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Chapter 1

Preface

This text is designed to introduce various techniques in Integration and Summation, which are

commonly seen in Integration Bees and other such contests. The text is designed to be accessible

to those who have completed a standard single-variable calculus course. Examples, Exercises, and

Solutions are presented in each section in order to help the reader become become acquainted with

the techniques presented.

It is assumed that the reader is familiar with single-variable calculus methods of integration, including

u-substitution, integration by parts, trigonometric substitution, and partial fractions. It is also

assumed that the reader is familiar with trigonometric and logarithmic identities. Paul Lamar’s

Online Math Notes, accessible here: http://tutorial.math.lamar.edu/ is a very comprehensive

review of this content.

Note: In this text, log denotes the natural (base-e) logarithm.

This is version 1.0 of the text, updated on December 15, 2020.
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Chapter 2

Riemann Sums

2.1 Theory

A Riemann sum is a summation that can be used to approximate an integral, and is exact in the

limit as N → ∞. Thus, some limits of summations can be evaluated by converting the associated

Riemann sum into a definite integral.

Formally, a Riemann sum is defined over a partition of an interval a = x0 < x1 < x2 < x3 < · · · <
xn = b as the quantity

lim
n→∞

n∑
i=1

f (x∗i )∆xi =

∫ b

a

f (x) dx

where x∗i is within the interval [xi−1, xi ] and ∆xi = xi − xi−1. Various simplifications, such as taking

the partitions to be equally spaced, can simplify the summation into something more recognizable.

A common simplification is when the interval is [0, 1] and the intervals are equally spaced, giving

the summation

lim
n→∞

1

n

n∑
i=1

f

(
i

n

)
=

∫ 1

0

f (x) dx.

Example 2.1.1

Evaluate lim
n→∞

n∑
k=1

n

n2 + k2

We can rewrite the sum as one more reminiscent of a Riemann sum by factoring out n2 in the

denominator to yield that the limit is lim
n→∞

1

n

n∑
i=1

1

1 +
(
i
n

)2 . But this is nothing more than
∫ 1

0

dx

1 + x2

which is equal to
π

4
.
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2.2 Exercises

1. lim
n→∞

((
1 +

1

n

)(
1 +

2

n

)
· · ·
(

1 +
n − 1

n

)(
1 +

n

n

))1/n

2. lim
x→∞

e−1/x + e−2/x + · · ·+ e−x/x

sin(1/x) + sin(2/x) + · · ·+ sin(x/x)

3. lim
x→0+

∞∑
k=1

2x

k2x2 + 1

4. lim
n→∞

(
1 +

2√
n

) ∞∑
k=1

e−k
2/n
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2.3 Solutions

1. Letting the limit be L, and after taking logarithms, we have that

logL =
1

n

∑
log

(
1 +

k

n

)
=

∫ 1

0

log(1 + x) dx = log(4)− 1 =⇒ L =
4

e

2. Multiplying the numerator and denominator by 1
x
gives that the limit is equal to∫ 1

0
e−x dx∫ 1

0
sin(x) dx

=
1− e−1

1− cos(1)

3. The substitution u = 1
x
transforms the limit into

lim
u→∞

1

u

∞∑
k=1

2

1 + (k/u)2
=

∫ ∞
0

2

1 + x2
dx = π

Note that the integral’s bounds here are from 0 to infinity, since the Riemann sums’ upper

limit was ∞ rather than u.

4. First, note that the (1 +) part does not contribute to the value of the limit, since the limit

of the sum is zero. So the limit we seek is, after substituting x =
√
k,

lim
x→∞

2

x

∑
e−n

2/x2

= 2

∫ 1

0

e−x
2

dx

This last integral is not elementary and hence this is the final form of the solution.



Chapter 3

Weierstrass Substitutions

3.1 Theory

The Weierstrass Substitution allows one to convert trigonometric integrals to integrals of rational

functions. This is done by using the substitution t = tan(x/2).

With this substitution, the trigonometric functions are rational functions of t, as follows:

sin(x) =
2t

1 + t2
cos(x) =

1− t2

1 + t2
dx =

2

1 + t2
dt

From these identities, a function of trigonometric functions is completely reduced to one of a

rational function.

Example 3.1.1
Evaluate

∫
1

2 + cos θ
dθ

By enforcing the substitution t = tan(θ/2), we obtain that the integral is equal to∫
1

2 + 1−t2

1+t2

2

1 + t2
dt

which can be simplified to ∫
2

2(1 + t2) + (1− t2)
dt =

∫
2

3 + t2
dt

This latter integral is easily evaluated through a trigonometric substitution, from which yields that

the integral is finally equal to
2 tan−1

(
tan(θ)√

3

)
√

3
+ C.

