an

upper bound on the flow, and then show that the flow is tight.

Theorem 8.4
Suppose that we have a partition (S, S). Then, the max flow is less than

∑
e crossing S→S ue.
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Proof. We’ll decompose our flow into s − t paths. Each of the s − t cuts crosses the S, S cut,

and can send their maximum capacity across the (S, S) partition. The total amount of flow that

can be sent is then the sum of these values.

Defining the capacity of the cut as
∑

e crossing S→S ue, we’ve show that the max flow is ≤ the

capacity of any cut. Thus, the minimum cut is an upper bound on the max flow. We don’t know

how good this bound is (spoiler alert: it’s tight), but it is a upper bound.

Now, suppose we have a flow which is not maximum. How do we make it better?

Let’s consider our example graph as follows, with a example flow highlighted as below, and with

capacities all equal to one:

s t

Obviously, the flow is not maximum here - the maximum flow is equal to 2. We can try to make

it better by adding flow on an available path, but in this case, we can’t, since there are no more

available paths. Instead, we need to be able to reverse some paths.

To formalize, given a flow f , we’ll define the residual capacity uf (v , w) = u(v , w)− f (v , w). We

also have that uf (w, v) = u(w, v) + f (v , w). We define the residual graph to be one in which the

capacity is equal to the residual capacity. For our example, our residual graph is as follows:

s t

With our residual graph, we have an easy way to add more flow - simply search for an augmenting
path, a s − t path with nonzero flow in the residual graph. Then, we can simply add this s − t
path to the original flow, to generate a flow with higher value.

What if there is no augmenting path in the residual graph? Then we have a max flow, as guaranteed

by the central Max-Flow Min-Cut Theorem:
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Theorem 8.5 (Max-Flow Min-Cut Theorem)

The following are equivalent:

1. f is the max flow.

2. There are no augmenting paths in Gf .

3. The max flow is equal to the capacity of a certain cut (S, S), which is the minimum cut.

Proof. If there is an augmenting path, then we can increase the max flow, and hence the flow is

not maximum. Thus, if the flow is maximum, then there cannot be any augmenting paths. This

shows (1) implies (2).

If there are no augmenting paths, let S be the set of reachable vertices in the residual graph. All

the edges leaving S in the original graph are saturated (i.e. are sending a max capacity flow) and

those entering S are empty, due to our definition of residual graph.

Now, let us consider a path decomposition of the original graph. Each s − t path crosses the

cut exactly once, since the edges entering S are empty and thus flow cannot go backwards. The

capacity of this cut then equals the flow of the graph. Further, since the capacity of a cut is an

upper bound on the flow, this means that this particular cut is actually the minimum possible cut.

This means that (2) implies (3).

Finally, (3) implies (1): The capacity of a cut is an upper bound on the flow, and if we achieve

equality, then this means that the given flow must be the maximum possible.

From this theorem, we see that min cuts and max flows are intrinsically linked, and thus one can

act as a certificate for the other. Additionally, we have shown the following:

Corollary 8.6
The net flow across any cut is equal to the flow value.

Remark 8.7. The total number of max flows and min cuts are not correlated. It is possible to build

graphs with multiple maximum flows and a unique min cut, and vice versa.

8.1 Max Flow Algorithms

We’ve actually already went over an algorithm for finding the max flow. We look at the residual

graph, and find an augmenting path. We then augment our flow, increasing the flow by the

minimum residual capacity along this path, and repeat until there are no more augmenting paths.
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Let’s now look at runtime. We can find any path in Gf in time O(m) by breadth-first search. How

many iterations do we need? If we have integer capacities, then each path increases the flow at

least by one unit, and augmentation still leaves behind integer capacities. By induction, after k

iterations, the flow is greater than k. The algorithm terminates after k = f , and so the runtime is

O(mf ), where f is the max flow. We can even trivially bound the maximum flow to be O(mU),

where U is the max capacity. Thus, the runtime is bounded by O(m2U).

If G is a simple graph, meaning that we have no parallel edges, then the maximum flow is bounded

by O(nU) instead of O(mU), reducing the runtime to O(mnU).

With this algorithm we’ve actually proven the following:

Corollary 8.8 (Max Flow Integrality)

If G has integer capacities, then there exists an integral max flow.

Proof. Apply the above algorithm. At each step, the flow added to each edge is integral, and the

algorithm eventually terminates. Thus, the resulting maximum flow is also integral.

Though this runtime seems fine at first glance, it can actually be really bad since U is unbounded.

For example, considering our previous example graph, let the brown edge have capacity 1, and the

black edges have capacity 109.

s t

It is not too hard to see that each augmenting path will only increase flow by 1, meaning that all

109 theoretical iterations will actually happen. Thus, even if capacities are integral, we can get

theoretically infinite runtime!

This is actually even worse with rational values, because then our flow’s guaranteed increase per

iteration is only the product of the denominators of weights now.

This algorithm is worst with real numbers. It may take infinite time to converge to a solution, and

may even converge to a non-maximum flow.

So, we have an algorithm (the Ford-Fulkerson Algorithm), but it sucks. We’ll improve on it in

the next lecture.
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9 Lecture 9: Max Flows II

9.1 Improving on the Augmenting Paths Algorithm

Our previous algorithm had a runtime of O(mnU). Is this runtime polynomial? Well, we usually

define polynomial runtime to be polynomial in the size of the input itself. Since the capacity is

exponential in the size of the input (since we only need logU bits to store it in the input), then our

algorithm is not necessarily polynomial. Such situations, in which we have runtime polynomial in

n,m but not in edge weight U, make up what we call psuedopolynomial algorithms.

If we run our algorithm for rational numbers, when we convert everything to integers by multi-

plying by the common denominator, we can create exponentially large runtimes. This shows that

psuedopolynomial algorithms are not good at all!

Remark 9.1. If we try to run the algorithm without multiplying out all the denominators, we still

get the same runtime. The augmenting flows get smaller, but it still takes the same time to reach

the maximum flow.

Let’s try to find a better algorithm for our problem. One thing to improve on in our previous

algorithm is that we just chose any s − t path we wanted. If we instead choose the path with

maximum bottleneck capacity to augment our flow with, then our runtime should improve.

Can we find this path? Well, if we just examine all possible paths, then we have exponential runtime.

A way to get around this is to just simply start removing edges (in the residual graph) in sorted

order, and then check for connectivity. If s and t are still connected after removing each edge,

then we can remove more; if they aren’t connected after removing some edge, then we know that

that edge was part of the bottleneck path. This is quadratic time, since we need O(m) time to

verify connectivity after each edge and O(m) to iterate through all the edges. We can improve this

runtime to O(m logm) if we remove half the edges at a time, and then binary search for the critical

edge(s) instead. After we’ve found the critical edge(s), then we can simply use any standard search

algorithm to find the s − t path that goes through an edge of that capacity, which takes O(m)

time, so each iteration takes a total of O(m logm) time.

Remark 9.2. We can also treat this problem as a directed minimum spanning tree problem, which

means that we can apply our previous algorithms to improve this runtime to just O(m + n log n).

Let’s see if this new algorithm significantly helps our runtime. How many augmentations will we

need in total? We have the path decomposition lemma again, which tells us that any flow can use at

most m paths. Since we choose the maximum bottleneck path at every iteration, we know that our

paths will have at least f
m
flow, where f is the residual flow. Thus, k iterations of max augmenting
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path tells us that we have f (1 − 1
m

)k ≤ f e−k/m remaining flow. Thus, if k ≥ m log f , then the

remaining flow is less than 1, and by the flow integrality this means that we found the maximum

flow. Thus, we will use O(m logm · m log f ) = O(m2 logm logmU) = Õ(m2 logU) time. This

algorithm is just polynomial now, rather than psuedopolynomial, for both integers and rationals.

Note 9.3
We use the Õ(f (x)) notation to ignore logarithmic factors. Log factors don’t matter since we

aren’t dealing with data structures anymore, except to theoreticians, which is why we use the

Õ notation.

9.2 Scaling Algorithms

We’ll now go over another algorithm that has almost the same runtime, but includes a technique

that doesn’t rely on flow decomposition. This was developed by Gabow in 1985 and then Dinitz

1973, with Dinitz ‘after’ since his communication was not seen until after the Iron Curtain fell. The

general idea is to apply a ‘unit case’ to a bigger problem.

Recall that our original algorithm took O(m2) time on unit capacity graphs. Thus, we can try to

leverage this runtime, and we do so through backwards rounding. Essentially, we find the optimal

solution to the rounded problem, unround, then fix up our solution.

For our problem, we’ll first start by trivially ‘rounding down’ all our capacities c to
⌊

c
U+1

⌋
, where

U is the largest capacity. To start off, all our capacities are rounded to 0, and the maximum

flow is trivially 0. Our next step is to unround our capacities to either 0, 1, and we do so with a

bitshift - by repeatedly shifting in the most significant bit of our capacities. Every time we iterate,

mathematically, we double all the capacities, and add 1 to some of these capacities. We can now

find our new max flow by doubling the previous max flow, and then by using augmenting paths to

find a new max flow.

How many augmenting paths will we need? Let’s look at the residual graph, after doubling all the

capacities. We know that for a s− t cut, since we have a max flow already, that the edges crossing

the cut will be saturated. When we add 1 to some edges, the number of edges crossing the cut

with additional capacity 1 is at most m, and so the maximum flow increases by at most m after

doubling. We can find one of these s − t paths in O(m). Thus, it takes us O(m2) time to do an

update. This is a much simpler algorithm, and results in even a better runtime of O(m2 logU)!

Remark 9.4. This type of bit-shifting actually sees quite widespread use, in computer architecture

as well. In fact, one of Prof. Karger’s interviews at Microsoft a long time ago relied on this.
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9.3 Strongly Polynomial Algorithms

Once again, theoreticians are never satisfied. The above algorithm may still fail to terminate for

real numbers. Can we have a runtime independent of number sizes?

For our analyses, we will assume that we can now add/subtract numbers in O(1) time. We now will

look for a strongly polynomial algorithms, which take only polynomially many arithmetic operations

in m, n. (Our previous algorithms were weakly polynomial).

Our previous algorithms depended on greedy algorithms, and so we would always have that loga-

rithmic convergence to the max flow. The previous algorithms don’t really give us ways to get rid

of the logarithmic factor, and so we need a different measure of progress. One measure of being

done is if s, t are disconnected in the residual graph. We can use this to come up with another

heuristic - by looking at the number of edges in the shortest path connecting s − t. If this distance
is infinite, then we have a max flow. If this distance is large, then intuitively means that we nearly

have a max flow.

Thus, one thing we can try to do is to choose the shortest s − t path at every iteration. We

augment our flow with short paths, resulting in only long paths to remain, and so we may rapidly

close in on a max flow. This leads to the Shortest Augmenting Path Algorithm, or Edmonds-
Karp Algorithm, which works by simply finding the shortest augmenting path, and saturate it. We

can use a breadth-first search to find a shortest augmenting path in time O(m), and it takes O(n)

time to update the edges after we find this path.

We now claim that O(mn) shortest augmenting paths will find the max flow, and so this algorithm

is strongly polynomial takes O(m2n) time to find the maximum flow.

The reason that we don’t only need O(n) shortest augmenting paths is because some shortest

augmenting paths may not change or even cause a decrease in the distance from s to t. Some

experimentation shows that the latter doesn’t happen, but we need to prove this, which we will do

so in the next lecture.
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10 Lecture 10: Max Flows III

10.1 Edmonds-Karp Algorithm

Let’s now prove our claim from before, which will give us a strongly polynomial algorithm for max

flows.

Theorem 10.1
After processing O(mn) shortest augmenting paths we obtain the max flow.

Proof. To start, we’ll introduce some notation: let d(v) denote the distance from s to v in the

residual graph. Now, we show a key lemma:

Lemma 10.2
If an shortest-path augmentation is performed, then d(v) does not decrease.

Proof. Our proof will be by contradiction. We’ll define d ′(v) to be the distance after augmentation,

and so our condition for contradiction will be that there is some vertex such that d ′(v) < d(v).

Note that the distance from v = s to the source is always 0 and hence the lemma is true for the

source.

Now, suppose that v 6= s is the closest vertex to the source, and let P ′ be the shortest path to

v , after augmentation. The path clearly exists since v 6= s. Since the path itself is nonempty, this

means that there is a vertex w along this path immediately before v , which may possibly be s itself.

Then, d ′(v) = d ′(w) + 1. Since v was chosen to be the closest decreasing distance to the source

after the augmentation, and d ′(w) is smaller, this means that the distance of w didn’t decrease,

or in other words, d ′(w) ≥ d(w).

Now, this means that the edge (v , w) was created after the augmentation, because otherwise the

distance to w would also have decreased. The only way we can create this edge is if our shortest

augmenting path that pushed flow backwards, and so (v , w) was on the shortest augmenting path.

This means that d(v) = d(w)− 1 ≤ d ′(w)− 1 = d ′(v)− 2, a contradiction, and hence d(v) never

decreases.

So now, we’ve shown that the distance of any node to the source never decreases in the residual

graph with an augmentation. We now need to show that these distances will eventually increase.
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Consider some shortest augmenting path that saturates the edge (u, v). If we augment with this

path, then the edge (u, v) becomes removed from the residual graph, but another shortest aug-

menting path may bring it back, if the edge (v , u) is used.

When we use (u, v), we have that d(v) = d(u) + 1. When we bring back the edge by going

through (v , u), we have that d ′(u) = d ′(v) + 1. By our lemma earlier, d ′(v) ≥ d(v), and hence

d ′(u) ≥ d(u) + 2. Or, in other words, every time we go through an edge and then bring it back,

the distance of the shortest augmenting path increases by at least 2. Thus, after O(n) saturations

of (u, v), then d(u) ≥ n, and no more shortest augmenting path will use (u, v). This means that

after O(mn) shortest augmenting paths, then there are no more paths to be added, and hence

we’ve found a max flow.

Since we’ve proven the central claim, we now have shown that we can find max flows in O(m2n)

time.

Let’s summarize our results on max flows so far:

• We have runtime O(mn) on simple unit capacity graphs.
• We have runtime O(m2 logU) on graphs with integer capacities.
• We have runtime O(m2n) on general graphs.

It seems that as the graph gets more complex, the runtimes also become longer. But can we go

faster?

10.2 Blocking Flows

The answer is yes, with a technique known as Blocking Flows to go faster. As algorithmists, we

want to look at places where we are doing a lot of work, and see if we can increase our gain from

the work. One place that we use a lot of work is when we are finding augmenting paths - after we

add one augmenting path, we need to do our work all over again to find another augmenting path.

One way we can implement this in our previous shortest augmenting paths is to save the results of

our breadth-first search. When we run the BFS, we can find many shortest paths, and we don’t

need to refind this after every augmentation. We don’t need to rerun our BFS every time - we can

simply use one, and then process all the edges that we have, since the distance cannot decrease!

Let’s formalize this. We will first introduce some definitions, as follows:

47



Definition 10.3
We define an admissible edge to be one that goes forward one layer in a BFS. We define an

admissible path to be one made of entirely admissible edges. We define the admissible graph

to be one that includes all the admissible edges.

Now, we will formalize and say the following:

Lemma 10.4
Any admissible path is a shortest path.

Proof. Nonadmissible edges are either ones that go backwards or go through the same layer. They

cannot go forward more than 1 layer, by the definition of BFS. If we have a shortest path that is

nonadmissible, then it must have at least one nonadmissible edge. But this is a contradiction, since

it will now take more steps to traverse to the sink t than an admissible path.

Our idea is now to build an admissible graph, destroy all shortest paths, and then recompute until

we find all augmenting paths. We’ll define a blocking flow to be one using only admissible edges

that saturates an edge on every admissible path. After we use a blocking flow, we don’t make

any new admissible edges (the only ones created are backwards edges), and there are no more

admissible paths left in the residual graph. Hence, once we find the blocking flow, the distance

from s to t has increased and we have to do a BFS again. The maximum distance is n, and hence

we need at most O(n) blocking flows to find a max flow.

Remark 10.5. This also gives us a greedy approach to max flow. Each blocking flow doesn’t make

any new paths, and so we can measure progress towards actually finding max flows.

Let’s now try to find a good way to find blocking flows. We’ll first start by analyzing the unit

capacity case. Given an admissible graph, we start at s, continue along admissible edges until we

get to some vertex v , and keep advancing forwards until we either reach t or cannot advance from

v . If we reach t, this means that we found an augmenting path, and so we saturate it and remove

all edges, and restart the algorithm to continue finding more augmenting paths in the admissible

graph. Otherwise, if we have nowhere to go from v , this means that going to v is useless and we

can delete the edge (u, v), and continue the search from v . We continue until we are blocked at s,

which means that there are no more paths from s to t.

Let’s now look at runtime. The number of retreats is O(m), since each edge can be deleted at

most once. Each edge is also saturated at most once (using the unit capacity assumption here), for

a total time of O(m). Finally, since the number of advances is equal to the number of saturations
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plus the number of retreats, this is also O(m). Thus, the total runtime to find a blocking flow is

O(m), and so the total runtime for finding a max flow is O(mn). This is a slight improvement over

our original algorithm for unit capacity graphs, since this analysis now applies to non-simple graphs.

This is not very exciting in itself, but it can be used to actually get a better bound for unit capacity

graphs and also generalize to non-unit capacity graphs. For the unit capacity case, let’s suppose

that we find k blocking flows, and so the distance from s to t has distance at least k. By flow

decomposition, each remaining (disjoint) s − t path uses up at least k edges, and sends at least k

flow. Thus, the number of remaining paths that we have is ≤ m
k
. Since each blocking flow we do

finds at least one path, this means that m
k
additional blocking flows finish the algorithm. The total

runtime is then O(km + m
k
m), which when balanced, shows that the runtime is actually O(m3/2).

This is the same runtime as previously in dense graphs but much better in sparse graphs.

Remark 10.6. Using this technique, we can also show with a more sophisticated analysis that we

get time O(mn2/3) in simple unit capacity graphs and O(mn1/2) in bipartite unit capacity graphs.

Let’s now generalize to graphs with capacity. The number of advances still is bounded by the sum

of the other terms, not affecting our runtime. We still have O(m) retreats. However, for augmen-

tations, we may only at most destroy one edge. We still need to perform O(m) augmentations,

but now we have O(n) work per edge, for a total of O(mn) time. Thus, the time it takes for a

blocking flow is O(mn2), which is still better than the shortest augmenting paths algorithm. The

intuition for the improvement is that an augmentation only costs O(n) rather than O(m).

We’ll now refine the analysis here. If the value of the max-flow is f , then the augments at most

cost nf . Our other work needed is O(m) per blocking flow, and so our runtime is O(mn + nf ).

If we can ensure a small flow, then our runtime will be fast. We can do this by the same scaling

algorithm as before. Each scaling step added at mostm residual flow, and thus the runtime becomes

O(mn logmU), which is better than before.

We now return to the central question - can we do better? Yes! Over the period from 1985

to about 2010, we got a strongly polynomial runtime of Õ(mn) with the push-relabel algorithm,

then O(m3/2 logU) by Goldberg and Rao with more sophisticated scaling techniques. After 2010,

algebra people (including fellow MIT professors Kelner and Madry) came and used matrix algebra

to reduce the running time to O(m10/7 logU) and now are pretty close to O(m1+ε logU).

Remark 10.7. Push-relabel commonly achieves near-linear time, and so is a recommended algorithm

whenever a max flow comes up.

Joke 10.8. These algebraic techniques ‘destroy all the combinatorical structure’ of the problem,

and so anyone who matches these bounds with combinatorical techniques gets an A.
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11 Lecture 11: Max Flows IV

11.1 Improving Blocking Flows

Let’s go back to our blocking flow algorithm, and see if we can improve it. Our slowest step

with the blocking flows algorithm was the augmentation step, and we can try to use a clever data

structure to speed it up. Tarjan did exactly this and introduced the link-cut tree data structure to

do so. Essentially, we have a directed forest of positive capacity edges, and we want to implement

the augment/retreat/advance operations quickly. One of the operations that we want to introduce

is the advance-to-root operation, which simply jumps from one vertex to the root of that tree.

Then, we check if the root has any edges of positive capacity to another tree. If it does, then we’ve

just discovered a longer path, and so we link the root of the tree to another. We continue this

process until we reach the vertex t, at which point we’ve found a path of nonzero capacity which

we can use to augment our flow with. Finally, since at least one edge is going to be saturated after

augmentation, then we can cut the tree there and repeat.

Tarjan’s implementation uses Splay Trees and can perform the link, advance, cut, and augment op-

erations in amortized log n time, and so our max flow algorithm now will have runtime O(nm log n),

a significant improvement. O(mn logm/n n) is also possible with some tweaks.

Remark 11.1. Though the link-cut tree seems like a collection of random operations made specif-

ically for max flow, it actually has decent applicability outside of this problem as well.

11.2 Min-Cost Max Flows

We now know that we can relatively efficiently find a max flow, but we still have the question of

choosing a ‘best’ max flow. To answer this, we’ll add a cost c(e) on every edge e, and say that the

best max flow is one that minimizes
∑
c(e)f (e). In this problem, the min-cost max flow problem,

the edge weights can also be negative. When we construct the residual graph with an edge (u, v)

having cost c(e), then the cost of (v , u) should logically be −c(e).

Let’s first consider different variants of this problem and see that reductions are possible. One

variant of this problem asks for the min-cost to send a flow v through the graph. We can reduce

this problem to the general min-cost max flow problem by simply introducing a bottleneck edge of

capacity v at the source, ensuring that the max-flow we find is v . In addition, the shortest path

and max flow problems can easily be reduced to this problem.

Another variant is theminimum-cost circulation problem, which tries to find a flow with everything

balanced, and the condition that we can have negative weight edges make this problem interesting.
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We can reduce to the min-cost max flow problem by simply not connecting s or t to any nodes,

since the max flow is trivially 0 and a min-cost circulation will be induced in the graph. We can

reduce the other way by adding an ∞-capacity edge from t to s with −∞ cost, since we will send

as much flow as possible from t to s to minimize costs, and so the max flow goes to t. These

infinities can simply be represented by mU and −nC, where respectively U is the max capacity edge

and C is the max cost edge. The reason why −nC is sufficient is since a circulation can go through

n edges, and so the total forward cost is at most nC, making it profitable to send flow.

