Important Inequalities

Beckman Math Club

The Arithmetic Mean - Geometric Mean (AM-GM) Inequality

$$
\frac{x+y}{2} \geq \sqrt{x y} \text { and in general, } \frac{a_{1}+a_{2}+a_{3}+\cdots+a_{n}}{n} \geq \sqrt[n]{a_{1} a_{2} a_{3} \cdots a_{n}}
$$

Example 1

Question: What is the minimum value of $\frac{18}{n}+\frac{n}{2}$ for positive values of n ?
Solution: By the AM-GM inequality, we know that $\frac{\frac{18}{n}+\frac{n}{2}}{2} \geq \sqrt{\frac{18}{n} \cdot \frac{n}{2}}$. This implies $\frac{18}{n}+\frac{n}{2} \geq$ $2 \sqrt{\frac{18}{n} \cdot \frac{n}{2}}$, so that $\frac{18}{n}+\frac{n}{2} \geq 2 \sqrt{\frac{18}{2}}=2 \sqrt{9}=6$.

Equality in the AM-GM Inequality: Equality in the AM-GM holds if and only if all members of $a_{1}, a_{2}, \ldots, a_{n}$ are equal. In the simple two element case, clearly $\frac{x+x}{2}=\sqrt{x \cdot x}$.

Example 2

Question: In triangle $A B C, 2 a^{2}+4 b^{2}+c^{2}=4 a b+2 a c$. Compute the numerical value of $\cos B$. (Old ARML Indiv.)

Solution: By the AM-GM inequality, we know that $a^{2}+4 b^{2} \geq 2 \sqrt{4 a^{2} b^{2}}=4 a b$. Likewise, $a^{2}+c^{2} \geq 2 \sqrt{a^{2} c^{2}}=2 a c$. Thus, adding the two inequalities, we find that $2 a^{2}+4 b^{2}+c^{2} \geq$ $4 a b+2 a c$. But in the question, we are given that the quantities are exactly equal. Thus we are in the equality case of AM-GM for both inequalities. This implies that $a^{2}=4 b^{2}$ and $a^{2}=c^{2} \Longrightarrow a=c$, since side lengths are positive. Then we can use the law of cosines to find that $\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}=\frac{4 b^{2}+4 b^{2}-b^{2}}{2 a^{2}}=\frac{7 b^{2}}{8 b^{2}}=\frac{7}{8}$.

Example 3

Question: Show that the equilateral triangle has the most area for any triangle with a fixed perimeter.

Solution: Suppose that the triangle has side lengths a, b, c and a fixed perimeter, hence a fixed semipermieter s.

Heron's formula gives us the area of the triangle as $A=\sqrt{s(s-a)(s-b)(s-c)}$. As s is a constant, we wish to maximize A by maximizing the quantity $(s-a)(s-b)(s-c)$.

By the AM-GM inequality, we know that $\frac{(s-a)+(s-b)+(s-c)}{3} \geq \sqrt[3]{(s-a)(s-b)(s-c)}$.

Doing algebraic manipulations we find that

$$
\begin{aligned}
(s-a)(s-b)(s-c) & \leq\left(\frac{3 s-(a+b+c)}{3}\right)^{3} \\
& =\frac{s^{3}}{27}
\end{aligned}
$$

The product $(s-a)(s-b)(s-c)$ has the constant $\frac{s^{3}}{27}$ as its upper bound, so the maximum value for this product is indeed the above value. This maximum is reached in the equality case, i.e, when $s-a=s-b=s-c$, which happens only when $a=b=c$.

An extension: The AM-GM-HM Inequality

$$
\begin{gathered}
\frac{x+y}{2} \geq \sqrt{x y} \geq \frac{2}{\frac{1}{x}+\frac{1}{y}} \text { and in general, } \\
\frac{a_{1}+a_{2}+a_{3}+\cdots+a_{n}}{n} \geq \sqrt[n]{a_{1} a_{2} a_{3} \cdots a_{n}} \geq \frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\cdots++\frac{1}{a_{n}}}
\end{gathered}
$$

Example 4

Question: Prove Nesbitt's Inequality: $\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b} \geq \frac{3}{2}$ for $a, b, c>0$.

Solution: We first start by combining the numerators on the fractions, by adding 1 to each of the fractions, yielding the inequality $\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b} \geq \frac{9}{2}$. Then we can factor: $(2 a+2 b+2 c)\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{1}{a+c}\right) \geq 9$. Now, dviding both sides of the inequality by $3\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{1}{a+c}\right)$ we obtain that $\frac{(a+b)+(a+c)+(b+c)}{3} \geq \frac{3}{\frac{1}{b+c}+\frac{1}{a+b}+\frac{1}{a+c}}$, which is simply the AM-HM inequality applied to $a+b, a+c, b+c$. Since each step in the proof above was reversible, we have shown the desired result.

The complete generalization: The Power Mean Inequality
Let $M(p)=\left(\frac{a_{1}^{p}+a_{2}^{p}+a_{3}^{p}+\cdots+a_{n}^{p}}{n}\right)^{1 / p}$ for positive values $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$. Then $M\left(p_{2}\right) \geq M\left(p_{1}\right)$ if $p_{2} \geq p_{1}$, with equality when all a_{i} are equal.