7
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3.2 Exercises

With the Weierstrass substitution, evaluate the following:

1.
∫

1

cos x
dx

2.
∫ 2π

0

1

a + b cos θ
dθ

3.
∫

1

a + b cos θ + c sin θ
dθ
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3.3 Solutions

1. ∫
dx

cos(x)
=

∫
1 + t2

1− t2

2dt

1 + t2
= 2t − 2

t3

3
+ C = 2 tan(x/2)−

2

3
tan3(x/2) + C

2. Since tan(x/2) is not injective over this domain, we transform the domain by noting that

cos(x) = cos(2π − x) to yield that the integral is equal to

2

∫ π

0

1

a + b cos θ
dθ =

4

a + b

∫ ∞
0

dt

1 + a−b
a+b
t2

Doing a trigonometric substitution
√

a−b
a+b
t = z yields that the integral is equal to

4√
(a + b)(a − b)

∫ ∞
0

dz

1 + z2
=

2π√
a2 − b2

[This result is worth memorizing due to its prevalence.]

3. The Weierstrass substitution gives that the integral is equal to∫
2 dt

(c − a)t2 + 2bt + (a + c)

Completing the square and using a standard trigonometric substitution yields that the integral

is equal to
2√

c2 − (a2 + b2)
tan−1

(
(c − a) tan(θ/2) + b√

c2 − (a2 + b2)

)
+ C



Chapter 4

Clever Substitutions

4.1 Theory

Oftentimes an integral can be simplified through the use of a clever u substitution that can take

many forms. The most common ones are u = x±
1

x
(particularly suitable for symmetric integrands),

u =
1± x
1∓ x , or u = n

√
f (x), where the whole root is substituted inside the integrand. Of course,

deciding which substitution to use requires practice.

Example 4.1.1

Evaluate
∫ 1

0

1− x2

1 + x4
dx

At first glance, one may think of substituting u = x2, but unfortunately that introduces a square

root term which is hard to deal with. Instead, by dividing both the numerator and denominator by

x2, one finds that the integral is equal to∫ 1

0

1
x2 − 1(

x + 1
x

)2 − 2
dx

using the identity
(
x + 1

x

)2 − 2 = x2 + 1
x2 . Since

d

dx

[
x +

1

x

]
= 1−

1

x2
, it makes sense to use the

substitution u = x +
1

x
. The integral then simplifies to

∫ ∞
2

du

u2 − 2
=

log(
√

2 + 1)√
2
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4.2 Exercises

1.
∫ 1

0

dx

1 + x6
. (Hint: 2 = (1− x2 + x4) + x2 + (1− x4))

2.
∫ 1

0

√
1± x
1∓ x dx (do both cases)

3. (MIT Integration Bee)
∫ ∞
−∞

(x3 + 1)2x2e−x
6−2x3

dx

4.
∫ √

tan(x) dx.



CHAPTER 4. CLEVER SUBSTITUTIONS 12

4.2.1 Solutions

1. ∫ 1

0

dx

1 + x6
=

1

2

∫ 1

0

(1− x2 + x4) + x2 + (1− x4)

(1 + x2)(1− x2 + x4)
dx

=
1

2

[
π

4
+

∫ 1

0

x2

1 + x6
dx +

∫ 1

0

1− x2

1− x2 + x4
dx

]
The first integral can be tackled with the substitution u = x3, while the second can be solved

with the substitution u = x + 1
x
. These substitutions ultimately yield the result that the

integral is equal to π+
√

3 log(2+
√

3)
6

.

2. The substitution

u =
1 + x

1− x =⇒ x =
1− u
1 + u

yields that the (+) integral is equal to∫ ∞
1

2u1/2

(1 + u)2
du

Further substituting z2 = u yields that the integral is equal to∫ ∞
1

4z2

(1 + z2)2
dz

which can be evaluated by a standard trigonometric substitution to yield π
2

+ 1.

The (-) integral can be evaluated in a similar manner to yield π
2
− 1.

3. ∫ ∞
−∞

(x3 + 1)2x2e−x
6−2x3

dx =
e

3

∫ ∞
−∞

(x3 + 1)2 · 3x2 · e−(x3+1)2

dx

from which the substitution u = x3 + 1 is obvious. This remaining integral can be evaluated

similarly to that in Exercise 1.2.2 to be e
√
π

6
.