Another reduction method to min-cost circulations starts instead by finding any max flow f (with

previous algorithms) in our graph. We want to find the min-cost flow f ∗. Now, f ∗−f is a circulation,
since there are no more s − t paths and the net flow is zero. Though this new flow may not be

feasible in the original graph, this flow is feasible in the residual graph Gf . If f ∗e − fe ≥ 0 then we

have a positive flow, and the amount of the flow is ≤ ue − fe, which is the capacity of edge e in Gf .

If f ∗e − fe < 0 then we have a reverse direction flow of value fe − f ∗e , which is less than the reverse

edge capacity of fe. Thus, this is a valid flow in the residual graph. We can then find a min-cost

flow f ∗ by first finding the min-cost circulation q in the residual graph, and then adding it to f .

Remark 11.2. While we previously looked at net-flow, the flow going from one vertex to another,

we’re now instead going to focus on the flow per edge. This has the benefit of allowing multiple

edges with different capacities and costs going between the same vertices vertices.

Let’s now look at deciding optimality. How can we verify if f is either a min-cost flow or not? We

can verify if f is a max flow easily by a min-cut, as seen previously. We can verify f being a min-cost

flow if and only if the min-cost circulation in Gf has cost = 0. If a negative circulation exists, then

it can be added to our flow to reduce the overall cost, but this is kind of cheating since we can’t

find a min-cost circulation easily yet.

A way around this is to instead consider the cycle decomposition of the min-cost circulation. When

it is negative, at least one of the cycles made by the min-cost flow has to have negative cost.

We can then add this cycle to f for a smaller cost flow, and so a negative circulation implies a

nonoptimal flow. The converse is also seen to be true, since a nonoptimal flow means that there

must be at least one negative cost cycle. Thus, checking for negative cost cycles gives us a way

to verify that we have a min-cost flow.

We can find negative cost cycles with the Bellman-Ford or the Floyd-Warshall shortest path

algorithms (running in time O(mn)). Shortest paths are not well defined when we have negative

cycles, but these algorithms can detect the negative edge cycles. We can use this to find a min-

cost-circulation by running on Gf , then saturating the cycle, then repeating. This algorithm, known

as Klein’s algorithm, is similar to Ford-Fulkerson and takes O(mCU) iterations to finish. It sucks.
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12 Lecture 12: Max Flows V

We got an algorithm for the min-cost flow problem, based on cycle cancelling. While our previous

implementation sucked, there are actually ways to make cycle cancelling polynomial time (similarly to

how the bottleneck paths algorithm changed Ford-Fulkerson). An improvement on cycle cancelling

will be explored on the homework, but let’s explore a different idea now.

12.1 Price Functions

Suppose that we have some cities, for which there is infinite supply of tequila at the source s, and

infinite demand for it at the sink t. Each road connecting cities will have some cost of transportation,

and we want to find the max flow at min cost. If we were to just mandate how much flow goes

where, then this is a command economy, not acceptable in America.

So, let’s instead think about a capitalist approach. We won’t demand global optimization, but

rather see what free merchants will do. Each merchant will pick up the tequila at s and deliver it

to other neighbors of s. Though there is no demand for tequila at the neighbors, they can still sell

the tequila to other merchants along the route. This creates a free market, from which each vertex

will now have a price p(v) at which tequila is bought and sold.

Now, suppose that a merchant is going from v to w. The net profit that they gain per unit

transported is p(w) − p(v) − cvw ≥ 0 which is nonnegative in order for the prices to be feasible.

Thus, this gives us a motivation to define a reduced edge weight as c ′vw = cvw + p(v) − p(w).

Then, our condition for making a profit is c ′vw ≤ 0.

If there is a profitable nonzero cost then, the demand at v will increase and the supply at w will

increase, increasing the price at v and decreasing the price at w, by basic principles of economics.

This represents some instability in the market, and is self-reinforcing, and can only stop either when

the edge itself is saturated or when the reduced cost becomes positive.

This observation allows us to define feasibility as follows:

Definition 12.1
A price function is feasible for the residual graph if and only if no residual edge has negative

reduced cost.

We also have a very important lemma about price functions:

Lemma 12.2
Using a price function doesn’t change any costs of cycles.
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Proof.
∑
c ′vw =

∑
(cvw + p(v)− p(w)) =

∑
cvw which telescopes since the start and end vertex

is the same. Thus, no matter what price function we use, the cycle costs remain the same.

Since the costs on a cycle don’t change, then as we saw before, a negative-cost cycle means that

the flow is not yet optimal. This doesn’t change no matter what price function we have.

Now, we have a central claim that shows the utility of price functions:

Theorem 12.3
A circulation/flow is optimal if and only if there is a feasible price function on its residual graph.

Remark 12.4. This also allows for a feasible price function to serve as a certificate.

Proof. To show that feasible prices lead to optimality, we simply need to show that feasible pricing

leads to no negative cycles, as seen earlier. When we have a feasible price function, we have no

negative reduced cost residual edges, and hence there are no negative reduced cost cycles, which

means there are no negative cost cycles (by the previous lemma), and hence the flow is optimal.

For the other direction, we need to show that an optimal min flows means that we can construct

a feasible price function p on the residual graph. In other words, there is no way for merchants to

make money. Now, we claim that p(v) being equal to the shipping cost to v from s is feasible. This

doesn’t cover all vertices, since some may be isolated in the residual graph, but we can elegantly

get around this by changing our source to s ′, which will have 0 edges to every vertex. Then, we

just let p(v) be equal to the shortest path cost from s ′ to v , which we can compute since there

are no negative cycles, as our flow is optimal.

The only thing left is to check feasibility. We need to verify c ′vw ≥ 0⇐⇒ p(v) + cvw ≥ p(w), and

this holds by the triangle inequality on shortest paths.

If we find a feasible price function, then we can find a min-cost flow. Let’s consider the effect

of increasing the price at one vertex. This decreases the incoming edge costs and increases the

outgoing cost by the same amount. This doesn’t change any of the costs of paths through the

vertex, but can eliminate the negative edge. Thus, if we tweak the prices at each vertex, we should

be able to find a feasible price function now.

12.2 Min-Cost Flow Algorithms

Our previous algorithm for min-cost flows was to start with a max-flow, and then make it optimal

by cycle-canceling. Here, instead, we’ll start with an empty flow, and then use augmenting paths
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to increase the flow while at the same time keeping the min cost. Every augmenting path that we

choose should be greedy, in order to minimize cost, and should be the shortest augmenting path

(with respect to costs, rather than distance).

Now let’s show that this is a good, working algorithm. We just want to show that the cost is

minimized at all time, which means there are no negative cycles in the residual graph.

Theorem 12.5
Adding a shortest augmenting path to a graph with no negative cost cycles in the residual graph

leads to a residual graph with no negative cycles.

Proof. Let’s proceed by contradiction. The only way for a negative cost cycle to be created in an

augmentation is if that augmentation reversed an edge along the path. But we can simply cancel

out the forwards edge with the backwards edge, removing the cycle and creating a new path. This

is a new path with lower sum of costs, and hence when a negative cost cycle is created, this means

that a shortest augmenting path was not used.

Let’s also see an alternate proof of this theorem. The key idea behind this proof is that the price

function shifts all s − t paths by the same amount, which is p(t)− p(s), by telescoping.

Proof. If we have no negative cost cycles, then we can compute shortest paths from s to define

new prices. Then, the edges on all shortest s − t paths have reduced cost 0. The reduced cost

of the reverse edge is then likewise 0 on this graph. If we augment along such a shortest path,

then they will have 0 cost and create 0 cost reverse edges. Thus, no negative cost cycles can be

created, and we still have a feasible price function.

Since we’ve proven correctness, let’s now look at runtime. Each augmentation finds at least one

unit of flow, and then we have a min-cost max flow after f iterations. Each shortest-path finding

is Õ(m) by Dijkstra’s, and hence the total runtime is Õ(mf ), just like the original Ford-Fulkerson

algorithm.

Dijkstra’s algorithm here requires non-negative edges. If we start with a graph of non-negative

edges, run Dijkstra’s and then augment, using the reduced edge lengths afterwards. Then, by

feasible pricing, these reduced edge lengths are always positive, and so we don’t run into problems.

This algorithm has two important limitations, which are that we can’t deal with negative costs just

yet, and that the algorithm is only psuedopolynomial, but both can be resolved relatively easily, as

we will see next time.
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13 Lecture 13: Max Flows VI, Linear Programming I

13.1 Polynomial Min-cost Flow

We now have a psuedopolynomial min-cost flow algorithm, and now let’s try to make this polynomial.

We can do this, as we did for the general max flow problem, with scaling techniques on the capacities

themselves. We shift in one bit at a time, as before, creating some residual flow, which we can

eliminate with more augmentations, and this runtime is the same as before, O(m2 logU).

However, we have a problem with the shifting method. A 0-capacity edge can potentially become

a 1-capacity edge, which can result in an edge with negative cost being made, since our previous

algorithm only guaranteed non-negativity on edges with nonzero capacity.

We can resolve this by first sending flow on all negative arcs. This makes all costs greater than

zero, but violates flow conservation, making some nodes have deficits and others have excesses.

Next, we send excesses to the deficits themselves. This is another min-cost flow problem, but now,

we don’t have any negative arcs! So, we can compute a fast min cost flow (actually a circulation)

and a price function with Dijkstra’s, resulting in a residual graph with no negative arcs. This is an

algorithm that actually computes min-cost circulations, for any graphs. This gets rid of our second

issue with max flows as well.

So, if we use the above algorithm in our scaling algorithm, we can use a min-cost circulation to

balance the excesses and deficits. This takes runtime Õ(mf ) = Õ(m2). When we take care of this

issue in scaling, our final runtime is Õ(m2 logU).

Can we do better? The previous algorithm we described is known as “capacity scaling” for obvious

reasons, but there are also “cost scaling” algorithms which have a logC term rather than a logU

term. In fact, strongly polynomial algorithms do exist, but are too much work to describe here.

Tardos ’85 proposed one based on scaling, but said that the small bits are negligible, and thus the

scaling techniques don’t need to contain a logU term. Currently, our best runtimes are Õ(m2).

The best scaling algorithms result in Õ(mn log logU logC) runtime.

13.2 Complementary Slackness

Let’s go back to our merchant analogy, when we previously considered reduced costs, and that

everything was in equilibrium. If a reduced cost is positive, then there will be no flow, since

otherwise we would ship at a loss. If a reduced cost is negative, then that edge will be saturated.

Thus, all the reduced costs must be equal to zero in equilibrium.
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This property is known as Complementary Slackness and in fact is a criterion for optimality. This

also suggests another algorithm for finding a min-cost flow - saturate all the negative cost arcs,

send the flow back using only zero arcs (since positive arcs cannot be used at all). The cost of any

path is zero, which just turns the min-cost flow problem into a standard max flow problem! So,

in a general sense, a min-cost flow problem is just a shortest paths problem combined with a max

flow problem.

Remark 13.1. With complementary slackness, we see that any feasible price function is going to

make a set zero-cost edges, which are the important edges to optimize. Network simplex algorithms

work explicitly with these zero-cost and are another way to solve min-cost flow.

13.3 Linear Programming

Consider the min-cost flow problem, in a purely algebraic presentation: to minimize the quantity∑
c(e)f (e) in where 0 ≤ f (e) ≤ u(e) and

∑
e in v f (e) =

∑
e out v f (e). Note that all the equations

have a linear objective function and the constraints are all linear inequalities. Linear Programming

is the study of such problems. Dantzig, in the 1940s, designed the Simplex Algorithm for solv-

ing such problems, which is still the preferred algorithm for solving linear programming problems.

The problem also established the field of combinatorial optimization, in that other combinatorial

problems such as shortest paths and max flow can be formulated as linear programs.

While Dantzig had an algorithm, the theory itself was lacking behind. We couldn’t answer the

questions of whether solutions exist, whether the solution could be written (rational solutions), or

whether the solution’s optimality could be checked. Dantzig showed that linear programming is

in NP, but didn’t make much progress on finding a polynomial algorithm for solving it. It wasn’t

until the 1970s that the ellipsoid method was developed and proven to be polynomial by Khachian

(though this was still not practical). In 1983, Karmarker introduced the interior point method,

which is polynomial and practical.

The general form of a linear program involves variables and constraints (linear equalities or ≤ and

≥ inequalities). We call a vector ~x feasible if it satisfies all constraints, and we call the linear

program feasible is there is a feasible ~x. We call an ~x optimal if it leads to the best objective

function value over all feasible points. Finally, we call a linear program unbounded if there are

feasible ~x of arbitrarily good value.

Just from the definitions introduced, we can already show an important lemma:

Lemma 13.2
Every linear program is unbounded, infeasible, or has an optimum.
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Proof. This follows from the compactness of Rn, where we try to keep finding series of optima.

Either we find no limit, in which case the linear program is unbounded, or we find a limit, which we

converge to.

We can express a linear program in canonical form as follows:

Definition 13.3 (Canonical Form)

The goal will be to maximize the quantity cᵀ ·~x, subject to the constraint that A ·~x ≤ ~b, where
A is our matrix and the inequality sign is taken coordinate-wise. This matrix multiplication is a

shorthand way of saying that if we have rows ai , then ai · x ≤ bi .

Lemma 13.4
Every linear program can be transformed into one in canonical form.

Proof. We will show that any deviation from canonicality can be fixed, as follows:

• If our linear program asks us to minimize some quantity, we can simply maximize the negative

of that quantity.
• If our linear program has inequalities not of the form ~ai ·~x ≤ bi , then we can simply rearrange

our equation to do so.
• If our linear program has ≥ inequalities, then we can simply multiply the inequality by −1.

• If we have an equality, then we just introduce two inequalities, of the form ≥ b and ≤ b .

We also have a related form, called standard form, defined as follows:

Definition 13.5 (Standard Form)

The goal will be to minimize the quantity cᵀ · ~x, subject to the constraint that A · ~x = ~b, and

~x ≥ 0, where as before where A is our matrix and the inequality sign is taken coordinate-wise.

Lemma 13.6
Every linear program can be transformed into one in standard form as well.

Proof. We’ll show that every canonical form linear program can be transformed into standard form.

Transforming the max to a min is easy. To change an inequality to an equality, we use a trick known

as slack variables, where we add a variable si to change the inequality ~ai · ~x = bi to an equality

~ai ·~x + si = bi . Finally, we will introduce positivity by introducing two variables x+ ≥ 0 and x− ≥ 0.

Then, we just define x = x+ − x− which changes the program into a standard form one.
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14 Lecture 14: Linear Programming II

Now that we have defined a linear program and seen some reductions to the standard and canonical

forms, let’s investigate the structure of the solutions. Specifically, we will check if there exists a

solution, and how we can verify the optimality of it.

14.1 Verification and Size of Solutions

To answer these questions, let’s first consider the case of linear equalities, of the form A~x = ~b, in

the case of a square matrix A. A solution ~x can easily be verified here simply by computing A~x = ~b.

There are many criteria regarding the nature of solutions, which is summarized below:

Claim 14.1
The following are equivalent:

• A is invertible
• Aᵀ is invertible
• detA 6= 0

• A has linearly independent columns or rows
• A~x = ~b has a unique solution for all ~b
• A~x = ~b has a unique solution for some ~b

Proof. See any standard linear algebra text.

Question 14.2. Can we actually write ~x down? Specifically, we cannot do so if some components

of ~x are irrational.

Well, let’s consider how much space we need to write down a number n. For an integer n, we use

log n bits to write it down. If we have a rational number p
q
, then the number of bits is log p+ log q.

When we multiply two numbers, then their size is equal to the sum of their individual sizes. An

n-vector size equal to the sum of the sizes of the numbers in the vector, plus log n to indicate the

size of the vector. A m × n matrix has size equal to the sum of the entries in the matrix, or mn

times the size of the largest entry. The size of the matrix product is less than the sum of sizes of

the multiplied matricies themselves.

Our goal is for finding a solution polynomial in the size of the input. Obviously, if we cannot write

down ~x with the size of an input, then doing so is impossible!
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Theorem 14.3
For a square matrix A, detA is polynomial in the size of A.

Proof. Let Sn denote the symmetric group, whose elements σ are the permutations on n elements.

We define the sign of σ, as usual, to be equal to 1 if σ is in the alternating group An, and −1

otherwise. Use the formula for the determinant

detA =
∑
σ∈Sn

sgn(σ)

n∏
i=1

Ai ,σ(i)

The inner product itself is the product of n numbers, which has size at most Sn, where S is the value

of the largest element. There are n! permutations, and so the maximum value of the determinant

is at most n!Sn. The size of the determinant is then log n!Sn = O(n log n) + O(n logS) which is

polynomial in logS and n.

Corollary 14.4
The inverse matrix can be computed with polynomial size, and hence a solution can be written

down in polynomial size.

Proof. Recall from linear algebra that A−1 = 1
detA

times the cofactors of A. Each entry of the

inverse matrix A−1
i j =

detAi j
detA

is polynomial size, and hence the inverse has polynomial size. Once we

have the inverse (either through direct computation or Gaussian elimination, which can be shown

to use polynomially many operations), we can get our solution in polynomial size.

Remark 14.5. Even in a matrix whose entries are mostly zero, the size of the determinant and

hence the inverse can be O(n log n) bits. That’s a lot, but still polynomial in the input size.

Now that we’ve shown that solutions to the square matrix case can be found and written down, let’s

look at non-square matricies. When we have the equation A~x = ~b, this means that the columns

of A span ~b. If we can find a maximal linearly independent subset of these columns which span ~b,

we can augment this set to form a basis of vectors, from which we can construct a square matrix

and hence check a solution in polynomial time as per above, since any solution has to zero out the

added basis columns.

So, we have that the solution ~x can be written down for any matrix A in polynomial space and thus

it can serve as a witness for solvability. Can we now check that we have no solution to a system in

a easy-to-verify manner? We need to show that the columns of A don’t span ~b, or in other words,

show that ~b is not in the span of the columns of A, the set {Ax |x ∈ Rn}.
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Let’s first consider the 2D case. The span of A is either the entire plane, a line, or the zero vector.

Only the line case is interesting. If b is not in the subspace defined by the line, then b can be

decomposed into the sum of a vector parallel to the line and a vector perpendicular to it. We can

use the perpendicular vector y as a witness then - simply showing that yᵀA = ~0 but yᵀ~b 6= 0 will

suffice.

How do we actually find y satisfying these equations? We can either do fancy math with projections,

or be smart. Notice that if yᵀ~b 6= 0, then we can scale y appropriately such that yᵀ~b = 1. Obviously,

scaling y doesn’t change the veracity of the first equation. Then, we just need to solve

yᵀ ·
(
A | b

)
=
(
~0 | 1

)
which is just a system of linear equations that we know how to solve. This also tells us that the

size of y is polynomial in A and b, which is great!

Now we generalize to the n-dimensional case.

Theorem 14.6
A~x = ~b has no solution if and only if there is some y such that yᵀA = ~0 but yᵀ~b 6= 0.

Proof. The proof from the 2-dimensional case for the forward direction still holds, in that if some

y exists, then the equation has no solution, since y is outside the span of A. Now, for the opposite

direction, if A~x = ~b, then yᵀA~x = yᵀb. However, the left hand side is zero but the right hand side

is nonzero, implying that no solution exists.

Remark 14.7. These two linear systems provide a sort of duality, in that a solution not existing in

the second means that a solution exists to the first, and a solution existing in the first means that

there is no solution to the second.

Joke 14.8. This is the only lecture in the course that is math-heavy and devoid of algorithms.

14.2 Geometry of Solutions

Let’s now consider the geometry of the inequalities that we have. While we would love to visualize

n-dimensional space, this is currently impossible.

For the 2D case, when we plot all the inequalities, we have many lines, such that any solution must

either be above or below the lines as necessary to satisfy the linear program. The end space is a

polygon within the enclosed space itself, such that a point in the polygon itself is a solution, while

one outside of the polygon is not. This generalizes to n dimensions, where we make finitely many
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halfspaces from our inequalities, ultimately creating a convex polytope. To show convexity, it is

enough to note that two points on one side of a halfspace will have their connecting line also on

the same side.

Definition 14.9
A polytope is the space corresponding to the union of finitely many halfspaces. A polytope is

convex if for any two points on the polytope, the line connecting them is also entirely within

the polytope itself.

Now let’s consider where the optimum of our linear program is found.

Claim 14.10
The optimum can be found at some corner of the polytope.

Intuitively, moving in the same direction as the objective function will increase the value. We

will eventually hit one of the halfplanes defining the polytope, after which we can keep following

this border until we hit another halfplane at a corner that prevents us from further improving our

solution.

To prove this formally, let’s define some terms:

Definition 14.11
A vertex is a point which is not a convex combination of two other points.

A extreme point is a point that is a unique optimum solution for some objective c.

A constraint ax ≤ b, ax = b, ax ≥ b is tight when ax = b.

A point is basic if all the equality constraints are tight and if n linearly independent constraints

(including the equalities) are tight.

A point is a basic feasible solution if a point is basic and is feasible in the linear program.

Now, we claim that the definitions of vertex, extreme point, and basic feasible solution are all

equivalent.

First, we show some lemmas:

Lemma 14.12
In any standard form feasible linear program, the optimum appears at a basic feasible solution.

Proof. Suppose that we have an optimum that is not a basic feasible solution. This implies that

there are less than n tight constraints, which means that there is a degree of freedom to move ~x
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around while keeping the tight constraints. More formally, we have a non-zero-dimensional subspace

such that ~x satisfies all the constraints.

If we move ~x around, we either can improve our solution, worsen our optimum, or leave it unchanged.

The first possibility is impossible by our assumption, and likewise the second is impossible since we

improve our solution by moving in the opposite direction, which is impossible. Thus, the only

possibility is that the entire subspace is optimal.

For a general polytope, the entire subspace being optimal doesn’t mean that a basic feasible solution

exists there. However, imposing standard form does.

Currently, our subspace contains a line through the current optimum ~x.We can write this line ~x+ε~d

for some direction ~d, and we move along this line until some x hits zero. This makes a new tight

constraint. Then, repeat this enough times until x becomes a basic feasible solution.