$\quad$$p \rightarrow-\infty$ $p=-1$
Some special cases: $M(p)=$ Harmonic Mean $=\frac{1}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\cdots+\frac{1}{a_{n}}}$
$p \rightarrow 0$

The Cauchy-Schwarz Inequality

$$
\left(a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}\right)^{2} \leq\left(a_{1}^{2}+a_{2}^{2}+\cdots a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\cdots b_{n}^{2}\right)
$$

with equality when $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\cdots=\frac{a_{n}}{b_{n}}$.

Example 5

Question: Prove the power means inequality for $\left(p_{1}, p_{2}\right)=(1,2)$. This result is also known as the QM-AM inequality.

Solution: We need to show that $\sqrt{\frac{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}{n}} \geq \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}$. By applying CauchySchwarz, we can show that $\left(a_{1}+a_{2}+\cdots+a_{n}\right)^{2} \leq\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)\left(1^{2}+1^{2}+\cdots+1^{2}\right)$, where there are n 1's in the sum. So the right hand side is equal to $n\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)$. Dividing by n^{2} and taking the square root yields our result.

Example 6

Question: If x_{1}, x_{2}, x_{3} are three positive numbers such that $x_{1}+2 x_{2}+3 x_{3}=60$, what is the smallest possible value of the sum $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$?

Solution: By Cauchy-Schwarz, we know that $\left(x_{1}+2 x_{2}+3 x_{3}\right)^{2} \leq\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)\left(1^{2}+2^{2}+3^{2}\right)$ Rearranging we find that $x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \geq \frac{60^{2}}{14}=\frac{1800}{7}$.

Exercises

1. Show that $x+\frac{1}{x} \geq 2$ for all $x>0$.
2. Demonstrate that if $a_{1} a_{2} \cdots a_{n}=1$, then $a_{1}+a_{2}+\cdots+a_{n} \geq n$.
3. Prove that for $a, b, c>0,(a+b)(a+c)(b+c) \geq 8 a b c$.
4. Let b and h denote the base of a triangle whose area is 200 . Compute the minimum value of $b+h$.
5. Find the minimum value of $\frac{9 x^{2} \sin ^{2} x+4}{x \sin x}$ for $0<x<\pi$.
6. (Mandlebrot 1998/2) Determine the minimum value of the sum $\frac{a}{2 b}+\frac{b}{4 c}+\frac{c}{8 a}$ for positive a, b, c.
7. Find the minimum value of the function $f(x, y, z)=\frac{x}{y}+\sqrt{\frac{y}{z}}+\sqrt[3]{\frac{z}{x}}$.
8. If a, b, c are positive real numbers, find the minimum value of the quantity

$$
\frac{c}{a}+\frac{a}{b+c}+\frac{b}{c}
$$

9. Prove Titu's Lemma from the Cauchy-Schwarz inequality:

$$
\frac{\left(a_{1}+a_{2}+\cdots+a_{n}\right)^{2}}{b_{1}+b_{2}+\cdots+b_{n}} \leq \frac{a_{1}^{2}}{b_{1}}+\frac{a_{2}^{2}}{b_{2}}+\cdots+\frac{a_{n}^{2}}{b_{n}}
$$

10. Let $a, b, c, d>0$ such that $a+b+c+d=1$. Prove that

$$
\frac{1}{4 a+3 b+c}+\frac{1}{3 a+b+4 d}+\frac{1}{a+4 c+3 d}+\frac{1}{4 b+3 c+d} \geq 2
$$

11. Let a, b, c be real numbers. Prove the inequality

$$
2 a^{2}+3 b^{2}+6 c^{2} \geq(a+b+c)^{2}
$$

12. Let x, y, z be positive real numbers. Prove the inequality

$$
\frac{2}{x+y}+\frac{2}{x+z}+\frac{2}{y+z} \geq \frac{9}{x+y+z}
$$

Brief Solutions

1. Trivial.
2. Trivial.
3. Apply AM-GM to each term in parentheses on the LHS.
4. Trivial (40).
5. Divide the fraction into two, then AM-GM. (12).
6. Trivial (3/4).
7. Apply AM-GM to $x / y, 2$ copies of $1 / 2 \operatorname{sqrt}(y / z)$, and 3 copies of $1 / 3 \operatorname{cbrt}(z / x) \cdot\left(2^{2 / 3} * 3^{1 / 2}\right)$
8. Add and subtract 1. Add the one to the last fraction. Then use AM-GM. (2)
9. Let $u_{i}=\frac{a_{i}}{\sqrt{b_{i}}}, v_{i}=\sqrt{b_{i}}$. Then CS to u_{i}, v_{i} gives the desired result.
10. AM-HM.
11. CS to $(1 / 2,1 / 3,1 / 6)$ and $\left(2 a^{2}, 3 b^{2}, 6 c^{2}\right)$
12. Titu's.