4. Substitute away the radical with u2 = tan x.We have that 2udu = sec2 x dx =⇒ dx = 2u du
u4+1

.

Then, the integral is equal to

I =

∫
2u2

1 + u4
dx

=

∫ ∞
0

(
1 + 1

u2

)
+
(

1− 1
u2

)
u2 + 1

u2

du

=

∫
1 + 1

u2(
u − 1

u

)2
+ 2

du +

∫
1− 1

u2(
u + 1

u

)2 − 2
du

We can now note that the numerator is the derivative of the squared quantity in both integrals,

from which it is not too hard to finish the computation.



Chapter 5

Integral and Summation Substitutions

5.1 Theory

Oftentimes an integral or summation can be simplified by artificially introducing an integral or

summation representation of the function being integrated or summed. The order of integra-

tion/summation can then be reversed, allowing for an easier integration.

Remark 5.1.1. There are some cases in which interchanging the order is actually not allowed.

Formally, to do so, we would need to invoke the Monotone Convergence Theorem or Dominated

Convergence Theorem.

Example 5.1.2

Evaluate
∫ 1

0

log(1− x)

x
dx

By utilizing the MacLaurin series representation of log(1− x) and substituting this in, the integral

is equal to ∫ 1

0

(
−1−

x

2
−
x2

3
−
x3

4
− · · ·

)
dx

Switching the order of integration and summation we find that the whole integral is equal to

−
x

1
−
x2

4
−
x3

9
− · · ·

∣∣∣∣1
0

= −
π2

6

where we used
∞∑
n=1

1

n2
=
π2

6
.
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Example 5.1.3

Evaluate
∫ ∞

0

1− cos x

x2
dx.

We use the integral representation
1

x2
=

∫ ∞
0

te−tx dt. Substituting this into our integral, we find

that it is equal to∫ ∞
0

(1− cos x)

∫ ∞
0

te−tx dt dx =

∫ ∞
0

∫ ∞
0

te−tx − cos x · te−tx dx dt =

∫ ∞
0

1−
t2

t2 + 1
dt =

π

2

Example 5.1.4

Evaluate
∑
n≥0

(−1)n

n + 1

This sum can be simplified by noting that
∫ 1

0
xn dx = 1

n+1
. Substituting this into the sum and

switching the order we obtain that the sum can be represented as∫ 1

0

∑
n≥0

(−x)n dx.

The sum is simply a geometric series, evaluating to
1

1 + x
, and the integral can be evaluated with

standard techniques to obtain a result of log 2

Remark 5.1.5. This series is known as the alternating harmonic series and its value is commonly

given without proof.

Example 5.1.6

Evaluate
∫ ∞

0

x

1 + ex
dx.

Note that the integral can be written as
∫ ∞

0

xe−x

1 + e−x
dx. We can use the familiar geometric series∑

n≥0

tn =
1

1− t with t = −e−x in the integral. Substituting this into our integral, we find that it is

equal to
∞∑
k=0

(−1)k
∫ ∞

0

xe−(k+1)x dx =

∞∑
k=0

(−1)k

(k + 1)2
. This series is well known to equal

π2

12
, which

can be derived from the sum in Example 5.1.2.
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5.2 Exercises

1. Find
∫ 1

0

log(1− xn)

x
dx for arbitrary integral n.

2. (Putnam 1969) Prove
∫ 1

0

x x dx =

∞∑
n=1

(−1)n+1n−n.

Can you derive a similar identity for
∫ 1

0

x−x dx?

3. If f is continuous and differentiable, monotone, and limx→∞ f (x) = 0, then prove that∫ ∞
0

f (ax)− f (bx)

x
dx = f (0) log(b/a). Hint: Consider

∫ b

a

f ′(tx) dt

4. Prove
∫ 1

0

log(x)

1 + x2
= −G, where G is defined as G = 1−

1

33
+

1

53
−

1

73
+ · · ·

5. Prove
∫ 1

0

log2(x)

1− x = 2ζ(3). ζ(x) is defined as ζ(x) =

∞∑
n=0

1

xn

6. Prove
∫ ∞

0

tx−1

et − 1
dt = Γ(x) · ζ(x). Γ(x) is defined in section 7.

7. Find
∑
n≥1

1

nkn
for k = 2, and then general k.