The proof above leads to the direct corollary:

Corollary 14.13
If there is an ~x of a given value, then there is also a basic feasible solution no worse than ~x.

Remark 14.14. Practitioners like standard form, since it is useful, as shown above. Theoreticians

like canonical form, since it is pretty.

We will continue this proof and relate extreme points and vertices to basic feasible solutions in the

next lecture.
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15 Lecture 15: Linear Programming III

15.1 Equivalence of Definitions Continued

We continue our proof from last time.

Lemma 15.1
The definition of a basic feasible solution and a vertex are equivalent.

Proof. To show this, we first suppose the contrary, that a basic feasible solution is not a vertex.

Then, the solution is a convex combination of two points in the polytope, which is a line in the

polytope through the vertex, which are all feasible. We thus cannot have n tight linearly indepen-

dent constraints at the point, which means that this is not a basic feasible solution, which is a

contradiction, and thus a basic feasible solution is a vertex.

For the other direction, if we don’t have a basic feasible solution, then we have less than n tight

constraints. They then define a feasible subspace of positive dimension, which creates two points

whose convex combination is the point, i.e the point is not a vertex. Thus, a vertex is a basic

feasible solution.

Now, let us show the equivalence of extreme points and basic feasible solutions.

Lemma 15.2
The definition of an extreme point and a basic feasible solution are equivalent.

Proof. As before, we will suppose the contrary. Assume that an extreme point is not a basic feasible

solution. If it is not, then we have less than n tight constraints, which means we have a feasible line

through the solution. The only possibility for an optimum here is to leave the objective function

unchanged (as we saw before), which contradicts our definition of extreme point. This means that

all extreme points are basic feasible solutions.

For the other direction, we need to show that a basic feasible solution is an extreme point. To

do so, we assume standard form, but this easily generalizes. Let T be the set of tight xi ≥ 0

constraints. Define the objective to minimize
∑

xi∈T xi , which obviously has a minimum at 0. Now,

consider any other feasible point. It’s loose on some i ∈ T, which means that the objective value

is not optimal. Thus, the basic feasible solution is the unique optimum, and hence is an extreme

point.
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Theorem 15.3
The definitions of vertex, extreme point, and basic feasible solution are equivalent, at least for

standard form LPs.

Proof. This follows immediately from lemmas 14.12, 15.1, and 15.2.

Now that we have these proofs of optimality, we have a simple algorithm for solving linear programs:

check all basic feasible solutions. There are
(
m
n

)
finite basic feasible solutions, which is exponential

in the size of our input, but finite. To actually try all of these, we can solve the linear equations

with standard Gaussian elimination or inverse multiplication. From this, we can also conclude that

any optima has polynomial size.

15.2 Complexity

Let’s now look at the linear programming as a decision problem for now. We want to find the

complexity of answering if the optimum of the linear program is greater than some constant k.

Obviously, this is verifiable in polynomial time, and so linear programs are in the class NP . However,

is there a way to show that the optimum is less than the constant k (which will show that LP is in

co-NP)?

15.3 Duality

We can show this with the concept of duality, which is a central concept in combinatorial op-

timazation. It will give us a succint proof that we can’t do better than some bound, given that

the point is optimal. We previously saw special cases of duality before, in the max-flow min-cut

theorem, the prices of min-cost flows, the potentials of shortest paths, and in Nash equilibria in 2

player games.

In a linear program in standard form, asking us to minimize cᵀx, satisfying Ax = b and x ≥ 0.

Suppose v ∗ is the smallest value of the objective. How do we get a lower bound on v ∗?

We can multiply the constraints by some constants, then add them together. More specifically, we

multiply each equality aix = bi by some yi , then add all the equations together. We get that the

sum of all constraints is the equation yᵀAx = yb. If we find some ~y such that yᵀA = cᵀ, then

yᵀb = cᵀx, for every feasible x, then all feasible points have the same objective value! Thus, the

only linear programs for which such ~y exists are silly ones, and thus any nontrivial linear program

does not admit a ~y.
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This is too restrictive. Let’s instead try to relax our constraints and find a ~y such that yᵀA ≤ cᵀ,
coordinatewise. This tells us that yᵀb ≤ cᵀx, due to the nonnegativity constraint on xi , showing

that we have a lower bound on the value of the optimum of yᵀb. Thus, maximizing yᵀb = bᵀy

satisfying yᵀA ≤ cᵀ ⇐⇒ AT y ≤ c gives us a tight lower bound on the system! We call this new

linear program the dual program, and call the original one a primal program.

In short, we have shown the following:

Theorem 15.4 (Weak Duality)

Let v ∗ be the optimum for a linear program in standard form, and let w ∗ be the optimum for

the dual program. Then v ∗ ≥ w ∗.

As a sanity check, let’s show that the dual of a dual LP is primal. A dual linear program is one

where we need to maximize yᵀb such that yᵀA ≤ cᵀ. Converting to standard form, we need to

find min−bᵀy subject to Ay + Is = c. Letting y = y+ − y−, then our objective is to minimize

−bᵀy+ + bᵀy− such that Ay+ − Ay− + Is = c where all the vectors y+, y−, s ≥ 0. We’ve now

converted to standard form; writing this out in matrix form, our goal is to minimize the quantity

−
(
−bᵀ bᵀ 0

)
y+

y−

s


subject to the constraint that (

−A A I
)

y+

y−

s

 = ~c.

If we take the dual of the (now-standard-form) dual, then our goal is to maximize cᵀz where z

satisfies (
A −A I

)
z ≤

(
−bᵀ bᵀ 0

)
.

The first two constraints means that Az = −bᵀ. The third implies that z itself is componentwise

negative, and hence −z has all positive entries. Letting x = −z, then our goal will be to minimize

cᵀx where x ≥ 0, satisfying Ax = b, which is a LP of primal form!

Remark 15.5. The dual of a standard form linear program is a canonical form linear program. So,

both forms are necessary in the description of linear programs.
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Theorem 15.6 (Duality Feasibility Relations)

Sometimes linear programs are unfeasible or unbounded. We actually only have a few cases

relating the primal and the dual:

• Both programs are bounded and feasible.
• One is infeasible, and the other is unbounded.
• Both are infeasible.

Proof. There are three possible cases for each program (feasible bounded, feasible unbounded,

infeasible), but we can show that out of the 32 = 9 possible cases, only the four listed above are

actually possible.

Suppose we have a primal program P and a dual program D. If P is feasible, then D is not

unbounded, since we should have an upper bound on D. Similarly, if D is feasible, then P is not

unbounded, since we should have a lower bound on P.

If P is feasible unbounded, then D has to be infeasible, since we can get arbitrarily large v ∗. Similarly,

if D is feasible unbounded, then P has to be infeasible, since we can get arbitrarily small w ∗.

To show that the feasible-bounded but infeasible dual case is impossible, we need to first prove

strong duality, seen below.

With dual programs, we can find an upper and lower bounds on a linear program. How good are

these bounds? They’re actually strict bounds:

Theorem 15.7 (Strong Duality)

Let v ∗ be the optimum for a linear program in standard form, and let w ∗ be the optimum for

the dual program. Then v ∗ = w ∗.

We’ll prove this formally next lecture, but let’s see a proof from physics for intuition, since Prof.

Karger actually started out as a physics major.
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ai

The linear program that we discuss here is to minimize bᵀy subject to Ay ≥ c. We have many

hyperplanes, drawn above as lines, which define the polytope of feasibility for y , for which any

solution above these hyperplanes will satisfy our LP. If b is pointing straight up, then our optimum

is at the absolute bottom of this polytope, which we can find just by dropping a ball into this well

and letting gravity act on it. By changing the coordinate system such that b is pointing directly up,

this generalizes to any linear program. On this ball, the only forces acting on it are gravity itself

and the normal forces exerted by the hyperplanes. The net force on the ball is zero.

The normal forces point in the direction ai that is normal to each of the hyperplanes (only one is

shown above). If the magnitude of each force from wall i is xi , the condition that the net force is

zero implies that the sum of all forces
∑
aixi = Ax = Fg = b, which is our dual constraint. Further,

the magnitudes xi of the normal forces are all positive, and so the dual has seemingly popped out

of nowhere!

We have that xi > 0 only if the ball is touching that wall, since a ball not touching any hyperplane

cannot receive any normal force. The magnitudes of the xi tell us how important each of the

constraints are towards our solution, which reflects a type of complementary slackness. Further,

xi > 0 implies that the constraint is tight, and hence aiy = ci .

A compact way of writing these physical observations is then (ci − aiy) · xi = 0.This is equivalent

since it implies that either xi = 0, for which the hyperplanes exert no force, or that ci − aiy = 0,

meaning that the ball is touching that hyperplane. Summing these constraints over i yields the

equality that cᵀx = yᵀAx, and we know that Ax = b from equilibrium. Thus, at this point

cᵀx = yᵀb, and hence we have used physics to show strong duality.

Remark 15.8. It is not exactly clear here what physical correspondence the objective function of

the dual has.
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16 Lecture 16: Linear Programming IV

16.1 Strong Duality

Let’s now formalize our physics intuition from last time with some math. Consider the optimum

y ∗ for the dual programs of minimizing yᵀb where yᵀA ≥ cᵀ, and where we want to maximize cᵀx

subject to Ax = b and x ≥ 0. We will consider the subset S of maximially linearly independent

columns which are tight constraints of A, which helps simplify the proof. We will use the matrix

As and vector cs , which are respectively the restrictions of A and c to the subset S. We also have

|S| ≤ m where m is the dimension of y .

Lemma 16.1
If we can prove strong duality with respect to As , then we will also prove strong duality with

respect to the original matrix A.

Proof. If strong duality is shown for As , then we have some x∗s such that Asx∗s = b, satisfying

x∗s ≥ 0 and cᵀs x
∗
s = yᵀb. Then, if we let x∗ be equal to x∗s with all other entries zero, then this x∗

satisfies the original linear program.

Hence we can just concern ourselves with full-rank matricies, and so we will just assume that A is

full-rank now, and drop the subscript s.

Lemma 16.2
If y ∗ is optimal, then there is some x∗ that satisfies Ax∗ = b.

Proof. Assume by contradiction that there is no x∗ such that Ax∗ = b (from the physics intuition,

this means that the forces are never balanced). Then, from duality of linear equalities (mentioned

in the proof of weak duality before), there is some z such that zᵀA = 0 and zᵀb 6= 0, which we can

assume is less than zero.

Consider y ′ = y ∗+z. Then, y ′ is also a feasible solution, since y ′A = y ∗A. But y ′b = y ∗b+zb < y ∗b

contradicting the optimality of y ∗. Thus, no z can exist, and hence there is some x∗ such that

Ax∗ = b. In the physical sense, if the forces are not balanced, then the ball can move to a better

place.

Finally, we need to show that x ≥ 0. From a physical standpoint, a negative x means that the

normal force is pulling the ball towards the wall, which is infeasible.
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Lemma 16.3
A solution must have x ≥ 0.

Proof. Assume the contrary. Then, there is some xi < 0. Let c ′ = c + ei , and consider the solution

to y ′A = c ′. Since c ′ ≥ c then y ′A = c ′ ≥ c, and so y ′ is feasible for the original linear program.

The value is y ′b = c ′x∗ = cx∗ + eix
∗ = y ∗ + eix

∗. This means that y ′ would be a new minimum,

which is a contradiction as we assumed that y ∗ was optimal.

We can now prove strong duality:

Theorem 16.4 (Strong Duality)

There are values of x and y such that yᵀb = cᵀx.

Proof. The program Ax = b has a feasible solution by Lemma 16.3, and y is optimal by Lemma

16.2. We then have Ax = b and yᵀA = cᵀ. Then, multiplying the first equation by yᵀ yields the

theorem, and by Lemma 16.1 this is true for all linear programs.

From strong duality, we can actually conclude a unintuitive fact:

Corollary 16.5
Optimization of a linear program is as hard as finding a feasible point in the linear program.

Proof. Consider where we have a primal program to minimize cᵀx subject to Ax = b and x ≥ 0,

and also to maximize yᵀb subject to yᵀA ≤ c. Solve both of these simultaneously. If we do, then

any feasible solution to the combined linear program corresponds to a feasible optimum in the set

of dual programs. Thus, a feasible point finder can act as a optimal solution finder.

16.2 Taking a Dual

We have shown that duality holds for any standard primal program with its canonical dual. Though

we can convert any linear program to these forms, this is a hassle.

Intuitively, adding a primal constraint means adding a dual variable, and making the primal harder

makes the dual easier. If the constraints are as tight as possible (equality) then the dual is unre-

stricted in sign. A natural constraint is a nonnegative variable. From the physics standpoint, if we

had lower bounds on the minimum, then we must have non-negative forces xi , and likewise for the

reverse case.
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We can actually dualize every linear program, with a few special rules. Let’s look at an example

that shows everything we need to take care of:

Example 16.6
Suppose that our linear program is to minimize c1x1 + c2x2 + c3x3 subject to x1 ≥ 0, x2 ≤ 0,

and x3 unrestricted. The constraints will be as follows:

A11x1 + A12x2 + A13x3 = b1

A21x1 + A22x2 + A23x3 ≥ b2

A31x1 + A32x2 + A33x3 ≤ b3

For the dual, we want to maximize the quantity y1b1 +y2b2 +y3b3. The constraints then become

y1A11 + y2A21 + y3A31 ≤ c1

y1A12 + y2A22 + y3A32 ≥ c2

y1A13 + y2A23 + y3A33 = c3

where y1 is unrestricted, y2 ≥ 0 and y3 ≤ 0, which comes from the requirement of weak duality

that the y serves as a lower bound.

The changes that we have to make are summarized below:

Primal: Minimization Dual: Maximization

Constraints: ≥ bi Variables: ≥ 0

≤ bi ≤ 0

= bi unrestricted

Variables: ≥ 0 Constraints: ≤ cj
≤ 0 ≥ cj

unrestricted = cj

16.3 Duality - Shortest Path Problem

While solving the dual program is mathematically equivalent to solving the primal, frequently, it

makes sense to consider the dual, and ask what it means, in order to learn more about the problem

itself.

Consider the shortest path problem, where we try to find the shortest path from s to t. If we use a

physical interpretation, connecting each vertex with a piece of string, and lifting s, then the tension

of each string pulls the vertices up. Some strings will be tight and actually cause a tension, while

other strings will be slack and not do anything. The condition for all strings is that the distance
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between two vertices must be less than ci j , since strings are inextendible. The shortest path occurs

when there is a set of strings connected from s to t all in tension.

For the shortest path problem, if we let dv be the height from the ceiling for vertex v , then we then

want to maximize dt − ds such that dj − di ≤ ci j for all i , j. This is our dual linear program we want

to work with, where we have n2 constraints corresponding to the n2 verticies, and the n verticies

corresponding to dk .

We can write this program in matrix from as A · ~d ≤ ~c, where A is a n2 × n matrix whose rows

correspond to each edge. Specifically, for each row ai j , the ith entry in the row is equal to 1 and

the jth entry is equal to −1, with all entries corresponding to 0. If there is no edge between two

vertices, we will set ci j = 0.

For the dual, we will have n2 variables corresponding to our n2 original constraints. We have one

variable yi j for every edge, and our goal will be to minimize
∑
ci jyi j . Our n constraints will correspond

to each vertex v :
∑

j yj i − yi j = 0 if v 6= s, t, while
∑

j yjs − ysj = −1, and
∑

j yjt − ytj = −1, where

y ≥ 0. This is a min-cost flow problem of sending one unit of flow!

This is amazing. Just by taking the dual, we have already found an alternative formulation of the

shortest paths problem, through pure algebra.
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17 Lecture 17: Linear Programming V

We saw that mechanically taking duals are very helpful in providing insight into some problems.

Let’s now look at the max flow problem, framed in terms of a linear program:

17.1 Duality - Max Flow Problem

We will first change this into a circulation by adding a t → s edge, making the notation simpler.

Suppose we have xvw flow from v to w. Then our objective is to maximize xts , and our constraints

are the conservation, capacity, and positivity constraints:

∀v :
∑
w

xvw − xwv = 0

∀v , w : 0 ≤ xvw ≤ uvw

Since we are trying to maximize xvw , this is the dual, and we need to find the primal as a minimization

problem.

We have n + m constraints, corresponding to the number of vertices and edges (with uvw = 0 if

there is no edge). When we take the dual, we will have n +m variables, let us say, zv , yvw . Then,

the objective becomes minimizing
∑
uvwyvw .

We had m variables earlier, and so we will now have m constraints. If we consider the matrix

representation of the dual program, then we can simply look at the columns to find the constraints

necessary for the primal. The matrix for the dual program is a m + n ×m matrix, with an identity

matrix of dimension m on the top, and then n rows with column entries equal to 1, 0, or −1

depending on whether an edge enters or exits that vertex.

Let’s now look at the columns, so we can take the dual. In a specific column in the rows corre-

sponding to the identity matrix, we will simply have a 1 in the row corresponding to yvw . In the

vertex rows, we will see a +1 if there is an edge corresponding to row zv and a −1 corresponding

to row zw . Thus, the constraints in the dual simply simplify to yvw + zv − zw . This value, for each
edge, must be ≥ 0 by our results about the dual, and ≥ 1 if vw = st. The constraints on sign

result in yvw ≥ 0 and zv are unrestricted.

Summing up, our final result is to minimize
∑
uvwyvw , subject to the constraints that

yvw + zv − zw ≥ f (vw)

where f (vw) = 1 if vw = ts and 0 otherwise, and yvw ≥ 0.
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Let’s now see how we can interpret this new problem. The constraints remind us of the triangle

inequality, and we can interpret the yvw as lengths and zv as distances. We can further assume that

yts = 0, since in a standard max flow problem we have uts =∞. So, our constraint on the edge ts

just becomes zt − zs ≥ 1, or that the distance between t and s is ≥ 1. We can further shift all the

zi by zs , such that zs = 0, since nothing changes in the objective.

Thinking about this problem geometrically now, we have zs at a distance of 0, and zt at a distance

of at least 1, on a number line. The vertices zv are distributed along this line between (0, 1) and

the length between v and w, yvw , has to be greater than the difference in distances. This is an

embedding of the graph on a line (example shown just for one pair of vertices):

s v wyvw t

0 1

We needed to minimize
∑
uvwyvw . What are good edge lengths to use for the yvw? Well, we can

interpret the zv as pipes, and with uvw as a cross sectional area between edges vw. Thus, if we

choose good lengths for yvw , then the objective is simply to minimize the total volume
∑
uvwyvw ..

What does this have to do with the max flow problem that we originally started with? Well, if we

wanted to send f units of flow from s to t, then we would have needed to send f units of flow

across our network, so our volume is at least f . The minimum volume of the network embedding is

therefore greater than the volume of flow in the max flow network, providing a physical argument for

weak duality! And by strong duality, we know that the minimum volume of the network embedding

is actually sufficient to send that required flow.

To proceed, let’s take a brief detour and talk about complementary slackness, which will help us

complete this analysis.

17.2 Complementary Slackness

We’ve introduced this term quite a few times before, but let’s now introduce this formally for an

arbitrary linear program.

Suppose that we have a pair of linear programs, and we have a feasible x and y for respectively

the primal and dual linear programs. We define the duality gap to be equal to cᵀx − yᵀb, and by

weak duality this is ≥ 0. Strong duality tells us there exists x, y such that the duality gap is actually

equal to zero.
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We will write our dual program as one where we want to maximize yᵀb given that yᵀA ≤ cᵀ, and
the primal program as one where we want to minimize cᵀx subject to Ax = b, with x ≥ 0. If we

introduce a slack variable s ≥ 0 such that yᵀA+ sᵀ = cᵀ, where s ≥ 0, then we can compute the

duality gap as follows:

cᵀx − yᵀb = (yᵀA+ sᵀ)x − yᵀb = sᵀx

By weak duality, we know that sᵀx ≥ 0, and this is only equal to 0 (strong duality) if either the

si = 0 or xi = 0. Thus, either xi is tight at 0, or yᵀAi is tight at ci . This is the complementary
slackness condition.

Max Flow Continued

Let’s apply complementary slackness to our problem. Consider the optimum of the primal program,

where we have optimal y ∗, z∗. If we want the minimum volume overall, we should take yvw = zw−zv ,
in order to make all those constraints tight, and leading to the smallest objective.

To find the optimal z∗, let’s consider the set S consisting of all vertices v such that z∗v < 1. This

makes a s − t cut. Note that zs ∈ S and zt ∈ S. If an edge vw leaves S, then yvw ≥ zw − zv > 0.

Since this is not tight, then by complementary slackness, the corresponding constraint in the dual

program must be tight. Thus, xvw = uvw if there is an edge that goes from S to S.

Suppose now that edge vw enters S. Then, zv > zw and since yvw ≥ 0, we know that zv +yvw > zw ,

meaning that the corresponding constraint is slack. This implies that xvw = 0. This means that

this is a min-cut, and is equal to the value of the flow! Every edge leaving the cut is saturated,

and every edge entering the cut is equal to 0.

We’ve just proven the max-flow min-cut theorem without an ounce of combinatorics.

To wrap up solving this program, we can just set zv ∈ S = 0 and zv ∈ S = 1, and set yvw = 1

for cut edges. This satisfies all the constraints of the primal program, and corresponds to a max

flow in the original graph. Complementary slackness showed that we can have a solution which

corresponds to a cut in the graph, hence showing the max-flow min-cut theorem. (Strong duality

could not have done so by itself, since some yvw could have been fractional without much meaning

in the original graph).

74



17.3 Duality - Min-Cost Circulation

The linear program corresponding to the min-cost circulation problem is very similar to that of

the max flow. The only difference is in the objective function, where here we want to minimize∑
cvwxvw . The constraints remain the same.

For the dual, everything likewise remains the same, except for the fact that we need to maximize

the objective
∑
uvwyvw , and the variables on the right hand side of the inequalities also change.

The constraints then become yvw + zv − zw ≤ ce and y ≤ 0. If we rewrite pv = −zv , then our

condition is that yvw ≤ cvw + pv − pw , which is equivalent to yvw ≤ the reduced cost!

Now let’s apply complementary slackness. If xvw < uvw then the constraint is slack, and in the

optimum the reduced cost is yvw = 0. If the reduced cost is less than 0, then yvw < 0 is slack, and

hence xvw = uvw - the edge is saturated. If the reduced cost is greater than 0, then xvw = 0, i.e.

there is no flow along that edge. With linear programming techniques, we have thus recovered our

previous results of min-cost flows as well.
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18 Lecture 18: Linear Programming VI

Now that we’ve talked a lot about the structure of linear programs, let’s talk about how we can

solve them. Earlier we already found an algorithm that works by simply trying every basic feasible

solution, but this was too slow.

18.1 More on Basic Feasible Solutions

To improve, let’s be smarter about our search. We’ll work with linear programs in standard form,

Ax = b, x ≥ 0.We can assume that A is full row rank, since all the other rows of linear combinations

of constraints are redundant (or contradictiory).

Suppose that the matrix A contains m constraints (or that A is m × n). Then, at a basic feasible

solution, all the Ax = b constraints are tight, and we must have n − m tight constraints with

respect to the x ≥ 0 constraints, which means that n −m of the variables must be equal to zero.

If we rearrange and write out our matrix equation, we get the following:
A1 A2

In−m 0

0 Im

 ·
x


=

=

≥


b

0

0


where A = (A1|A2).

In the top n rows (consisting of the matrix A, In−m, and the zero matrix next to it), we have

a basis by definition, and so those rows are linearly independent. Similarly, the columns of that

square matrix must also be linearly independent. It is clear that the first n−m columns are linearly

independent, and the last m columns must also be independent for a solution to be a basic feasible

solution.

Thus, we arrive at another definition of a basic feasible solution: m linearly independent columns

of A constraints cover all slack variables xj > 0. The set of the last m columns is called a basis
(it is a mathematical basis, but this term has a more specific meaning in the simplex algorithm).

The corresponding nonzero xj are called basic and the other variables are called nonbasic. In fact,

if we have the set B of basic variables, then we can compute x. We can do this by considering A

restricted to the columns corresponding to B (a full rank matrix having dimension m × m,) and

then inverting this matrix AB to recover x (the other x 6∈ B are equal to zero).

Note that we can have multiple bases B for the same vertex x, since we can have arbitrarily many

tight constraints at zero. Only when we have m slack variables can we have a unique basis.
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In summary, x is a vertex if there is a basis B such that AB is m × m nonsingular, where xB =

A−1
B b ≥ 0, and all other xi = 0.

18.2 Simplex Method

The simplex method starts at a basic feasible solution, and repeatedly moves to a better one, via

local search. The idea is to follow an edge to a new vertex, and continue repeating this until we

get to the optimum. Since an edge is defined by n− 1 tight constraints, we are essentially moving

along this edge by swapping out one of the tight constraints for another.

Let’s look at the mathematical details now. We break up A as
(
AN AB

)
and x as

(
xN xB

)T
.

Then, the condition that Ax = b is equivalent to ANxN + ABxB = 0, which is true for all feasible

x (not just where xN = 0, which happens at a vertex). Then, we can solve for xB : xB = A−1
B (b −

ANxN). We can also write the objective as cᵀx = cᵀBxB + cᵀNxN = cᵀBA
−1
B b + (cᵀN − c

ᵀ
BA
−1
B AN)xN.

The first quantity is constant for a specified basis, and we call the second our reduced cost
c̃N = cᵀN − c

ᵀ
BA
−1
B AN. Then, our condition for optimality occurs when all components of c̃N ≥ 0,

since no feasible points have a smaller objective.

If some nonbasic cj < 0, this means that we are not at an optimum. We can improve by increasing

xj , since when xj gets bigger, the objective decreases. (Note: this also modifies xB) We continue

until we hit xi = 0 for some basic xi ∈ xB. Then, we can swap xi and xj - xj becomes slack and

enters the basis, while xi becomes tight. The process of swapping these basic variables is known

as a pivot. Thus, a simple way to describe the simplex algorithm is to pivot until the optimum is

found.

While this seems like a good algorithm, we have a few problems. One problem is that we can have

cycles of pivots. This is since some xi may already be at 0, and increasing a nonbasic xj would lead

to infeasibility. Though we can swap xi and xj , this doesn’t change the objective, and hence there

is a possibility of cycling pivots. In order to avoid this, we need to design a guaranteed noncycling

pivot rule. Indeed this is possible, with the “lexicographically first” heuristic. This works since you’re

always improving the lexicographical order of the basis, and so you never get the same basis more

than once. Thus, we have a finite runtime (though of runtime proportional to
(
m
n

)
)

Another problem is the finding of a feasible point that we need at the start of the algorithm. We

know that finding a feasible point is very hard in general, but not for specific polytopes. We can

do so by optimizing a different linear program Q, for which finding a feasible point is easy. The

optimum of Q then gives a feasible solution for the original LP (this will be fleshed out on a PSET).

With these changes, the runtime is still bad, and is not apparently polynomial. In practice, however,

simplex is usually fantastic, fast, powerful, useful, and easy.
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Over the last 60 years, people have been trying to prove if there are pivoting rules that result

in polynomial runtime or not. Klee and Minty made the Klee-Minty Cube, which is a twisted

hypercube, for which many pivoting rules visit all vertices on this cube (leading to an exponential

lower bound for these pivoting rules). Hirsch made a conjecture that if there is a polytope, that the

maximum number of pivots required, equal to the diameter of the polytope, is m+ n, but this was

disproved by Santos, who showed that the diameter is ≥ (1 + ε)(m + n). This is still good enough

for our purposes, but the pivot path may not be monotonic, as the simplex requires. Kaloi and

Kleitmen showed that the path length is at most mlog n and also gave a simplex algorithm with a

runtime of 2
√
n. Spielman and Teng used smoothed analysis to show that any linear program, plus

small random perturbations, ensures the existence of a fast simplex algorithm.

18.3 Simplex and Duality

Recall from earlier that we defined the reduced costs c̃N = cᵀN−c
ᵀ
BA
−1
B AN and we have an optimum

when all c̃N ≥ 0. If we define yᵀ = cᵀBA
−1
B , then y

ᵀAN = cN − c̃N ≤ cN at an optimum. Then, we

have that yᵀA ≤ c. We also have that yᵀb = cᵀBxB = cᵀx, or that y is a dual optimum! Thus,

finding the basis for an optimum x in the simplex algorithm, also finds the optimum y in the dual.

More generally, every basis gives some y , and the duality gap yᵀb − cᵀx always decreases, letting

us know exactly how far we are from the optimum. This gives another way to prove strong duality,

by showing that simplex terminates (showing that the duality gap goes to zero).
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19 Lecture 19: Linear Programming VII

19.1 Ellipsoid Method

The ellipsoid method is essentially a fancy binary search algorithm. Let’s first consider a simple

problem, which we know how to solve:

Example 19.1
If I’m thinking of a number between 1 and 100, then how do you find what it is? The obvious

answer is binary search.

But this is a non-answer for many cases! If we had no bounds on what the number could be,

then we can’t start the search at all! The second case is the assumption that the ‘number’ is

not necessarily an integer, and where we once again need infinitely many searches. This can be

bounded by the bit length of the solution if this is known.

Ellipsoid essentially generalizes this approach to many dimensions. It works as a feasible point

algorithm, rather than an optimization problem, but it doesn’t matter as discussed before.

Let’s now try the above binary search to a polytope that defines a linear program. We can start by

splitting the volume of feasibility with hyperplanes, but this requires exponentially many iterations,

similar to what we had earlier, since we don’t know where the polytope is. How do we find a feasible

point? Well, the moniker of the ellipsoid algorithm comes in handy, in where we draw a very large

ellipsoid, and then shrink the ellipsoid depending on where the region of feasibility is of a specific

hyperplane.

More specifically, we will query the center of the ellipsoid. If the center is in the polytope, then we

are done. Otherwise, there should be a separating hyperplane through the center of the ellipsoid

that doesn’t touch the polytope, which has the polytope entirely onto one side. The reason is that

there is some violated constraint (since the center is not feasible), and we can simply shift that

constraint to the center of the ellipsoid.

The hard part is actually making the smaller ellipsoid, given this hyperplane. We essentially want

to keep all the points that the hyperplane says are good, but with an ellipsoid. Now is a good time

to actually define an ellipsoid, before proceeding further:
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Definition 19.2
An ellipsoid is a sphere stretched on various axes, defined by a center z and a transformation

matrix D on the sphere. It contains all the points x such that (x − z)ᵀD−1(x − z) ≤ 1. D has

to be BBᵀ for some invertible transformation x 7→ Bx + z. If D is a diagonal matrix, then this

just scales the coordinate axes.

Theorem 19.3
Given a unit sphere and a vertical hyperplane, we can create an ellipsoid that only covers the

right hand side of the sphere, with a smaller volume than the one we started with.

Proof. It is clear that the center of the new ellipsoid must be shifted somewhere to the right if we

want to cover only the right half of the ellipsoid. So, we will shift it by some ε to the right. The

new coordinates will be (ε, 0, . . . , 0), and the definition of this new ellipsoid now includes all points

that satisfy d−1
1 (x1 − ε)2 +

∑
i>1 d

−1
i x2

i ≤ 1, where we assume the matrix for the new ellipsoid to

be diagonal.

What di can we use? Well, the volume of the ellipsoid is just the square root of the product of the

di , and we want this to decrease. We additionally want it to contain the half sphere that we care

about. Let’s just plug in points, and let them tell us what we need:

If we plug in the point (1, 0, . . . , 0) then the condition becomes d−1
1 (1 − ε)2 = 1, so d1 has to be

(1− ε)2 or greater.

If we plug in the point with all zeros except xi = 1, then the condition becomes ε2

(1−ε)2 + d−1
i ≤ 1

and so d−1
i ≤ 1− ε2

(1−ε)2 ≤ 1− ε2.

The volume is then
√∏

di ≤ 1−ε
(1−ε2)n/2 . If we choose our di to be the minimum possible values, and

set ε = 1
n
, then the new volume is 1−1/n

(1−1/n2)n/2 ∼ 1−1/n
1−1/2n

≤ 1 − 1
2n
. Note that this matches with our

half-length reduction in a standard binary search, when n = 1. It takes a bit more work to show

that all points in the right half of the sphere are also in the new ellipsoid, which will be omitted.

Corollary 19.4
Given any ellipsoid, we can perform a shrinking and result in a smaller ellipsoid covering one

side.

Proof. Consider the linear transformation bringing that ellipsoid to the unit sphere. Perform it,

apply the previous theorem to find a smaller ellipsoid, and then invert the transformation, creating

a smaller ellipsoid that covers the original requisite half, with a volume reduction of 1− 1/2n.
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Now let’s look at runtime. We still have two unanswered questions - how big is our starting ellipse,

and how much do we need to shrink? While we couldn’t solve this in the 1D case, we do have

some new information in the n-dimensional case - namely that of the constraints. If our solution is

d bits, then we can look at an ellipsoid of size 2d to for sure contain the solution. But we earlier

showed that the number of solution bits is polynomial in the constraint bits, and so we can start

with a very large sphere of size 2polylog(input bits). Note that this covers all vertices, but may not

include unbounded solutions.

Now, for our ending size, for now, suppose that the solution has full dimension. Then, all the

coordinates are polynomial size, and the volume is proportional to the determinant, which is also

polynomial size. Thus, the ending volume is ≥ 2−polylog(input bits). We thus need a shrinkage of

4polylog(input bits). 2n reductions will shrink by approximately 1
e
, and so we can finish the shrinking in

(weakly) polynomially many steps.

With the same argument, we can show that it takes O(log 1
ε
) steps to get within ε of the feasible

points. We can use this to get around the volume problem. Specifically, if we know that the input

size, then there is a certain minimum distance between lattice points, let us say, d. Now, we look

at each constraint, and if we say that the constraint is satisfied within a distance of ε = d
3
of the

actual constraint, then the volume of feasibility expands to a nonzero amount. The ε is chosen

small enough such that this coverges uniquely on one lattice point after this many iterations.

Remark 19.5. You need a book to fill in the handwavy details of this description. Recommendation:

Grotschel, Lovasz, Schrijver - a seminal work that does everything here carefully.

Note 19.6
While we could just do the method of feasibility-optimality interconversion with attaching the

primal to the dual, what we can instead do is binary search on the optimum. Specifically, add

a constraint that says that the optimum is greater than some quantity, and then just binary

search until you get feasibility.

Consider the separation problem the problem of finding a violated constraint, given any infeasible

point. The ellipsoid algorithm shows that from a separation oracle, we can find feasibility, and

hence find optima, in polynomial time. This is useful when we have exponentially many constraints,

but a short description of the solution. This shows the counterintutive fact that after examining

polynomially many constraints, we can actually satisfy all exponentially many. We can further show

that separation is equivalent to optimization (check the referenced book above).
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19.2 Interior Point Method

The ellipsoid algorithm is horrible in practice - even in the best implementations, the runtime is

about O(n6). The interior point method, published in 1985 by Karmaker, rather builds on the

simplex algorithm. Instead of going along the boundaries of the polytope as in the simplex, the

interior point method, as suggested by its moniker, goes through the interior of the polytope.

This avoids the complex boundary structure that we had with the simplex. If we consider the

physical intuition from before, the worry about the traditional simplex algorithm is that the ball will

roll down, hit all the walls, and bounce around. What we can introduce is a magnet next to each

wall, that basically repels the ball, and lets it roll smoothly without touching walls.

Mathematically, this is represented as a potential function, but here the potential function is used

in its actual implementation, rather than just an analysis tool.

When we have a linear program Ax = b such that x ≥ 0 and we are trying to minimize cᵀx, then

solving the first constraint is easy with linear algebra, but the second constraint is hard to satisfy

due to all the hard corners that it makes. Thus, we can define a logarithmic barrier function
G(x) = cᵀ − µ

∑
ln xi , and minimize that instead. If any of the xi are close to 0, then this barrier

function is large, and if xi is negative, then the function is infinite. This is the mathematical

implementation of our magnets.

To actually perform the algorithm, we start with a large positive x, and head towards the minimum

of G(x).We do so using gradient descent, where we project the gradient onto the Ax = b subspace

(to maintain feasibility). This will steadily head towards the minimum, without letting any of the

xi go to zero.

There is a lot of mathematical machinery that we use to prove these bounds, and there are also

some issues that arise if the gradient is perpendicular to the subspace. If we ignore this, we also

have the problem that we don’t actually find the minimum, especially if the xi are close to 0. To

get around this, we can make µ vary with xi , and we can use rounding to find the actual lattice

point solution. This is also weakly polynomial, but much more practical, and sometimes even beats

the simplex algorithm.

Now, this is the state of the art of linear programming techniques. There is one central question

remaining:

Question 19.7. Is there a strongly polynomial linear programming algorithm?

We don’t know. But if you answer this question, then you get an A, and can read many interesting

papers along the way.
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20 Lecture 20: Approximation Algorithms I

Up until now, we’ve been talking about tractable problems, which we could solve in polynomial

time and the central question was how fast we can solve them. Now, we’re going to switch tackling

intractable problems, where we now care about how good we can solve the problem. While most

of these intractable problems are known to be NP-complete, some other problems can be solved in

polynomial time, but are way too slow.

Alternatives to complete solutions can include solving special cases in polynomial time, showing

that things are polynomial for random inputs, or trying to improve the runtime of an exponential

algorithm to a smaller exponent. Another method is to use a heuristic, that is generally fast in

practice.

20.1 Introduction to Approximation Algorithms

Another way to do so is through approximation algorithms, which we will talk about for the next

few lectures. We’ll be talking about optimization problems, in where we have instances I, solutions
S(I), and a value function f : S(I)→ R. The goal is to maximize or minimize f , and find the best

solution OPT (I).

Example 20.1
One problem we’ll be taking a look at is known as the bin packing problem. We have items

of various sizes, and we want to distribute them into bins of size 1, minimizing the size of our

bins. An instance is defined by the items that we have, and a solution is a distribution of items

to bins. The value function is equal to the number of bins in the solution, and our goal is

minimization.

When we solve problems like this, we make some technical assumptions. The inputs and range of

f can be assumed to be either rationals or integers, since we don’t know how to deal with real

numbers. We additionally assume that the value function gives us a polynomial-size number, so we

can actually write down the solution. Additionally, we want the problem to be solved in polynomial

time, as usual.

Note 20.2
NP-hardness actually concern decision problems, rather than optimization. They ask whether

we can decide if some optimum ≥ k or not. If we can solve the optimization problem, then we

can also solve the decision problem. Thus, if the corresponding decision problem is NP-hard or

NP-complete, then the optimization problem is as well.

83



We can now define an approximation algorithm to be one such that for any input I, outputs a

feasible output in S(I).

For the bin-packing problem, one approximation algorithm is simply to put every item into its own

bin. Obviously, this is not a very good approximation algorithm, and so we need to somehow define

the quality of an approximation algorithm. We can either care about the quality on a specific

instance, or the worst case over all instances (what we will mainly focus on).

Our first measure of quality is an Absolute Approximation, where we say that an algorithm A is

a k-absolute approximate algorithm if for all instances I, we have that |A(I)−OPT (I)| ≤ k.

Example 20.3
Consider the graph coloring problem: Given a graph G, we assign colors to each vertex, such

that no neighbors have the same color, find the minimum number of colors necessary. This is

a very hard problem and is also very hard to approximate.

There is a easier problem regarding one subset of the general graph coloring problem - planar
graph coloring. Here, we draw without crossing edges, and the very famous four-color theorem
says that any planar graph is 4-colorable.

We can easily create a 4-absolute approximation algorithm by simply implementing the proof of

the 4-color theorem. But we can do better, by looking at specific cases when graphs are not

colorable. 0-colorable graphs are those which have no vertices. 1-colorable graphs are those

which have no edges. 2-colorable graphs are those that are bipartite, and we can color these

easily with a greedy algorithm. We can therefore be exact on 0−2 colorable graphs, and so our

approximation algorithm is actually a 1-absolute approximation algorithm. We can’t actually

make any progress on 3-colorability (this can be shown to be NP-hard). This can be made into

a 0.5-absolute approximation if we only care about the number of colors we need, by simply

outputting that we need 3.5 colors (but we usually care about an actual solution).

There is also a similar edge coloring problem, where we try to color a graph’s edges. Vizing’s
Theorem states that every graph of degree ∆ can be edge-colored with either ∆ or ∆+1 colors,

and so we can also get a 1-absolute approximation algorithm for the edge-coloring graph.

However, absolute approximations are often impossible to get exactly:
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Example 20.4
Consider the knapsack problem, where you are a shoplifter with a sack of size B, and the store

has items with profits pi and si . The goal is to find a maximum profit set of items of size ≤ B.
This is an NP-hard problem. We can assume integrality, as usual.

There is no k-absolute approximation algorithm for the knapsack problem, unless P = NP. We

can show this by multiplying all the prices by k + 1. Then, the optimum is also multiplied by

k + 1, and in fact all solutions are multiples of k + 1. If we have a k-absolute approximation

algorithm, then we must be within k of the optimal, and so we’ve found the optimal solution

in polynomial time.

Another example where absolute approximations fail is in the maximum independent set or the max

clique problem:

Example 20.5
Themaximum independent set problem is when we want to find a maximum subset of vertices

with no connecting edges, in a graph G. This is known to be NP-complete.

There is no k-absolute approximation algorithm for the maximum independent set problem,

unless P = NP. We can show this by making k + 1 copies of the graph. Suppose that the

optimal value is K. Then, in the new graph, the optimal value is K(k + 1) = Kk + K. If we

find a k-absolute approximation, then we will get a feasible solution with at least (K− 1)k +K

vertices. The average number of vertices in each subgraph is K−1+ 1
k+1

, and by the pigeonhole

principle, in the new graph there is at least one graph with K vertices, which allows us to find

the optimum.

Hence, we instead define a relative approximation, in where an α-approximation solution for I has

value at most αOPT (I) for a minimization problem, and at least OPT (I)/α for a maximization

problem. By definition, α ≥ 1. An algorithm is called an α-approximation algorithm if it always out-

puts an α-relative approximation. Since we usually cannot find a absolute-approximation problem,

we will focus mostly on relative approximations.

Note 20.6
Some people invert this definition and always have α ≤ 1. But this should be clear from context.

20.2 Greedy Algorithms

While greedy algorithms are known to give the wrong answer for many problems, sometimes they

give a nice approximation.
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Example 20.7
Consider the max-cut problem, where we want to find a cut with the most crossing edges. The

greedy algorithm here just places each vertex on the side which is opposite the most previously

placed neighbors. This is a 2-approximation algorithm - the optimal is ≤ m, and our greedy

algorithm can easily be seen to achieve m
2
, since at least half of the edges enter the cut.

Another problem where greedy algorithms are okay in approximation is the set-covering problem:

Example 20.8
In the set-cover problem, we have n items and m subsets, and we want to find a collection

of subsets that “cover” the items, or a set of subsets whose union is equal to all items. The

greedy algorithm just works by choosing the subset with the most uncovered items.

Suppose that the optimum is k. Then, the first set has to cover ≥ n
k
items. Then, at most(

1− 1
k

)
n items remain. After t steps, ≤

(
1− 1

k

)t
n items remain. When this quantity is less

than 1, then we have covered all items. Thus, by solving, we see that t > ln n
− ln(1−1/k)

∼ k ln n.

The greedy algorithm gives us a O(log n) approximation.

Now, we will tackle the vertex-covering problem, which is similar to the set-covering problem:

Example 20.9
In the vertex-cover problem, we are given a graph G, and we want to cover the edges with

vertices, or in other words, every edge connects some covered vertex. We can relate this to the

set-covering problem by considering each vertex as a set of its incident edges, and this tells us

that we have a good O(log n) approximation algorithm.

We can also relate this to the maximum independent-set problem. The complementary set of

vertices is an independent set. Or, in other words, we can partition the graph into a vertex

cover and an independent set.

It turns out that we can actually do a lot better than the O(log n) solution we had before.

Suppose that we have an uncovered edge vw. Either v or w is in the optimal solution. If we

take both vertices v and w, then we’ve reduced the size of the optimum by 1 by taking two

vertices, and so we can get a 2-approximation algorithm.

Surprisingly, even though the vertex-cover and maximum-independent set problems are complemen-

tary, we can’t get a good approximation for the maximum-independent set problem! For intuition,

consider a problem whose solutions are in [0, 1]. If the optimum is close to 1, then 1 is a nice

approximation. But the complement therefore has an optimum close to 0, and it is much harder

to approximate the complement, since 0 is an ∞ approximation.
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20.3 Scheduling Theory

In the scheduling problems, we have a collection of n jobs, which can run on m machines. Our

goal is to optimize something, either the total runtime, average completion time, waiting jobs, etc.

and we also have constraints. The constraints are on the machines themselves - we may have one

machine, parallel machines, related machines and unrelated machines, whose respective problems

are labelled as 1, P,Q, and R. Each machine is allowed to have preemption of jobs, which are

represented by release times rj and dj (where we can’t start before rj and can’t start after dj). In

a general analysis, we will say that we have m machines and n jobs.

Our focus at first will be on the P ||Cmax problem, which tells us that we have identical machines,

with no constraints, where we want to minimize the last completion time. In other words, we want

to minimize the maximum over all machines of
∑

machine pi . This is known to be NP-hard.

Our greedy algorithm will assign a job to the least loaded machine (also known as Graham’s Rule,
showing that being born in the right time gets your name on a simple thing). The average load∑
pi
m

is a lower bound on the optimum, but not good enough for the analysis. For example, if we

only have one job, the optimum is m times the average load, and this m-approximation ratio we

have shown is unacceptable. We’ll finish this problem next time.
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21 Lecture 21: Approximation Algorithms II

21.1 Scheduling Theory Continued

We needed to find a good lower bound in order to show our greedy approximation is actually good.

Previously, we looked at the average load, but this was a bad lower bound when there are few jobs.

Another lower bound is the length of the longest job, but tons of tiny jobs make this a bad lower

bound as well. Since they’re bad in different situations, let’s look at the sum of them instead, which

should cover both cases. Let the average load be L and the length of the max job to be pj .

Consider the max load machine (the one that finishes last). By assumption, we know that when we

added this last job, all other machines had a larger load. This means that this machine originally had

a lower load than average L′ at that time. The finishing time is then less than L′+OPT ≤ 2OPT.

We can make this bound slightly stronger, since our average at that time does not include the job pi .

We can then say that the finishing time is less than L′+ pj = L′+
pj
m

+ pj
(

1− 1
m

)
≤
(

2− 1
m

)
OPT.

Note that this algorithm is online, in that we can start scheduling jobs whenever jobs arrive. Another

interesting thing is that this 2− 1
m
bound is tight. We can show this by starting with tons of tiny

jobs (m
ε
jobs of size ε) and then one big job of size 1. This will relatively evenly distribute the jobs

at first, and then add on the big job at the end. An optimal algorithm would be to give the big

job to one machine, and then schedule all the small jobs greedily. This actually achieves the upper

approximation ratio of 2− 1
m
.

We can get around this issue with a heuristic of scheduling the longest job first, known as the longest
processing time (LPT) heuristic. It’s actually possible to show that this gives a 4

3
-approximation,

but is not online.

21.2 Approximation Schemes

Now that we’ve explored some greedy heuristics, let’s consider approximation schemes in general,

which answer the question of how good we can get. It’s not exactly clear how we can even approach

proving this. Using techniques from complexity theory, we can define an approximation hardness,
which gives some lower bound on how good an approximation algorithm can be, unless P = NP.

Definition 21.1
We define an approximation scheme for a problem to be a family of algorithms Aε such that

Aε is a (1 + ε)-approximation algorithm that runs in polynomial time.
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There are some problems for which we can get arbitrarily good approximations running in polynomial

time, for a set epsilon. This last point is important in that, for example, a runtime of O(n1/ε2
)

would be a feasible approximation scheme. So, we define another class of runtimes, fully polynomial
approximation schemes (FPAS), which have runtime polynomial in n and 1

ε
.

Let’s first explore FPASs, which are generally easier to think of, but also have a nice connection

to psuedopolynomial algorithms. In general, these are the best that we can possibly do, since

NP-hardness ensures that no polynomial algorithm exists (unless P = NP ).

21.2.1 Knapsack Problem Revisited

Consider the knapsack problem again, and try to find a psuedopolynomial algorithm for integer

profits (the integer sizes case will be on the homework). We can use dynamic programming to

solve the problem. If we define B(j, p) as the smallest set (in size) from items 1 to j that achieves

profit p, and compute B(n, p) for every p, then we can solve the problem by simply searching for

the largest profit achievable that is under the required size. It is easy to see by casework that

B(j + 1, p) = min(B(j, p), sj+1 + B(j, p − pj+1)). We have np problems, each of which take O(1)

time to compute, resulting in a total runtime of O(np), where p is the max profit overall, or O(n2P ),

where P is the maximum profit of one item. This is psuedopolynomial (not weakly polynomial, since

otherwise this would show P = NP ). Since knapsack is not NP-hard with respect to the input

numbers, we call the knapsack problem weakly NP-hard. Other problems are strongly NP-hard,
which says that there is no polynomial time algorithm even if the numbers are small.

We can convert this psuedopolynomial algorithm into a FPAS. To do so, we can scale the numbers

down to a reasonable size. Suppose that our optimum is some profit p. Then, if we scale each

profit pj down to n
εp
pj , rounding down as necessary, then the new optimal profit is

∑⌊
n
εP
pj
⌋
≥

n
εP

∑
pj −

∑
1 = n

ε
− n. Though the new set of items may be different than the one before, it will

achieve this value or higher when we scale back up.

After scaling, the largest pj is polynomial in n and 1
ε
, specifically with size O

(
n
ε

)
. The runtime is

then O
(
n2

ε

)
. Scaling back up, we find a solution of value greater than εp

n

(
n
ε
− n
)

= (1− ε)p. This
is a FPAS!

However, how do we actually execute this algorithm, if we don’t know p beforehand? Well, we

know that we just need a lower bound on what P actually is. And we have a lower bound L - the

maximum of the pi .We also have an upper bound on the total profit - the sum of all pi . Scaling then

reduces the new profit to n
εL

∑
pi ≤ n2

ε
. This is still psuedopolynomial, but with runtime increased

to O
(
n3

ε

)
.
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A faster method to do so is to just guess p, and to run the algorithm enough times to get information

on whether p was too high or too low. If we guess p ≥ OPT
1−ε , then OPT scales to a solution of

value ≤ n
ε
− n. This will tell us that our guess was too big. On the contrary, if we guess p < OPT,

then we will scale to a value of at least n
ε
− n, which may not be the optimum. However, we will

find a guess of sufficient value to tell us that our solution was too small. Binary search with the

same lower bounds and upper bounds as before (the maximum of all pi and the sum of all pi), we

can find a solution in time O
(

log
(

1
ε

log n
))
, since we only have log1+ε n = 1

ε
log n possible trials -

min, (1 + ε)min, (1 + ε)2min, . . . ,max.

This is a very general procedure to turn a psuedopolynomial algorithm into a FPAS. Similarly, we

can also go the other way, creating a psuedopolynomial algorithm from a FPAS. If we suppose that

the input uses integers bounded by t, then the optimum is at most nt.We can then choose ε = 1
1+nt

to solve the problem exactly, since we’re guarenteed an integer solution. This is polynomial in n and

t. This creates an equivalence between psuedopolynomial algorithms, FPASs, and weakly NP-hard

problems.

21.2.2 Enumeration Techniques

Now let’s look at strongly NP-hard problems. To approximate this, we use a technique known as

enumeration, which is a method of controlled brute force. Let’s consider the scheduling problem

P ||Cmax again. We will schedule the largest k jobs optimally by brute force, and then use the greedy

algorithm on the remainder.

How bad can things get? As before, we added the max load to a machine with was free the

earliest, which was below average load. This means that when we add that job, the machine takes

time at most equal to the optimum plus the size of a remaining job. If we consider the machine

with the worst completion time, then we have two cases - either this was scheduled by the brute

force approach (so this was optimal) or that it’s bounded by time OPT + pj , which is a 1 +
pj

OPT

approximation. The pj itself is not one of the k largest, and thus is ≤ m
k
OPT. Substitution yields

a 1 + m
k
approximation algorithm. The runtime is O(mkn) to brute force the first k jobs, and then

run the greedy algorithm. If m is constant, then this is polynomial in k, and this is a polynomial

approximation scheme (but not fully polynomial). This is not satisfactory, but can be generalized

to non-constant m, as we will see next time.
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22 Lecture 22: Approximation Algorithms III

22.1 Enumeration Techniques Continued

We can do better with the enumeration technique that we talked about previously, which solved the

scheduling problem P ||Cmax . Instead of asking to optimize the solution fully, we can instead change

it into a decision problem and ask if we can complete the job in time T. We can optimize with a

binary search over T, and we can get the bounds of the binary search easily - the lower bound can

just be the average load, while the upper bound is the sum of all job times. Their ratio is m.

Now, we can optimize in the same way that we did for knapsack - try the lower bound, then the

lower bound times (1 + ε), then (1 + ε)2, then so on, until we get to the upper bound. We have

log1+εm = 1
ε

logm values and thus it takes log logm
ε

iterations. We can’t decide this problem in

polynomial time, but we can give one of time < (1 + ε)T if there is a solution that takes time T.

We can now combine enumeration and rounding to solve this problem. We’re first going to consider

a special case, where we only have k distinct sizes of jobs. Then, even if we are exponential in k,

this will still only be polynomial in n, since k is constant. We will define a machine type as a vector
of the number of jobs of each size, and we will limit the machine type to contain only solutions

whose total size is ≤ T. Thus, only the feasible job schedulings are included in the machine types.

Since we have n jobs, there are
(
n+k−1
k−1

)
= O(nk) possible machine types. There are also an equal

number of O(nk) ways to specify a job input.

Now, we have a nice optimal substructure: when we schedule on m machines, this is equivalent

to scheduling on m− 1 machines plus 1 other machine, and this calls for dynammic programming.

Our algorithm will enumerate all inputs that are feasible (in time T ) for r machines, where r goes

from 1 to m.

When r = 1, we can simply enumerate all the feasible machine types. When we need to go from

r → r + 1, then we can simply take any r -feasible input, and add the jobs on some machine type.

This takes O(nk) ·O(nk) = O(n2k) time for every iteration of the loop. The overall runtime is then

O(mn2k), which is polynomial for constant k.

How do we approximate for nonconstant k? Well, we can simply round the job sizes until we get a

constant amount. It turns out that rounding to powers of (1 + ε) is good, since each job size will

increase by at most (1 + ε). Unfortunately, this may still result in many job sizes, especially when

we have geometrically decreasing sizes.

Remember from before that if we can schedule the large jobs optimally, that the small jobs are okay

since we can just run a greedy algorithm. What if we try to round only the big jobs, and leave the
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small jobs intact? Specifically, we will round all jobs of size pj ≥ εT. Our jobs then range from size

εT to T, with increments of (1 + ε), and so the total number of job sizes is log1+ε
1
ε

= 1
ε

log 1
ε
.

We can then solve the problem of the big jobs in time O(n2k) = nO( 1
ε

log 1
ε

). If a large job finishes at

the end, then we are actually within (1 + ε) of the original optimum. On the other hand, if a small

job finishes at the end, the total time it takes is ≤ (1 + ε)T + ε(1 + ε)T = (1 + ε)2T = (1 + 2ε)T,

with the greedy algorithm. Thus, we can get an ε-approximation in nO( 1
ε

log 1
ε

).

This wraps up our discussion of approximation schemes, and it has actually been shown with

techniques from complexity theory that any approximation scheme can be gotten with enumeration

techniques. Thus, it’s always a good idea to turn to it when tackling these problems.

22.2 MAX-SNP hard problems

Sometimes, we don’t have any approximation scheme. We formalize this as a class of problems

in the class MAX-SNP hardness, or max-syntatic NP hardness, where we can show that there is

some constant factor from which beyond they cannot be approximated. Since we can’t beat that

particular constant, then there is no PAS possible. Further, for some other problems, one can show

that through amplification that MAX-SNP hardness implies that some problems have no constant

factor approximation.

A celebrated result from the 1990s is that the max-clique problem has no constant factor ap-

proximation. This will be on the homework. Modern amplification techniques have become even

more powerful, showing that you can’t get a O(n1−ε) approximation of the clique problem. Other

examples of MAX-SNP hard problems are the vertex-cover and set-cover problems.

22.3 Relaxations

Joke 22.1. This is always a good topic for MIT students, they need to learn more about this.

The idea of relaxation is to start with a non-solvable problem, change it to a solvable problem

which is similar to the original, solve that similar problem, and then round the solution to the

original. Essentially, during relaxation, we remove or lessen certain constraints, increasing the

feasible solution space. We can find one solution in this space, then move back into the original

feasible space by rounding.

Our first example is the Traveling Salesman Problem, which is a highly-celebrated problem of

which multiple books have been written. The problem involves a graph G, and edge lengths, where

our goal is to visit each vertex exactly once and return to the start over a minimum distance. This
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is strongly NP-hard, and this can be easily shown by reducing from a well-known NP-hard problem

of finding Hamiltonian Cycles (paths which visit each vertex once).

We’ll concern ourselves with the Metric TSP Problem, which says that the lengths satisfy the

triangle inequality, or equivalently, we visit each vertex at least once. These definitions are equiva-

lent, since we can create the metric completetion, replacing edges with those whose length is the

shortest path between those two vertices in the original graph.

We will work with the undirected version by relaxing to a MST. This is since any feasible TSP is a

minimum spanning tree, plus one edge! This tells us that the optimum MST costs less than the

optimum TSPs, and so we just need to find some way to convert it to a feasible instance. One

way to do so is just to do a DFS, or an inorder traversal of vertices, which visits all vertices at least

once. Each edge is traversed exactly twice, and so the cost of the tour is at most 2 times the cost

of the MST, and so this gives us a 2-approximation.

Remark 22.2. The metric TSP problem is MAX-SNP hard, even if all the edge lengths are 1 or 2.

It turns out that the lower bound is 1 + ε, which is pretty low.

We can do better than a 2-approximation, using Christofides’ heuristic. This also starts from an

MST, but performs a smarter rounding approach. In our previous approach, we essentially toured all

edges twice, but we can do much better. Note that all the feasible tours will be Eulerian, meaning

that we will have even degree everywhere, making it possible to actually tour. So, the idea is to

add enough edges to make the MST Eulerian, and then use an Euler tour on those edges.

The bad vertices are, almost by definition, the vertices with odd degree. We need to add edges

to the odd vertices, and we need to add V
2
edges, where V is the number of odd vertices. This

turns into a min-cost matching problem. We can find a minimum cost matching by considering

the optimal TSP. If we match the odd vertices in the optimal with one immediately clockwise of

themselves, we can do so in two ways, and the sum of these costs equals the total cost of the TSP.

Thus, one of these matchings is less than 1
2
of the TSP cost, and so this leads to a 3

2
approximation.

Remark 22.3. We didn’t actually discuss how to solve min-cost matching, but this is possible in

polynomial time, without solving the TSP problem.

Christofides proposed this algorithm in 1983, but it basically was left untouched in 40 years. The

Held-Karp relaxation was also proposed, where no example shows an approximation ratio worse

than 4
3
, but no one has been able to prove this bound. Finally, this month (October 2020), Karlin,

Klein, and Oveis Gharron showed a 3
2
− ε approximation, where ε ≥ 10−36. Directed MTSP has

seen more progress to a O( log n
log log n

) approximation. Euclidean TSP, which only tours lattice points,

actually has a PAS, which was shown in the 2000s. However, there are still many open problems!
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23 Lecture 23: Approximation Algorithms IV

23.1 Relaxation in Scheduling

Let’s now look at relaxation algorithms applied to the scheduling problem, where now we will look

at the problem 1||
∑
Cj , essentially trying to minimize the average completion time of each job.

One easy heuristic is to schedule the shortest processing time jobs first.

Theorem 23.1
This heuristic of scheduling the shortest-processing time jobs is actually optimal. This obviously

implies that this problem is not an NP-hard problem.

Proof. Suppose that we are out of order. Then, there is some job such that pj+1 is executed before

pj , where the jobs are in processing time order. If we swap the two jobs, then pj will finish earlier

and pj+1 will finish later, but by looking at their respective times, this minimizes the objective.

Now let’s look at an actual NP-hard problem, 1|rj |
∑
Cj , where we try to minimize the average

completion time of each job, but cannot process job j until after rj time has passed. We can’t use

our previous algorithm, and the natural heuristic of processing the shortest avaliable job doesn’t

work out, since we could have a large job that is immediately avalible, followed by many short jobs

avaliable after a small time. What we want to do is just quit when these new smaller jobs come in,

and this leads to another scheduling problem, known as preemption.

In the preemption problem, denoted as 1|rj , pmin|
∑
Cj , we are allowed to stop a job, and then

restart it later, with the progress being done being saved. The heuristic is then to do the shortest

remaining processing time job first (SRPT), and if this is easy to do, then we can relax our original

problem to this one.

Theorem 23.2
SRPT is optimal for solving 1|rj , pmin|

∑
Cj .

Proof. Use a similar exchange argument as above, but use parts of problems instead of problems

as a whole. Consider that we have jobs j and k which have both been released at some time T , and

suppose that the remaining time on j is greater than the remaning time on k. Then, the scheduling

of jobs j and k can take place in multiple parts, and the idea is to swap pieces of j and k such that

all of j is scheduled before any of k is scheduled. The completion time of j decreases while the

completion time of k is the same, while the other jobs are unchanged, ultimately helping minimize

our objective.
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Let’s now consider how we can convert from 1|rj |
∑
Cj to the one with preemption. We can take

the preemptive schedule, and then insert pj units of extra time wherever job j completes. This

stretches out the schedule, and this is feasible, since we can simply run the whole job starting when

the last part of a job, with the extra time intervals that help us.

For job j, we have a slowdown of the processing of all the jobs finishing before j in the SRPT, for

a time of
∑
pi ≤ Cj . Then, the actual processing time is Cj and so job j finishes in time 2Cj . This

means that this is a 2-approximation algorithm. In fact, it’s known that we can use rounding and

enumeration to get a PAS for this problem.

This concludes our discussion of scheduling theory, though there are thousands of scheduling prob-

lems still left unsolved. There is an online database that includes all the hardest problems that do

have polynomial solutions, and the easiest scheduling problems that don’t have a known polynomial

solution. So, if anyone wants to solve a problem, go there.

23.2 General Relaxation with Linear Programming

Our previous relaxation techniques with MST and SRPT worked fine, but somewhat non-obvious.

Now, we will look at a much more general way to do the relaxation - simply write a integer linear

program, solve the related linear program ignoring the integrality constraint, then round. This may

not always lead to an optimal solution - it depends on the structure of the problem.

23.2.1 Vertex Cover Problem

Consider the vertex cover problem. We will say that xi = 1 if vertex i is in the vertex-cover, and 0

is it isn’t. The associated linear program is to to minimize
∑
xi , given that xi + xj ≥ 1 for all edges

i , j and where xi ∈ {0, 1}.

Let’s see what happens if we solve the associated linear program with 0 ≤ xi ≤ 1, and where we

round these variables the usual way - of rounding up if ≥ 1
2
, and rounding down otherwise. Clearly,

the constraints are still satisfied, and so this gives us a 2-approximation.

We already had a 2-approximation from before, so this may not seem like an important result.

However, this technique can be generalized to weighted vertex cover, and in fact gives more infor-

mation about the structure of the graph itself (while the previous 2-approximation was much more

local in nature).

In fact, this problem has been studied so much that the linear program even has a name - the stable
set polytope. Nemhause-Trotter studied this polytope, and showed that every value is either 0, 1

2
,

or 1 at the optimum. Further, all 0s are not in the optimum vertex cover, and all 1s are.
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Modern progress regarding the vertex-cover problem has led to some results for the MAX-SNP

hardness of the vertex cover - 7
6
was shown in 2001, 10

√
5 − 21 was shown in 2002, and

√
2 was

shown in 2017. There is a conjecture known as the unique games conjecture that would imply the

approximation hardness is 2− ε. On the other side, we have a known 2−O
(

1√
log n

)
-approximation

algorithm (though this is worse than 2− ε, since that term goes to 0 for large graphs.

23.2.2 Facility Location Problem

Another problem that can be solved is the facility location problem, where we open facilities with

cost fi to serve clients j, whose distance to each facility is ci j . The objective is to minimize the sum

of opening all the facilities, plus the sum of the distances to the nearest open facilities over all the

clients. We can assume the costs to satisfy the triangle inequality.

In our integer linear program, we will define yi = 1 if facility i opened, and 0 otherwise. We will

also define xi j to be equal to 1 if client j is assigned to facility i , and 0 otherwise.

The objective is then to minimize
∑
yi fi +

∑
ci jxi j , and our constraints are that

∑
xi j ≥ 1 for all j,

ensuring that all clients are assigned to a facility, and that xi j ≤ yi for all i , j, showing that clients

can only be assigned to open facilities.

We now have an ILP, and let’s think about how to round this nicely. We plan to assign client j to

some nonzero xi j , and further we want to filter out all the bad values (for example, when xi j is very

tiny) that we have, since otherwise when rounding we can get huge cost scaleups.

We can write Cj =
∑

i xi jci j , as the average assignment cost for client j. This is also the amount

of cost that is allocated to client j in the LP optimum. However, some of the ci j may be huge and

would mess with our approximation, and so we have to invoke the principle that not everything can

be above average. Specifically, we claim that at most 1
ρ
total of the xi j is to facilities of assignment

cost > ρCj , since otherwise the average assignment cost would be greater than Cj . We can then

zero out all the xi j with corresponding large ci j , and scale up the rest of the xi j and yi by a factor

of 1
1−1/ρ

, for all j, in order for the LP to still be satisfied. This is no longer an optimal solution to

the LP, but now at least we get rid of any of the large costs, and so the assignment of all clients j

costs at most ρ
∑
Cj .

Now, we’ve filtered all the bad assignments, but we still need to find out where we want to open

facilities. If the yi are small, this means that opening the facility isn’t paid for, and so we need to

find a cluster of facilities whose total
∑
yi > 1 (here, we invoke the triangle inequality to say that

the increase in costs is small). If we open the minimum cost facility here, then this is a lower bound

on the first part of the LP
∑
fiyi .
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Formally, we will choose the client with the minimum Cj , and consider all avaliable facilities (i.e.

those not zeroed out). Choose the cheapest one and close the others, and send everyone who has

a nonzero xi j to any facility in that cluster to that opened facility. The cost of assigning a client

j ′ to this is ≤ 3ρCj ′, since it takes ≤ ρCj ′ to go to a facility that client j ′ was originally assigned

to, and it takes distance at most 2ρCj ≤ 2ρCj ′ to go from any facility in this cluster to another.

Iterating, we can easily assign all our clients, and the total cost will be 3ρ
∑
Cj

Now, let’s take a look at how good our approximation is. Looking at the LP objective, we’ve

increased the first quantity by a factor of 1
1−1/ρ

when we were scaling up the yi and multiplied

each of the client-sums by a factor of 3ρ when we were doing assignment. If we balance these

two quantities, we see that ρ = 4
3
will lead to a 4-approximation on both components, and thus a

4-approximation overall.

This problem shows that even when converting an ILP into a standard LP, converting backwards

and rounding is often nontrivial. We needed an extremely clever rounding scheme here for things

to work out.
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24 Lecture 24: Approximation Algorithms V, Parameterization

24.1 Max-SAT - Relaxation with Rounding

The Max-Satisfiability Problem is the birthplace of the concept NP-hardness, and it involves a

set of boolean variables and clauses, which are satisfied either when a specified boolean variable is

true or false. To satisfy a formula, you need all the clauses to be true.

Example 24.1
The formula (x1 ∨ x2) ∧ (x3 ∨ ¬x1) is an example of a formula discussed in the problem.

The goal is to find a satisfying assignment of booleans to true/false, making all the clauses true.

The Max-SAT problem aims to maximize the number of clauses that are satisfiable, since sometimes

the formula may not be solvable.

Consider a random assignment, where we set each variable to true or false, with probability 1
2
. For

a specific clause, the probability that it is satisfied is 1 − 2−k , where k is the number of literals

in the clause. This is good when k is large, but not that good when k = 1. Even when k = 1,

however, this is still a randomized 2-approximation, since the expected value is at least half of

the optimum.

We can do better, with LP-rounding. Let’s construct a LP, with variables yi corresponding to the

actual boolean variables, as well as the clauses zj . Then, we want to maximize
∑
zj , and we also

need the constraints to hold. If zj is true, then the clause must be true, and the variables in the

clause must sum to ≥ 1, taking care of negations by putting a 1− yi . This can be written as

zj ≤
∑
C+
j

yi +
∑
C−j

(1− yi)

where C+
j is the set of non-negated variables in the clause, and C−j is the set of negated variables.

We now have an integer linear program if yi , zi ∈ {0, 1}, and we can relax this to a standard LP by

saying 0 ≤ yi , zi ≤ 1, which we can solve. The fractional optimum must be ≥ the actual optimum.

Now we need to find a good way to round our variables. There is actually a straightforward

mechanical way to round, and is a good thing to try before coming up with more creative rounding

schemes (while the analyses are more complicated). We can treat each of the yi as the probability

that the boolean xi is true, or in other words, we set xi to true with probability yi and false with

probability 1− yi .
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The quantity on the right side of the constraints measures the expected number of true variables

in the clause. The expected value of the rounded solution is then equal to the expectation of the

number of satisfied clauses, which is the sum of probabilities that each clause is true. We can

try to relate zj to the probability that clause j is true, so that our expectation is related to our

objective. Since we want to maximize zj , if zj is large, the clause should be satisfied, and similarly,

if the expected number of variables on the right that are true is large, then the clause should be

satisfied. Let’s now formalize this:

Lemma 24.2
Define βk = 1 − (1 − 1

k
)k , which is a decreasing function that converges to 1 − 1

e
. Then, if a

clause has k literals, then the probability that a clause zj is satisfied is ≥ βkzj .

Proof. First, we can WLOG assume that all variables are unnegated. Then, the probability that the

clause is satisfied is 1 minus the probability that it’s not satisfied, which is 1−
∏

(1−yi). Since we are
trying to show a lower bound of the probability of satisfaction, we want to maximize this product.

We know that
∑
yi = zj , and applying this constraint, then we want to make all the yi ’s equal to

maximize. Then, each yi is equal to
zj
k
, and the probability of satisfaction is ≥ 1−

(
1− zj

k

)k
.

Now we claim that 1 −
(

1− zj
k

)k ≥ βkzj , which will show the claim. This is able to be proven

pictorally - simply plot both functions as a function of zj . The function on the right is just a linear

function from 0 to βk , and so is the function on the right. If we consider the second derivative

of the function on the left, this is always negative, and hence the function is concave. Thus, it is

always ≥ the function on the right.
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The functions plotted when k = 3.
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Corollary 24.3
This method of random assignment yields a 1− 1

e
randomized approximation.

Proof. This is trivial from Lemma 24.2.

Note that this algorithm achieves it’s worst behavior when k is large, while our original naive

algorithm achieved it’s worst behavior when k is small. We can run both, and take the better

solution - then this means that the better algorithm will achieve better than the average behavior.

The average is

=
1

2

(∑
j

1− 2−kj + βkjzj

)

≥
1

2

(∑
(1− 2−kj + βkj )zj

)
≥

1

2
·

3

2

∑
zj

where we got the constant 3
2
from the increasing behavior of 1−2−k and the decreasing behavior of

βk (minimized average when k = 2), and so combining the two strategies we get a 3
4
-randomized

approximation. This is actually tight.

Max-SAT is well studied, and we have some pretty tight bounds. We know that it’s Max-SNP-hard,

meaning that there are no PTAS’s, and further, it is known that finding a better approximation

than our naive algorithm for Max-3-SAT (where all clauses are 3 variables) is NP-hard.

24.2 Parametrized Complexity

Parametrized Complexity is another way to cope with NP-hard problems. The definition of an NP-

hard problem means that the problem is hard over all instances, though this can mean that many

instances can be easy! The idea is to define a parameter measuring the hardness of one specific

instance, and give a runtime based on that parameter.

Consider the vertex cover problem, and let the parameter k be equal to the optimum. Then, we

can find the optimum vertex cover in time O(mnk), by simply checking all subsets. This is obviously

not a very nice polynomial.

A better approach is known as the bounded search tree method. We make our choices one at a

time, and then consider the solution space as a search tree. We consider our solution space as a

search tree, and argue that the tree is shallow if the parameter is small.
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For the vertex-cover problem, we can start with one edge, and then branch based on which vertex of

that edge we select. When we recurse, we simply remove all the covered vertices. This is a degree

2 search tree (still exponential), and the maximum depth is simply k, since we can find the optimum

in k guesses. Thus, if we truncate the search at depth k, the runtime then becomes O(2km), since

we only need to check at most 2k guesses. This runtime is a fixed-parameter tractable runtime,

and in general such runtimes can be written as f (k) · poly(m, n). Our original algorithm’s runtime

was obviously not fixed-parameter tractable.

Another way to tackle these problems is known as kernelization, which is where we try to find

a kernel of the problem in polynomial time independent of k . The kernel should be of size f (k),

independent of the original problem size. Then, if we solve the kernel in time g(k), we get a

fixed-parameter tractable runtime. We can apply this to vertex cover as well.

First, all vertices of degree > k must be in the optimum, since otherwise we must use all it’s

neighbors, making the vertex cover have size at least k + 1. So, we can mark all of these vertices

as in the optimum and remove all incident edges. In the new graph, we now only have vertices of

degree ≤ k, and also a vertex cover of size ≤ k, so only k2 relevant edges. We can use our previous

algorithm on this new graph, which runs in time 2k · k2. Our runtime then becomes O(m+ k2 · 2k),

which is linear time for sufficiently small k.

A third idea to solve problems like this is to consider a treewidth of a graph. While the concept of

treewidth originally started with theoretical computer science, it’s actually now being used widely

in machine learning. The idea is to use recursion to solve a graph problem. We pick a vertex,

eliminate it from the graph, and then recurse on the remaining graph. However, this may create

some ‘hidden dependencies’ between neighbors, which we can represent by adding more edges in

the recursion. If we repeatedly do this, then we get an elimination ordering for the graph.

For trees, we can always remove just one leaf, and this basically doesn’t affect the graph structure,

and so we define the treewidth of trees to be 1. A graph with treewidth 2 is known as a series-

parallel graph, where we only have vertices that are connected in series or parallel, allowing us to

build up electronic circuits.

There are many problems that are tractable for small treewidth. One such problem is the SAT

problem, if we introduce a graph structure such that two vertices will have an edge if they share

a clause. We can solve by elimination, with a runtime of 2treewidth. To actually implement this, we

will take a variable x, look at all the clauses it contains, and find assignments to other variables

that also work. This gives a combined clause from all the clauses that contain x, and we can list

it’s satisfying assignments, henceforth eliminating x . The size of this new clause is equal to the

number of neighbors of x, and so is at most the treewidth, and so we obtain the stated runtime.
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25 Lecture 25: Computational Geometry I

25.1 Introduction to Computational Geometry

Computational Geometry is its own developed subfield of theoretical computer science, and often

focus on low-dimensional objects. It often has runtimes that are exponential in the number of

dimensions, but this is okay, since the dimensions are small. We assume that points, lines and

planes are the primitives, and that we can check for insersections between primitives, compare

lengths of different lines, and compute angles between primitives. Some of these are sketchy

since they can involve trig functions and irrational numbers, but we assume that they are tractable

primitives and can be O(1) time.

Note 25.1
This is already a simplification from real life, since we have significant roundoff error. In practice,

these concerns can actually be resolved, and the algorithms we’ll talk about need to have

roundoff correction in order to work. But we’ll skip that in this course.

For many computational geometry problems, a key idea is to recurse onto a smaller dimension.

Since d is already a small constant, then we can do significant work in each recursive step and still

end up with a nice runtime.

25.2 Orthogonal Range Queries

Our first problem is known as Orthogonal Range Queries, in where we have a set of points as

an input, and where we are asked queries about “which points are in this specified box.” For the

1-dimensional version, this just asks how many numbers there are in an interval, and this is easily

solved with a binary search tree in O(k + log n) time and O(n) space, where k is the number of

numbers in our interval. If we only wanted the number of points, then we just need to store an

auxillary variable for each node that tells us the subtree size to compute it in O(log n) time.

Okay, now let’s generalize to a 2D problem - suppose we are now given a bounding box as a query.

If we solve each dimension separately, the answer is the intersection of the two 1D answers, which

can be very slow. For example, if there are points along the x and y axes, and our bounding box

goes from (1, 1) to (n, n), then obviously there are no points in bounding box. However, solving

each dimension sepaately takes O(n) time, which is bad compared to the 1D case.

Let’s now refine this idea. If we are told what the x-interval of the bounding box is, then we can

simply build a BST on all coordinates in the x-interval ordered by their y-coordinate, to solve the

problem quickly, as in the 1D case. While there are uncountably many intervals, the only ones we
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care about are those with endpoints that have different points, and so we can build a BST on each

pair of points instead. This gives us a O(log n+ k) query time and O(log n) count time again, with

an additional O(log n) factor needed for searching for the correct BST. If we generalize to higher

dimensions, the runtime will be O(d log n + k) and O(d log n) count time, which is fast for small

dimension.

The problem is that the preprocessing time and space are large. In the 2D case, we need to make

n2 BST’s, each with size n, for O(n3) space. In the general case, we need to make d − 1 BSTs for

each pair of points, and so this turns into O(n2d−1) space, which is very bad.

Instead, let’s try to augment each of the BSTs with auxillary information, to help us achieve better

queries. We’ll build a BST on the x-coordinate, and where each subtree of the BST defines a

subinterval of the x-axis. The coordinates themselves will be leaves of the BST, while the internal

nodes are empty. The query interval itself is a union of subtree-intervals. Then, our algorithm is

just to build a y -BST for the points in each of these x subtree-intervals, and then query these.

Theorem 25.2
For any given interval, there are only O(log n) subtree-intervals.

Proof. Consider the lowest common ancestor of the left and right coordinates of an interval. If we

split the interval at the lowest common ancestor, each side only contains up to one subtree of each

height, since containing two subtrees of the same height means that we could have looked at the

subtree defined by their parent instead. Since the height is O(log n), then there are only O(log n)

subtree-intervals.

Overall, O(log2 n + k) time is then necessary for each query, and for general dimension, we need

O(logd n + k) time. For the preprocessing time, this is simply equal to the time it takes to build

the necessary y -BSTs. Since each point is in exactly one y -search tree per level of the x tree, and

there are only O(log n) levels, the total space used is only O(n log n). When we generalize to d

dimensions, this takes O(n logd−1 n) space.

Note 25.3
There is a technique known as fractional cascading, where we essentially deal with the

other dimensions when we make a higher-dimensional BST, which improves the query time

to O(d log n). We won’t have time to go over it in this course, but it should be relatively

googlable and understandable with our current knowledge.
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25.3 Sweep Algorithms

We talked about sweep algorithms previously, where we used persistent data structures to solve a

computational geometry problem. The idea is to treat one dimension as the time, and then sweep

over the time to solve the d − 1-dimensional problem at each time. The structure of the problem

doesn’t change too much over time, and so we can use a solution from a previous time to generate

one for the next time.

25.3.1 Convex Hull Problem

The (2D) Convex Hull Problem involves a given set of points as the input, and as the problem

name implies, we want to find the convex hull, or the smallest containing convex polygon of the

points. One thing to note is that if we can find the points in the convex hull, that we can also find

the containing polygon easily simply by connecting these points.

Remark 25.4. The convex hull problem is to computational geometry as sorting is to general

algorithms. There are about 73 different algorithms which each demonstrate a different technique

of computational geometry.

Let’s explore the sweep line algorithm for solving the problem. It involves finding the upper hull,

which are simply the points of the convex hull that can be seen from above. Then, finding the

lower-hull and combining with the upper-hull is enough to find the overall convex hull.

We’ll construct the upper-hull first. We’ll sort all our points by the x coordinate, which we’ll assume

is our encounter time. Then, we sweep from left to right, and track what the upper hull looks like

“so far.” As we encounter a new point, we will update the current upper-hull to include it. As we

sweep across the x axis, there may be another new point that causes us to remove many points

from our current upper-hull (Here, red dashed lines denotes the corrections that should have been

made, while the black dashed lines represents the final convex hull):

So, we need to find a condition on when a new point is good and if not, then we need to update the

found upper-hull. The central question is whether we turn left or right from the previous segment

- if we’re on the upper-hull, then turning right will always lead to the correct point. However, if

we turn left, then this means that the penultimate point was not on the hull, and so we should go

back to the previous point to define the hull. We need to keep dropping points until there are no

left turns, in order to find the current upper-hull.
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What is the runtime? For the actual algorithm, each point is added at most once, and deleted

at most once, and so it just takes O(n) for both the upper-hull and the lower-hull. Adding this

onto the sorting time of O(n log n) time, the overall runtime is O(n log n). If the coordinates are

integers, then counting sort results in a O(n) runtime for convex-hull.

In fact, there is a deep sense that the convex hull problem is actually connected to sorting overall.

It can be shown that a sorting problem can actually be converted to a convex hull problem, and

a convex hull problem can be converted to a sorting one (as seen above), so these are actually

equivalent problems.

There is also a case in which the convex hull may be simple and only contain a few points, and so

it may be possible to get a faster runtime with an output-sensitive algorithm. Chan in ‘96 did so,

finding a O(n log k) algorithm, where k is the number of points on the hull.

25.3.2 Halfspace Intersection Problem

In the halfspace intersection problem, we are given a set of halfspaces, and we’re asked to draw

the intersection. This is also equivalent to drawing the feasible region of a linear program.

To solve it, we can use a duality approach, where we map the point (a, b) as follows:

(a, b)↔ Lab = {(x, y) | ax + by = −1}.

With this mapping, we can show that points on a line map to lines through a point, and then the

halfspace intersection problem simply becomes a convex hull problem.

This also has extensions in low-dimensional linear programming, since linear programming is just an

extension of the halfspace intersection problem. If we find the convex hull, then we can find the

intersection region, and then just run simplex on it directly (which is fast for low dimensions). It

turns out that we can actually find linear-time (in the number of constraints) strongly-polynomial

algorithms for linear programming in low dimension. Sweep lines can also be used to build a

‘fascinating’ data structure named Voronoi Diagrams, which we’ll explore in the next lecture.
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26 Lecture 26: Computational Geometry II

26.1 Voronoi Diagrams - Introduction

The Voronoi Diagram is a data structure useful for answering the question of finding a nearest

point, specifically where we are given a set of points pi in the plane and query points qi of which

we want to find the closest pi . We’ll define V (pi) to be the points in the plane that are closer

to pi than all other points. These subdivide the plane into specific disjoint regions, which we call

Voronoi regions.

When we only have one point, then the Voronoi region of that point simply consists of the whole

plane. When we have two points, the two Voronoi regions we get are half-planes, with a divider

being the perpendicular bisector of thw two points themselves.

When we have three points, we still draw the perpendicular bisectors of each pair of points, but this

creates 6 regions. This is a problem, since we’re only supposed to have 3! In fact, this construction

actually tells us the closest point as well as the second closest point. We can then combine the two

regions at a time to create the Voronoi regions of the three points. In addition, these perpendicular

bisectors will always meet at the same point, the circumcenter of the triangle, and we call this

common point of intersection the Voronoi point.

When we add a fourth point, we can draw the perpendicular bisector and get even more Voronoi

regions and points. What’s interesting is that we now start to get closed Voronoi regions, i.e.

polygons. These polygons themselves are intersections of halfspaces and are hence convex. In

general, we will have n regions in the plane, which may or may not be open, as long as the diagram

is nondegenerate, meaning that no four points are on the same circle (ensuring that no four lines

intersect at a Voronoi point).

Now, given an instance of the nearest neighbor problem, we can actually solve it just by looking at

the Voronoi diagram, and checking which Voronoi region it’s in. To actually do the checking, we

can use our persistent data structure all the way back from Lecture 3, which has a construction

time of O(n log n), a space usage of O(n), and a query time of O(log n), where this n is the number

of segments on the Voronoi diagram.

So, we have to somehow relate the size of the Voronoi diagram to the number of points in it. We

can make the Voronoi diagram planar by adding a point at infinity that will be connected to all

the unbounded line segments.

Now, we can apply a famed theorem of Euler:
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Theorem 26.1 (Euler’s Polyhedral Formula)

In a planar graph (or polyhedron), then V − E + F = 2, where E is the number of edges, V is

the number of vertices, and F is the number of faces.

Proof. We backwards induct. Consider a planar graph, and look for an edge whose endpoints both

have degree ≥ 3. Remove that edge. Then, the number of edges and the number of faces both

decrease by 1, and so the quantity V − E + F is constant.

If we have a degree 2 vertex, then we can simply remove it and connect the vertices that it was

originally connected to. The number of vertices and the number of edges both decrease by 1, and

so once again the quantity V − E + F is constant.

Finally, if we have a degree 1 vertex, then we just get rid of one edge and one vertex, which once

again maintains the invariant.

If we apply these tricks, then we can reduce any graph into one with just two vertices with two

parallel edges. By inspection, V − E + F = 2, and so any planar graph satisfies this.

Now, let’s apply the formula for the Voronoi diagram. We know by definition that F = n. We also

know that each of the Voronoi points has degree exactly 3 (except for the point at infinity), and

each edge has two Voronoi endpoints. Now, 2E counts each end of each edge, and this quantity is

also counted by the sum of all degrees of all vertices, and so we have 2E ≥ 3(V + 1).

Then, applying Euler’s formula and substituting E, we see that 2(V + n − 2) ≥ 3(V + 1), which

upon solving, we find that V ≤ 2n − 7, meaning that the size of the Voronoi diagram is linear in

the number of points we have. Thus, that n from the persistent data structure solution is indeed

equivalent to the number of points we have in the input.

26.2 Voronoi Diagrams - Construction

Once we can efficiently construct Voronoi diagrams, then we’ve finally solved the nearest neighbor

problem. Like sorting, Voronoi diagram construction is one of the most studied problems, and it

has about 17 different algorithms.

Note 26.2
The Voronoi Diagram is actually the dual of the projection of a lower convex hull onto a

paraboloid. Essentially, each point gets projected upward to a paraboloid, and then find the

convex hull there. Then, the lines that define the hull, when projected down, become the Voronoi

diagram. This means that solving 3D convex hull can be used to construct the diagram.
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We’ll instead see another approach of construction, based on sweep lines. To stick with convention,

we’ll have the line sweep from top to bottom, and we’ll build the Voronoi diagram at the sweep

line, meaning that the Voronoi diagram above the sweep line should be accurate. However, we have

the problem that a point below the sweep line can actually change the Voronoi diagram above the

sweep line, and we need to take care of this.

Instead, we’ll focus on the parts of the diagram that are actually guaranteed to be correct. Clearly,

anything point closer to an input point (known as sites) over the sweep line are correct, since any

additional point can only be further away. Thus, any safe region is defined by the set of points

that are equidistant from a point and a line, which is just a parabola. If we compute the parabolas

for every point with the sweep line, and take their union, then we end up with a boundary known

as a beach line. Then, when we’re constructing the diagram, anything above the beach line is

guarenteed to be correct.

This algorithm is known as Fortune’s Algorithm, and keeping track of the beach line is its main

focus. When we only have one point, let us say (xf , yf ), and the sweep line is at y = t, then the

parabola we have is defined by the equation (x − xf )2 + (y − yf )2 = (y − t)2, by definition. At a

particular fixed x, if we differentiate, we obtain the equation

2(y − yf )
dy

dt
= 2(y − t)

(
dy

dt
− 1

)
⇐⇒

dy

dt
=
y − t
yf − t

This means that the parabola with the lowest focus descends the fastest. When we reach the

second point, we start out with a degenerate vertical parabola, which then widens out to a normal

parabola as t decreases and joins the beachline. Now, let’s consider the intersection of these two

parabolas. By definition, the distances from those points to the foci are equal to their distances to

the sweep line, for both parabolas. Since the distances to the foci are the same, this means that

their intersection is going to travel on a straight line, which is their perpendicular bisector! Then,

the beachline will be defined by the two parabolas, with the second (lower) parabola used between

the intersection points.

When the sweep line hits a site, we call these a site event. But there are also other interesting site

events. At a certain point, specifically, a Voronoi point, the perpendicular bisector is going to stop.

This Voronoi point intersection happens on the beachline exactly when a third parabola appears

and passes through that same intersection, and so this method of Voronoi diagram construction

follows directly from geometry! As the sweep line goes further down, the beach line is once again

defined just by two parabolas. Since the higher the focus, the slower the parabola descends, the

parabola with the highest focus will not be part of the beach line after a Voronoi point is made.

This is known as a circle event, since the Voronoi point is on the circumcircle of the foci.
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Thus, we have site events and circle events, which respectively add a parabola and remove a parabola

(and also generate a Voronoi point). In order to implement this, we need to track these events,

and we can do so with a priority queue on each time. Each site event happens when the sweep

line passes t = yf . Further, we can predict the time of the circle event, since this happens at the

bottom of the circle that goes through all three foci. We can also keep track of the location of

each change, by keeping a BST on the parabola pieces of the beach line.

Our implementation for site events is then to search in the parabola BST, split the parabola there,

and then add our new one. This may create potential circle events, and so we add these into the

priority queue. We can also remove the previously adjacent trios of parabolas that are no longer

relevant from the priority queue. When a circle event happens, we remove the parabola, and likewise

update the circle event priority queue. Since each parabola is only involved in a constant number of

priority queue updates at each event, then the work done for construction is only O(n log n). Thus,

we can solve the nearest neighbor problem in O(n log n) time, O(n) space, and O(log n) query time.

If we draw an edge between two points sharing a Voronoi boundary, then we end up getting a

dual of the Voronoi diagram. Since each vertex has degree 3, then all faces in the dual are

triangular, and so we get a triangulation of the planes, which are very important in PDE solving and

computer graphics. The dual of the Voronoi diagram is the ‘best triangulation,’ which is known as

the Delaunay triangulation. This ‘bestness’ comes from the fact that there are no long skinny

triangles, which would be bad for approximation. And we get this for free with a Voronoi diagram

construction!
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27 Lecture 27: Online Algorithms I

27.1 Introduction to Online Algorithms

Previously, we’ve talked about algorithms that simply receive an input and compute the output

from the input. Now, we’ll focus on online algorithms, in where we get the input a little at a time,

and where we need an immediate response, before we see the rest of the input.

Example 27.1
The stock market is a good example of needing an online algorithm, since we obviously don’t

know how it will change in the future. Another example is paging, in where we need more

memory than is actually there, and the OS has to decide which pieces of memory to move to

disk and which to keep in the main memory. When we have to read the memory from disk, we

get a page fault, i.e. a slow fetch, and this causes program slowdowns.

To model these problems, we will define an input sequence σ = σ1, σ2, . . . , in where after each

input, we have to produce an output or perform an action, and we want to optimize our cost of

our outputs/actions, which we’ll denote cmin(σ). It’s usually easy to compute cmin(σ) if we’re given

the sequence σ in advance, but usually this is not possible.

It doesn’t make sense to just look at worst case behavior, since sometimes the cost is always bad.

Instead, we’ll compare it to the best possible outcome given an input sequence.

Definition 27.2
An algorithm is k-competitive on σ if cA(σ) ≤ kcmin(σ). An algorithm is k-competitive overall
if this is true for all σ. An algorithm is asymptotically k-competitive if it is k-competitive up

to an additive constant. We call k the competitive ratio.

27.2 Ski-Rental

The ski-rental problem is a problem where we want to ski for some number of days, and we can

either rent or buy skis. It takes 1 unit of cost to rent skis, and T > 1 cost to buy skis. The idea is

that if we know that we’ll ski a lot, we should buy, but if we’ll only ski a little, then we should rent.

Let’s consider limiting cases first. Suppose we want to ski n times. If we always rent, then it costs

us n dollars. If we just always buy, it costs us T dollars. The first algorithm is not competitive,

while the second is T -competitive.

One possible strategy is to rent for d days, then buy on day d + 1. An algorithm that knows the

future will either always rent, or always buys on day 1. In the first d days, if the futuristic algorithm
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is renting, then the competitive ratio is 1. On the other hand, if the algorithm buys, then our ratio

keeps getting worse. Now, once we buy, this ratio doesn’t get any worse, in either case. Thus, the

worst ratio of our algorithm stops after the moment we buy. Our worst input is one that occurs

when we stop skiing after day d + 1. Then, the cost of our algorithm is T + d, and the cost of our

adversary is min(d + 1, T ).

What is the worst ratio we get? If d + 1 ≤ T, then the competitive ratio we get is d+T
d+1

, which is

decreasing as d increases. On the other hand, if d + 1 ≥ T, then our competitive ratio is d+T
T
,

which increases as d increases. Thus, we should choose d+1 = T to minimize, and the competitive

ratio we get is 2T−1
T

= 2− 1
T
≤ 2. Thus, this is a 2-competitive algorithm.

27.3 Selling Stuff

Suppose that we are given a good which we can sell, whose price varies on each day. If we don’t

have any constraints, then there is no competitive ratio, since the price could just tank/rise on the

day after, which we can’t predict.

However, if we know the max/min price of the goodM and m, then we can always get a competitive

ratio Φ = M
m
by just selling at the price m. A better strategy would be to set a reverse price

√
Mm.

We then sell the first time we go larger than
√
Mm, and if it never does, we sell at price m.

Now, let’s analyze. If there is an offer of
√
Mm, then our algorithm gets us a competitive ratio of

M√
Mm

=
√

Φ. Otherwise, if there are no offers of this value, then the best possible offer had value
√
Mm. The competitive ratio is then ≤

√
Mm
m

=
√

Φ, and so this gives a
√

Φ-competitive ratio.

Now let’s consider the same problem, but where we can sell our good in pieces. One method that

works is just to set two reserve prices, at m2/3M1/3, and at m1/3M2/3, and sell half of our good at

each. Thus, half of our goods are sold within Φ1/3 of the optimal price, and so our competitive

ratio is at least 1
2

3
√

Φ.

Generalizing, we can put reserves at prices m, 2m, 4m, . . . ,M, and so there are log Φ reserves. We

then sell 1
log Φ

fraction at each of the reserve prices, and one of them is within a factor of 2 of the

actual optimum. This means that we have a 2 log Φ-competitive ratio if we are allowed to divide

our good into pieces.

But we can also use this method in our original problem, where we couldn’t split up our goods!

To do so, we simply randomize, and choose a price from m, 2m, 4m, . . . ,M with probability 1
log Φ

.

Then, the math is the same as above, and this will give us an expected 2 log Φ competitive ratio.

Remark 27.3. A variant of this problem occurred on the 18.410 midterm of Spring 2020.
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27.4 Online Scheduling

Let’s consider P ||Cmax again. We saw earlier that greedy scheduling gave us a 2-competitive

algorithm, and this is online as well, so this also gives us a 2-competitive online scheduling algorithm.

But remember, we did much better previously - we got a 4
3
approximation if we scheduled in

decreasing order, and got a PAS with an enumeration algorithm. We obviously can’t do these

techniques, since we don’t know which order they arrive in!

But we can still do better than 2, which was shown in 1995 by Bartal, about 35 years after greedy

scheduling was published. The idea is to plan for the arrival of a large job, since this broke our

greedy algorithm. Bartal did so formally by splitting the machines into two sets - underutilized

and overutilized machines. As large jobs arrive, the threshhold for underutilization/overutilization

changes, and so he guaranteed that there always is an underutilized machine avaliable for scheduling.

This lead to a 2− 1
70
≈ 1.986 competitive ratio.

This was rapidly improved on, in 1996, where we split the machines into multiple groups. Prof.

Karger worked on this and was able to make an LP to optimize group sizes, leading to a 1.945-

approximation. In 1997, this was improved to 1.923 by Albers, with an even messier algorithm. On

the other side, a lower bound has been proven - there are no 4
3
-competitive algorithms.

27.5 Paging

Paging generalizes beyond computer memory - in general, we have a small fast memory and a large

slow memory, and we need to decide what is where, moving things around as needed. The idea

is that the memory is divided into pages themselves, and when we need something on a page, we

fetch the whole page, which relies on locality of reference. When a page fault occurs, we need to

decide which page we want to evict.

One heuristic is to evict the least frequently used page. Another heuristic is the least recently used

heuristic. Other possible heuristics are first-in first-out (FIFO) and last-in first-out (LIFO). One

that isn’t possible but is optimal is to evict the one that’s going to be used the farthest in the future,

known as Belady’s algorithm. It turns out that the least frequently used and LIFO heuristics are

not competitive. On the other hand, least-recently used and FIFO heuristics are k-competitive,

where k is the number of pages that fit in the memory.

We can show that least-recently used is k+ 1 competitive easily, and proving this for FIFO is similar

and left as an exercise. We break the sequence of page requests into phases of k + 1 distinct

requests, and since we only have k space, each leads to at least 1 fault in the optimal algorithm.

This trivially shows the claim. We’ll prove the tight bound of k next time.
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28 Lecture 28: Online Algorithms II

28.1 Paging Continued

Let’s now show that the least-recently used heuristic is k-competitive. We likewise divide into

phases, but of k + 1 requests in the first phase, and k in the rest. At the start of phase 2, we

know that the k + 1th request is in memory. Now, let’s analyze the second phase, which consists

of requests k + 2 to 2k + 1. If there is no fault until the 2kth request, then we must have needed

all the elements already in memory. This means that the 2k + 1th request causes a fault. Thus,

there is a fault in the all-but-last request of the sequence, or one in the last request itself. This

means that the optimal algorithm is guaranteed to fault at least once per phase, and this leads to

a k-competitive algorithm with LRU.

Theorem 28.1
There are no α-competitive paging algorithms with α < k. In other words, LRU is optimal.

Proof. Suppose that we have a set of k + 1 pages. Run the online algorithm, and at each step,

request the missing page. This means that we miss every time.

What should the optimal offline algorithm do? Since it knows the whole sequence, on a miss, it

should just evict the one that is used furthest in the future. This means that the next k−1 requests

will be hits, and so we only miss once every k requests in the optimal, meaning that we can make

any online input be at least k-competitive. This shows the claim.

Note 28.2
Surprisingly, these algorithms were made by Sleator and Tarjan, the same people who designed

splay trees. In fact, we can even interpret data structures as online algorithms - we have

sequences of requests in data structures. Further, we have easy and hard input sequences for

data structures, and we want to do as well as possible for any arbitrary input.

Now, caches are used all throughout modern computers, and having a k-competitive algorithm

when dealing with lots of memory seems kind of bad. So, we’ve come up with different ways to

characterize our algorithms. One is the probabilistic model, which simply states that each page has

some certain probability of being asked for. Another way to is to consider resource augmentation,

in which we make up for not knowing the future by increasing avaliable resources. In fact, it can

be shown that we use k pages and the optimum has h pages, that we can get a k
k−h+1

-competitive

algorithm. In the case that k = 2h, we get a 2-competitive algorithm, if we work with double the

memory, which sounds a lot better than the k-competitive one we had before.
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28.2 Adversarial Inputs

How did we generate the lower bound? We used an adversary, which designed a sequence based

on simulating the actual algorithm. Essentially, the adversary knew what we were going to do,

and so it made an input designed specifically for exhibiting bad behavior here. To get around this

predictability, we randomize. In many algorithms, adding some randomization significantly increases

the expected competitive ratio that we obtain. We’ll define a k-competitive randomized algorithm
as one where the expected cost for any sequence is less than k times the optimal, plus a constant.

Note that this is averaged over the random choices we make, not the input sequence!

One method for implementation is when we ‘flip coins’ when running the algorithm. Another is

where we have a probability distribution over deterministic algorithms, where we use probability to

decide which algorithm to use. If we decide the deterministic algorithm before the input, then it is

actually not random.

We can classify adversaries based on what they know. An Oblivious Adversary is the weakest one

that knows what our probability distribution is, but not our outcomes. A Fully Adaptative Adver-
sary is one that knows the exact results of your randomization, and this is effectively deterministic.

An Adaptive Adversary is one that knows your randomization up to the present, but not of the

future.

28.3 Randomized Paging

For paging, it can be shown that against an adaptive adversary, that the best bound we can get is

still k-competitive. However, for an oblivious adversary, we can do much better. One very, very,

simple algorithm for paging is to simply evict a random page. It turns out that this is k-competitive,

but has the advantage over LRU that we use no memory. We can do a lot better if we combine LRU

and random eviction, which Fiat did in the 70s, known as the marking algorithm. Initially, all the

pages are marked. When there is a fault, we first check if all our pages are marked, and if so, then

we unmark all of them. Then, we evict a random unmarked page, and fetch the requested page.

Then, no matter whether we had a fault or not, we mark the new requested page. In essence, this

is an approximation to LRU - marking essentially tracks which pages have been requested recently.

But with this bit of randomization, we get a significantly better ratio:

Theorem 28.3
The marking algorithm is O(log k)-competitive.

Proof. We will divide into phases, as usual. Each phase will start on the first request and end on

the k + 1th request, meaning that there are k distinct requests per phase. At the start of the

114



phase, all the pages are unmarked, by definition. Note that the phases are defined by the input,

rather than by random choices. Further, when a page is marked, it will stay in memory until the

phase ends. This tells us that we miss at most once per page, per phase. Thus, we can ignore all

requests after the first for each page in the phase.

We will say that phase i starts with having pages Si in memory. We will define a request to be

clean in phase i , if it’s not in Si . The intuition is that these clean requests generally are for pages

that had came long before, and so the optimal algorithm would probably also fault here. On the

other hand, we will define a request to be stale if it was in Si . Then, we fault only if we evicted

the page from Si before the request came in, which is not likely since we evicted random pages.

Now let’s do a formal analysis. Suppose that in the phase, we have s stale and c clean requests.

All of them became marked, and all of them are still in memory. Then, consider the next request -

if it’s clean, we fault, and if it’s stale, then the probability that we fault is equal to the probability

we evicted it before the request came in. At this moment, all the stale requests must be in memory,

either if it was there originally or if it was brought back after its first eviction. The rest of Si are

the candidates for what can be missing in the memory. Thus, c of k − s candidates from Si are

missing, and so each request is missing with probability c
k−s .

For the whole phase, let’s say we have ci clean requests, meaning that we have k − ci stale
requests. We pay a cost of ci for the clean requests. For our analysis, we can assume all the clean

requests happen first, since this is the worst case scenario. Then, the first stale request misses with

probability ci
k
, the second with probability ci

k−1
, until the last one, which we miss with probability

ci
k−(k−ci−1)

. The sum of all of these probabilities, the expectation of the number of misses from the

stale requests, is ci(Hk −Hci ), where Hn denotes
∑n

j=1
1
j

= O(log n).

For our comparison to the optimal, we’ll use a potential function Φi , which we’ll define as being

equal to the number of differences between the caches of our algorithm and the optimum, at the

start of phase i . It’s easy to see that this satisfies the definition of a potential. Then, when we

get ci clean requests, we know that there are at least ci − Φi not in OPT’s cache as well. At the

end of the round, our algorithm has the k requests of the round. On the other hand, the optimum

is missing Φi+1 of those requests, meaning that they were evicted during this phase. This tells us

that the optimum must have had at least Φi+1 faults during this phase.

This means that the optimum had at least max(ci −Φi ,Φi+1) ≥ ci−Φi+Φi+1

2
faults. Over all phases,

we then have at least 1
2

∑
ci faults, which leads to an O(log k) competitive ratio.

It turns out that this competitive ratio is actually optimal. We’ll prove this next time.
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29 Lecture 29: Online Algorithms III

29.1 A general technique for lower bounds

We usually don’t talk about much about lower bounds, because they’re ‘depressing.’ But we’ll look

at this one very general technique for doing so, and will allow us to show that the randomized

paging algorithm from before is indeed a lower bound. We’ll treat the algorithm as a game between

the algorithm designer and an adversary, and we’ll define the score to be the expected cost for any

input sequence, minus k times the optimum for that sequence. Note that if this quantity is ≤ 0

for all inputs, that we’ve achieved a k-competitive algorithm.

This can now be interpreted as a zero-sum two-player game between algorithmist and adversary,

with the payoff being equal to the score defined above. With deterministic strategies, if your

opponent knows your strategy, then they’ll change their strategy to beat yours, and this can go

on forever (i.e. no equilibrium is reached). Instead, we’ll use randomized strategies - then, we can

disclose our strategy and still be able to achieve a good score.

Example 29.1
Let’s briefly examine the game of rock-paper-scissors. There are no determinstic strategies. On

the other hand, a randomized strategy for both players of choosing each option with probability
1
3
is an equilibrium strategy, in that neither player changing will improve their score. This is

known as a Nash Equilibrium.

To formalize, we will say player 1 has strategies i and player 2 has strategies j, which are deterministic

strategies, also known as pure strategies. We will also define the payoff matrix Mi j , which has

elements ai j that tell us the payoff if player 1 plays i and player 2 plays j. If we then define the i-

element vector x and j-element vector y , representing the probability of each player picking strategy

i or j , strategy, the expected payoff is simply xᵀMy.

Now, if player 1 knows y , then they will try to choose the best response x. In other words, they

want to choose a strategy x such that the score is minimized - minx maxy x
ᵀMy. Similarly, if player

2 knows y , then they want to pick a strategy to maximize the score maxx miny x
ᵀMy. Note that

the player who chooses second can achieve the optimum with a deterministic strategy.

Theorem 29.2 (Minimax Theorem)

In a 2-player zero-sum game, these quantities are equal: maxx miny x
ᵀMy = minx maxy x

ᵀMy.

Proof. By strong LP duality. See old PSET.
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Now let’s apply this to online algorithms and adversaries. This is a two-player game, where one ran-

domly chooses the strategy A from a probability distribution and other chooses the input sequence

σ. Then, the score is equal to minrandA maxσ E[CA(σ)− kCOPT (σ)]. Since deterministic strategies

perform just as well as randomized ones when the minimax theorem, and by the minimax theorem,

this quantity is also equal to maxrandσ minA E[CA(σ)− kCOPT (σ)]. Translating this into English, we

get the following:

Theorem 29.3 (Yao’s minimax theorem)

The best competitive ratio achievable by a randomized online algorithm against an oblivious

adversary, is equal to the best competitive ratio achievable by a deterministic online algorithm

against the worst known distribution over inputs σ.

This now gives us a tool to prove lower bounds!

Corollary 29.4
If there is a distribution over σ such that no deterministic algorithm can do well, then we can

conclude that there is no randomized algorithm that can do better.

Remark 29.5. Infinite input sequences may cause some problems, but mathematicians have figured

it out and it works out in the end. As computer scientists, we don’t think about infinity, and just

hope that everything works instead. On the bright side, if there is a bad input, it’s usually finite.

29.2 A lower bound on Paging

One possible bad input to paging is just to choose randomly over all possible inputs of some length.

We’ll take the length of the sequence to be k + 1 pages, since k pages perform extremely well.

Regardless of what’s in memory, the probability of a fault is equal to the probability that a wrong

page is requested, which is 1
k+1

. Thus, every deterministic algorithm has at least an expected number

of page faults equal to 1
k+1

per request, meaning that we need O(k) requests in expectation to see

a fault.

OPT instead gets to see the whole sequence σ in advance, and will evict the page that is the farthest

in the future, and won’t fault until the next request for that page arrives. Since the sequence of

requests is random, we will see all k + 1 items before we get a fault. This is the coupon collector
problem, and has the well known solution of needing expected O(k log k) requests. Thus, the

deterministic algorithm has log k times as many faults as the optimum, which shows the lower

bound for randomized paging!
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29.3 The k-server problem

The k-server problem was introduced by Manasse in 1988, and it involves k servers which move

between points on a metric space. Each request is a point in space, and we must move some server

to that point. Over a large sequence of requests, the total cost of serving the requests is equal to

the distance travelled by these servers. It’s a relatively general problem, and can, for example, be

used to model paging on a uniform metric. A server would then be on a page, if the page itself is in

memory, and when a server is moved, this is equivalent to evicting the page. It can also be used to

represent other problems, such as weighted paging and optimizing selecting heads on hard drives.

It was a hard and poetic problem and so theoreticians spent a lot of time on it. The first algorithm

to try is a greedy algorithm; unfortunately, it doesn’t work. If we have two points A,B close to

each other and a point C far away, with the servers starting on A and C, and we have the input

sequence {AB}n, then we get an infinite competitive ratio. But we can still get some insight from

the failure of the greedy algorithm. This is very similar to a ski-rental problem, in that we can have

many small costs or just one large cost.

Ultimately, we can’t just move the servers, since we have many servers and don’t know which to

move. A better one would be to probabilistically weight it by distance - each server moves with

probability inversely proportional to the distance. This is known as the Harmonic Algorithm, and

is O(kk)-competitive. This was a big improvement over an O(k ↑↑ k) algorithm presented by

Manasse in his paper introducing the problem.

Another possible algorithm defines a work function, in where we essentially track the offline opti-

mum, and try to converge back to the current stage of the offline optimum. If we define Wi(x)

to be the optimal cost of serving the first i requests and finishing with the servers in the state x,

then we want to minimize over all states x of Wi(x) + d(Xi−1, Xi). The algorithm has an abysmal

runtime due to the computation of the offline optimum, but this was shown to be 2k-competitive

in 2001, a huge improvement!

Let’s now examine a special case of this problem, where all the servers are on a line (an ‘on line

algorithm’). If we get a request between two servers, then it makes sense to only move servers that

are closest to the request point in either direction, and this can be shown by a simple swapping

algorithm. We don’t know which one is optimal, so we’ll move both servers the same amount

towards the request, until one reaches it (the double coverage algorithm). If the request is on

one side (outside the convex hull), then we only move one server, since it would make no sense to

move two. Locally, we spend at most twice the optimum cost. In fact, this can be proven to be

k-competitive, which we’ll do next time.
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30 Lecture 30: Online Algs. IV, External Memory Algs. I

30.1 Double Coverage Algorithm

Theorem 30.1
The double coverage algorithm for on-line k-server is k-competitive.

Proof. As usual, we’ll use a potential function. We want this to measure our inoptimality, somehow

capturing how different DC is from the OPT. One metric is just the total cost to move the DC

servers to the positions of the optimum, and we can find this with a min-cost matching algorithm,

which we’ll call M. In our analysis, we will also need a second parameter di j , which is simply the

distance between the two servers i and j . Then, our potential function will be Φ = kM +
∑

i<j di j .

For our analysis, we will first move the servers of OPT, and update the potential. Then, we will

move the double coverage servers, and also update Φ. We want to show that if OPT moves a

distance d, then Φ also increases by ≤ kd. We also want to show that if DC moves a distance d,

then Φ decreases by ≥ d. This will show that our algorithm is k-competitive, since the potential is

always nonnegative, and thus DC cannot decrease by ≥ kd.

For the first claim, this is simple, since the sum term doesn’t change. The only change is in M,

which can increase by at most d, showing the claim.

For the second claim, we’ll split into where the request is - either inside or outside the convex hull.

If it is outside the convex hull, then we move the closest server. The potential increases by (k−1)d

from the distance term. For the matching, we need to do an analysis based on where each pairing

is. If the server that moves in the optimum is matched to the one we move, then the potential

decreases by kd, showing the claim. In fact, we should always swap the matching such that this is

true, since this leads to a lower min-cost matching.

If the request is in the convex hull, then, the matching cost never increases. The one that is matched

to the optimum decreases by d, while the other could increase by up to d. For the movement, since

the two servers move in opposite directions, most of the distances actually cancel. The only thing

that does change distance are the servers that we actually move, which decreases the potential by

2d. Thus, Φ decreases by at least 2d in this case, which shows the result.

This method generalizes to graphs on trees. This is somewhat important, since it has been proven

that any metric is the sum of O(log2 n) tree metrics. In fact, this leads to a randomized k-server

algorithm that’s O(log3 n log2 k)-competitive, where n is the number of points in the metric space,

if we use randomization and tree metrics to guide our choices.
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30.2 Introduction to External Memory Algorithms

The general idea is that RAM is fast, while disk access is slow. Some algorithms, in fact, have

this as a limiting factor - the algorithm runtime is proportional to the number of disk accesses,

and hence we want to minimize the number of disk accesses for a fast algorithm. Like we did in

caching, we will pull a block of information at a time from memory in order to exploit locality.

For such problems, we will deal with a block size B, a problem size N, and a memory size M, the

number of items we can fit in the fast memory. One basic algorithm is for scanning arrays on disk.

This takes O(N/B) time for standard operations, since we pull in B items at a time and read each

once. In general, any array algorithm will take this time.

Now let’s increase our dimension, and deal with two N × N matricies (so our problem size is N2).

We need to first find out how we store our matricies in the blocks, and one way to do so is in

row-major order, where we essentially put some number B of elements in a block per row, for each

matrix. Overall then, our runtime is O(N2/B) to access. Addition has the same runtime, since we

simply add the respective elements of the matricies.

Multiplication is much harder. If we use the naive algorithm for multiplication, then we need to

read a row, read a column, and output one value. Reading a row takes time O(N/B) while reading

a column is O(N) (since each column is in a different block). Thus, each multiplication takes O(N)

time, and this thus takes O(N3) time (block reads).

Instead, if we stored our second matrix in column-major order, then accessing the second matrix is

also O(N/B) time. This leads to overall O(N3/B) time. However, there is a predictability problem,

in that we don’t necessarily know beforehand which matrix is on the left and right.

There is a further problem, in that we are ‘wasting’ our row and column reads. We’re inefficiently

reading each row and column N times, which is N times too many. We’re going to need a different

method, which we’ll explore next time.
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31 Lecture 31: External Memory Algorithms II

31.1 Matrix Multiplication Continued

We saw that we could get a O(N3/B) algorithm simply by storing the matricies in row-major or

column-major order. In fact, we can do better, by using a block decomposition of matricies - using

one square submatrix as a memory block. The submatrix should have size 1
2

√
M ×

√
M in order to

fit in to memory. Then, we need to read O
(
M
B

)
blocks to multiply one pair of these block matricies.

To get the actual output block matrix, we need to sum over N√
M

block matrix multiplications, and

we have N2

M
total matrix outputs. This means that our runtime becomes O

(
N3

M3/2 · MB
)

= O
(

N3

B
√
M

)
time. With a large memory then, we can get significant improvements in runtime.

Remark 31.1. These algorithms were based on the O(N3) sequential algorithms of matrix multi-

plications, but new faster ones have been developed - of runtimes approaching O(N2.376). These

can be externalized the same way.

31.2 Linked Lists

Let’s now think about how we can use external memory techniques to simulate a linked list, specifi-

cally supporting an insertion or deletion operation, when we are given the current position. We can

do this by reading the block, deleting the element, and then updating the previous element and the

next element. These may be in different blocks, so we get up to 3 reads and 2 writes per operation,

which seems excessive, but is O(1) anyways.

For our scan operation, we will need O(1) per item. However, if we store our elements contiguously

in memory, then we can scan B items per block, and our amortized scan will cost only O(1/B)

per item. However, the problem is that insertions and deletions can change the structure of the

memory operations, and after many operations, the internal structure is lost.

To get around this, we need to augment our previous operations to maintain the structure. For

deletion, one idea is just to leave a ‘hole’ in the block, which would maintain the block structure.

But this doesn’t work out, since we can delete B − 1 elements from each block, and each block

would only have one element, which is bad. A better idea is to leave holes until the block is less

than half full, then combine it with the next block. There are two possibilities in this case - when

the second block is less than half filled, then we can just combine them. Otherwise, if it has greater

size, then we can just balance the blocks such that both are more than half filled. This works and

means that each block still has Ω(B) items and we only have to do O(1) block reads for deletion!
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For insertion, if there is a hole created by our deletion, then we can simply insert into the hole.

Otherwise, we can split the block into two blocks of size more than half full, artificially creating a

hole which we insert into. This maintains the invariant that our blocks still contain Ω(B) elements

and so both operations can be implemented in O(1) time. Scanning then reduces to time O(1/B)

per item.

31.3 Search Trees

One way we can implement search trees is simply to move the whole thing into external memory,

getting us O(logN) reads and writing. But we can do better, by taking advantage of the block

size. If we structure all our blocks carefully, breaking into size-B trees with height logB, then to

get to the bottom we only need logN
logB

reads, which is also our runtime.

A more canonical way to think about this is through trees with B children at each layer, which we

conveniently denote as B-trees. These are “the most important data structure in external memory

algorithms.” Their height is logB N which is the same runtime that we got before.

To implement them, we will maintain the invariants that all the leaves are at the same depth, that

all keys are at the leaves, and that the nodes are relatively full (i.e. more than B/2 items, except

for the root node). The internal nodes will then not contain values to return (but only where to

search), but rather just serve as splitters.

How do we maintain insertion and deletion while maintaining these invariants? For insertion, if the

leaf block isn’t full, then we can simply insert there. If the leaf block itself is full, then we simply

split into two leaf blocks of equal size, and then copy the middle key up to the parent as the spltiter.

If we reach the root, then we can also split the root itself - this way, the tree gets deeper with an

insertion. The work is O(logB N) since we simply need to do tree traversals.

The main problem with deletion is the same one we had with linked lists - that some blocks may

become too empty. And we can do the same solution. If a block is half empty, then we merge it

with a neighboring block, and if it eliminates a block, then we need to delete a splitter from the

parent. Recursing on the tree structure, propogating up, this takes O(logB N) work, and may cause

the depth to decrease if the root’s children are merged.

Note 31.2
This idea also works with binary trees, and a special variant of B-trees that is sometimes used

is known as a 2-3 tree, where each node has degree 2 or 3.
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31.4 Sorting

As usual, we can just import a standard algorithm, and see how it performs in external memory. For

quicksort, each scan takes time O(N/B) and we need about log(N/B) time overall, which has total

runtime O
(
N
B

log N
B

)
. If we use merge-sort, we get the same runtime as quicksort. If we use our

B-trees from above, we use O(logB N) time for each element, for a total runtime of O(N logB N).

We’re seeing something glaringly missing in our runtimes - the memory parameter M. If we can

take advantage of M then our runtimes should be able to be improved significantly. One easy

improvement we can do is just to scan and sort everything in memory once we get to M items.

Then, the runtime becomes O
(
N
B

log N
M

)
for quicksort and mergesort. This is significant asM � B.

There turns out to be a better way to use the memory in mergesort. Instead of a 2-way merge,

we instead do a M/B way merge. We take the M/B sorted lists, merge them into one list with

one scan. We put the front of each list in one memory block, and then keep emitting the min item

to the output block, which we then write out. When an input list is empty, then we feed the next

one. The time it takes is simply equal to the number of data blocks, and thus the runtime is only

O
(
N
B

logM/B(N/B)
)
. This is actually information-theoretically optimal, and so we can’t do better.

One point of interest is that in standard memory, we need O(logN) time to search and O(N logN)

to sort. On the other hand, we need O(logB(N)) time to search and O
(
N
B

logM/B(N/B)
)
time to

sort, and so there is somewhat of a mismatch between these two cases. Specifically, if we have this

sorting algorithm, then we should be able to do a search operation in time O
(

1
B log(M/B)

)
. This is

nonsensical since we have to read a block at a time, but there is a data structure known as a Buffer
Tree which actually does this. It gets around the impossibility, by batching up search requests and

then having this cost as an amortized cost.

Finally, there is the idea of cache-oblivious algorithms. The algorithms that we’ve talked about

before all assume that we know the block size B. But in real life, we need to optimize the algorithm

such that all parts of the memory hierarchy are optimal. This is somewhat tedious to do manually,

but the cache-oblivious algorithms introduced by Leiserson (another member of the department)

don’t need either B or M and can still get the same bounds! He was able to get the same bounds

for all the problems we discussed above with such algorithms.

Example 31.3
Consider matrix multiplication. When we multiply two N × N matricies, we will split it into

four N/2× N/2 matricies (per original matrix) and recurse, rather than
√
M ×

√
M ones. The

algorithm itself can tell when it stops reading from external memory, and the runtime turns out

to be the same as ours above.
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32 Lecture 32: Parallel Algorithms I

32.1 Definitions and Models

Parallel Algorithms, as a theoretical topic, started to flourish in the 80s, but then somewhat died in

the 90s since the theoretical models didn’t really match the practical results. However, now, they

are seeing a resurgence and are interesting in their own right and can bring insight as well.

There are two different models of computation traditionally associated with the field - circuits of
logic gates, and parallel processors over shared memory. In the circuits model, performance is

measured by the size - the number of actual logic gates, and the other is measured by the depth,

or the number of layers. In the parallel processors model, performance is measured by the speed -

the number of parallel steps needed, and also in the number of processors. It is easy to draw an

analogy between the two models between the size/number of processors and the depth/speed.

In the circuits model, we’ll start with the basic logic gates of AND, OR, and NOT. Nowadays, we

use clocked circuits, in where the output is avaliable one cycle after the input. The depth then

determines the time until the answer is avaliable, and so we obviouslly want to minimize depth.

Another factor to consider is known as fan-in, or the number of inputs to one gate. We can

consider bounded fan-in, in where each gate has a constant number of inputs, or unbounded
fan-in, where we can have arbitrary inputs. We can transform an unbounded to a bounded one by

imposing a binary tree structure of 2-element gates themselves, with depth O(log n).

We define AC(k) to be all functions that are computatable with a circuit of depth O(logk n) using

polynomially many gates with unbounded fan-in. Similarly, we define NC(k) to be all functions

that are computable with a circuit of depth O(logk n) using polynomially many gates with bounded

fan-in.

Joke 32.1. NC actually stands for Nick’s class, and was named that way by Steve Cook. There is

also a class called SC, which stands for Steve’s class, and was named by Nick Pippinger.

Note 32.2
One might wonder where the intuition for these complexity classes comes from. The idea is

that we want to compose algorithms, such that one algorithm calls others. So, if we have an

algorithm that takes O(log n) steps, which also calls a subroutine that also takes O(log n) steps,

then we will end up with a O(log2 n) algorithm. For sequential algorithms, we see the same

idea, except that our starting point for algorithms is usually linear runtime - hence why we care

about polynomials.
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Theorem 32.3
We have a simple relation between the complexity classes: AC(k) ⊆ NC(k+1) ⊆ AC(k+1)

Proof. The second relation is obvious. For the first one, we can simply expand out all our logic

gates as per above, increasing the number of steps by at most a factor of log n.

Finally, we define the class AC (which is also equivalent to NC) to be the union over all k of all

AC(k) or NC(k) i.e. any polylogarithmic algorithm.

32.2 Addition

The most straightforward way to approach addition is with a ripple-carry adder. Essentially, this

is the same algorithm as taught in grade school - add two bits, and carry the next bit over to the

next digit if necessary. Unfortunately, this leads to a O(n) depth and O(n) size algorithm since

each bit addition needs to be processed before the next.

We can do better with carry-lookahead adders, which have size O(n) but depth O(log n). The idea

is that if we know all the carry bits beforehand, then we can simply process all the actual additions

in parallel and know the result without this chain of additions. If we preplan for hypothetical values

of carry bits, then we should be able to speed up significantly.

Well, given an input bit addition of ai and bi , we additionally have the carry bit ci−1 from the

previous gate. What are the possible values for the output carry ci? If at least two of the bits is

equal to 1, then ci = 1. This means that if ai = bi = 0, then the carry is ci = 0, which we call a

kill operation. If ai = bi = 1 then the carry is ci = 1, which we call a generate operation. Finally,

if ai 6= bi , then ci = ci−1, which we call a propagate operation.

Now, we can treat each gate by their identities. The carry bit, and hence the result, is then

computable by chaining the result of many of these gates. There is a simple multiplication table

for these operations:

k p g

k k k g

p k p g

g k g g

The zeroth gate is a kill gate, since the carry to the first gate is always 0. Then, the nth gate is

simply the composition of all the previous gates. Note that this composition is never p! (proof:

by induction) This means that simply by computing these compositions of gates, we can directly
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know all the carry bits. Each gate’s i ’s carry will then be given by xi ⊗ xi−1 ⊗ · · · ⊗ k, and they are

collectively known (due to historic reasons) as prefix sums.

So, computing prefix sums efficiently gives us a way to add numbers quickly. One way we can do

so is through a binary tree structure, adding the prefixes of two numbers at a time. If we have a

binary tree for computing each prefix sum, then we get our desired O(log n) depth, even though

we use O(n2) area.

A better way to go about this is to assemble any prefix from subtrees of one complete binary

tree. For example, if we consider a binary tree on 8 elements at the leafs, and we want to find

x6 ⊗ x5 ⊗ · · · x0, then we can simply compute this via (x6)⊗ (x5 ⊗ x4)⊗ (x3 ⊗ x2 ⊗ x1 ⊗ x0), where

each parenthesized quantity is one that we’ve already computed along the tree.

In practice, in order to avoid excessive fan-out, we do so by starting from the right, feeding the

subtree values up, and then down - passing up the product of all children, and passing down the

product of the right subtree to the left child for use in the left subtree wherever needed. In either

case, this reduces to O(n) gates while keeping the O(log n) depth.

32.3 Parallel Processors/PRAM

As mentioned above, the PRAM model relies on a set of parallel processors along with a shared

memory. Each processor operates on synchronous cycles, and this leads to problems with memory

read/writing. For reads, it seems to be generally fine for many processors to read the same location.

However, since sometimes (physically) the memory value cannot be delivered to each processor in

the same cycle (due to excessive fan-out), we divide into exclusive and concurrent read models for

theoretical analysis.

For writes, we have the same problem, and so we likewise divide into exclusive and concurrent

write models. When we actually have a concurrent write, there are many ways of dealing with

it - choosing an arbitrary result, choosing the max/min, or even just writing garbage. Anyways,

combining these possibilities we have the CRCW, CREW, or EREW models of computation, with

the CREW (concurrent-read exclusive-write) model being preferred since we don’t need to deal

with write conflicts.

To change these models to a complexity class, we define CRCW(k) to be problems solvable

in O(logk n) time using polynomially many processors under CRCW operations. We can define

EREW(k) in a similar way, and like what we saw with circuits, we also have the relation that

CRCW(k) ⊆ EREW(k+1). This can be proven with the same method as we did with circuits, by

considering a binary search tree.
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Finally, we define the NC class to be equal to ∪kCRCW (k) over all k. The NC here is equivalent

to the one we had with circuits - these definitions are indeed equivalent. Every depth d circuit

and g gates can be simulated by a PRAM with g processors in time d, and conversely, any PRAM

algorithm with n processors that run in time t can be built into a circuit with polynomially many

gates and polylogarithmic depth.

Note that there is a difference between EREW and CRCW computational models. We can see this

when we consider computing the OR of n possible values. In the EREW model, we need log n time

by constructing a binary tree. In the CRCW model, we can set the initial output to 0, and have

each processor check the value of the inputs. If any processor sees a 1, then they can just write a

value of 1 to the output, and so this is O(1) time, O(log n) faster.
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33 Lecture 33: Parallel Algorithms II

33.1 MAX operation

The bound that we got before of O(log n) for computing an OR operation in the EREW model is

actually a tight bound. To show this, consider a case where only a single value out of the n inputs

is 1. Initially, each memory location only knows its own value, and each processor can combine the

results from two locations in one step. We need a constant number of steps to know two values,

then four, etc. which turns out to be logarithmic.

Now let’s consider the problem of finding the maximum element. In the EREW model, we can do

so in O(log n) with the same binary search tree model (and this is a tight bound as well, since we

can use maximum computation to compute an OR as well). In the CRCW model, we get a problem

compared to last time - we can’t just have everything write to the same location, since overwrites

will happen.

But we can still get O(1) time if we use O(n2) processors. We do so by making each number check

if it itself is the maximum, and if so, then write itself to the output. To actually check in O(1) time,

we need to compare a set number with every other number (which is O(1) with n processors), and

then take the OR of all the comparisons in O(1) time as before. Only the number that has a value

of 0 for the OR writes itself to the output.

Note 33.1
When we assign processors to tasks, we assume that each has an integer ID. Then, we can

assign processors to different tasks by their unique ID, while they act synchronously.

Definition 33.2
We define the work of an algorithm to be the number of processors, times the time that it takes.

Note that we can simulate a PRAM algorithm on fewer processors, and then work becomes a

measure of time needed.

Further, we define an efficient algorithm to be one whose work is bounded by the runtime of

the best sequential runtime. Note that parallel algorithms’ work must always be as slow as a

sequential algorithm, since otherwise we could get a faster sequential algorithm. This is known

as the “cost of parallelism”

Our previous definition of MAX had Θ(n2) work since we used O(n2) processors. But we can get

better work by using O(n) processors, where we can achieve a O(log log n) algorithm:
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Suppose that we have k candidate maxes remaining. Then, we can make k2

n
groups of n

k
items.

Then, in each group, we run our O(1) max from before, which needs n2

k2 processors per group. This

is a total of n processors, as desired. So, with n processors, we can reduce the problem of finding

a max of k items to one of k2

n
items in O(1) time. If we use 2n processors rather than n, then

we will reduce the number of items at each iteration, and this recurrence solves to O(log log n), as

desired.

33.2 Parallel Prefix

We know that we can get O(log n) time for computing prefixes using n processors. This leads to

O(n log n) work, while the sequential algorithm needs O(n) time. We know we can’t improve the

actual time it takes (since otherwise we can compute OR faster), but maybe we can improve the

actual number of processors, to O
(

n
log n

)
.

To do so, let’s make blocks of log n contiguous xi . We assign one processor per block, and then

compute yi , which are the products of all its items. We can then run parallel prefixes on yi . Finally,

we can have each processor fill in the prefixes starting from the prefixes of yi . Each processor does

log n time on its own block to fill things in, and then parallel prefixes on yi takes log n as well. We

only need O
(

n
log n

)
processors to compute the prefixes on yi , while maintaining the O(log n) bound.

33.3 List Ranking

Suppose that we have a linked list of n items, and we want to find its position in the list, or the

number of items following it. The list itself is stored in an array of list nodes, but the memory

locations are not contiguous or in order. Solving this would ultimately lead to a nice method to

unfold a linked list into an array.

If we give each memory element a value of 1, then we simply want the parallel suffixes in order to

find its position. Unfortunately, we can’t apply our technique from before as we don’t have an array

to work with. Instead, we will use a more general technique known as pointer jumping.

In this technique, we have a value d(x) in each node x, and we additionally have a next pointer

n(x). In our example above, d(x) = 1 for all x . The pointer jumping operator is going to increment

d(x) by d(n(x)) and change n(x) to n(n(x)).

When we perform this operation, we maintain an invariant that the suffix sum for each node is

unchanged. Further, this also breaks the linked list into two halves of equal length. O(log n) steps

then are sufficient to shorten all lists to length 1 while perserving all the suffix sums, and so with

n processors we can solve the problem with O(n log n) work.
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33.4 Binary Search and Sorting

Let’s first go over binary search. If we have 1 processor, we can trivially get a O(log n) runtime

sequentially, and with n processors, we can get O(1) runtime by looking at everything in parallel. If

we have k processors, then we can get O(logk n) items by splitting into k groups, and then checking

each group in parallel. We can narrow it down to one group in O(1) time, essentially turning it into

a subproblem of reduced size O(n/k). This turns out to be optimal.

For sorting, let’s first consider what we can do with many processors. One trivial algorithm is to

find the maximum in O(1) and recurse, which gives us a O(n) sort with n2 processors. But this is

bad - our standard parallel algorithms should have runtimes in NC.

We can get a smarter algorithm with the same idea that we had with max - by comparing each

element to all other elements. If we count the number of items that are smaller than some specified

item, we can easily sort our array. The total time it takes is O(log n) to count the number of smaller

items, with O(1) time for everything else, and so our total runtime is O(log n), though with O(n2)

processors.

Let’s think now about how we can use a mergesort style algorithm. We have O(log n) phases of

merging, and so if we can make merging fast, then we can get a fast parallel algorithm. If we have

two sorted lists, then we can merge them and find the actual position of where one element goes

with a simple binary search. If we give each item one processor, then we can complete each merge

phase in time O(log n) with just n processors. Then, merge sort will ultimately take time O(log2 n)

with n processors, which is much closer to our sequential bound.
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