8. Evaluate
∫ 1

0

xa − 1

log(x)
dx

9. (Putnam 2016) Evaluate
∞∑
k=1

(−1)k−1

k

∞∑
n=0

1

k2n + 1
.
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5.3 Solutions

1. Expand log(1− xn) = −
∑

k≥1
xkn

k
. The procedure is similar to that of the first example in the

section, and the final result should be equal to −
π2

6n
.

2. See https://en.wikipedia.org/wiki/Sophomore%27s_dream.

3. Note that the integrand is equal to the integral given in the hint. Then, we can interchange

the order of integration to show that∫ ∞
0

∫ b

a

f ′(tx) dx dt =

∫ b

a

∫ ∞
0

f ′(tx) dt dx =

∫ b

a

1

x
f (0) dx = f (0) log(b/a).

4. First we need to show that
∫ 1

0
xn log(x) dx = − 1

(1+n)2 This can be done by either differentiating

under the integral sign (sec. 8) or by integration by parts. Then, we can series expand
1

1+x2 =
∑

(−x2)n, to show the desired result.

5. We follow a similar path as above. First, we show that
∫ 1

0
xn log2(x) dx = 2

(1+n)3 , which can

be done in the same manner, and then series expand 1
1−x =

∑
xn.

6. First multiplying both the numerator and denominator by e−x , then expanding the denominator

as a geometric series yields that the integral is equal to∑
n≥1

∫ ∞
0

x s−1e−nx dx

Applying the substitution z = nx, then applying the definition of the Gamma function, and

finally applying the definition of the Zeta function, yields the desired result.

7. k = 2 : Note that 1
n

=
∫ 1

0
xn−1 dx. Substitution of this identity, followed by interchanging the

integral and the sum, gives the answer log(2).

The case for general k is not much different, ultimately arriving at an answer of log
(

k
k−1

)
.

8. Note that
∫ a

1
xu du = xa−1

log x
, so we can substitute this into the integral, interchange the order

of integration, to finally yield that the integral is equal to log(a + 1).

9. Substitute
∫ 1

0
xk2n dx = 1

k2n+1
into the summation, then sum over k to obtain that the

summation is equal to ∫ 1

0

∞∑
n=0

log(1 + x2n) dx

Since (1 + x)(1 + x2)(1 + x4)(1 + x8) · · · = 1 + x + x2 + x3 + · · · = 1
1−x , taking logarithms,

we see that the sum in question is equal to − log(1− x). Integrating this thus yields that the

summation is equal to 1.

https://en.wikipedia.org/wiki/Sophomore%27s_dream


Chapter 6

Substitutions About the Domain

6.1 Theory

Sometimes it is convenient to make a substitution about the domain in order to reduce the integral

into a more manageable form, or even to cancel out the integral altogether. The most effective

substitutions usually take place by reversing the domain completely. For example, in integrals of

the form
∫ a

0
f (x) dx , it makes sense to substituting u = a − x. When working with logarithms or

improper integrals, the substitution u = 1
x
sometimes helps.

Example 6.1.1

Evaluate
∫ π

2

0

sin2(sin x) + cos2(cos x) dx

Let I denote the desired integral. By using the substitution u =
π

2
− x we obtain that

I =

∫ π
2

0

sin2(cos u) + cos2(sin u) du.

Adding this with the original integral and the new one finds that 2I =

∫ π
2

0

2 dx. Thus, we know

that I =
π

2
.

17
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Example 6.1.2

(Putnam 1953) Evaluate
∫ π

2

0

log sin x dx

By using the substitution u = π
2
− x we obtain that the desired integral is equal to

∫ π
2

0

log cos x.

Summing the original and new integral, we have that

2I =

∫ π
2

0

log(sin x cos x) =

∫ π
2

0

log(1/2) + log(sin 2x) dx = −
π

2
log(2) +

∫ π
2

0

log(sin 2x) dx.

Now, note that
∫ π

2

0

log(sin 2x) dx =
1

2

∫ π

0

log(sin x) dx . As sin x is symmetric about (0, π), the

integral is simply 2I, and therefore we have that 2I = −π
2

log(2) + 1
2
· 2I =⇒ I = −

π

2
log(2) .

Remark 6.1.3. This is a relatively common result and is worth memorizing.

Example 6.1.4

Evaluate
∫ ∞

0

1

1 + x2

1

1 + xn
dx

Split the integral up into
∫ 1

0
and

∫∞
1
. If we use the substitution u = 1/x on the latter integral, the

value becomes

I =

∫ 0

1

1

1 + 1
x2

·
1

1 + 1
xn

·
(
−

1

x2

)
dx =

∫ 1

0

1

1 + x2
·

1

1 + 1
xn

dx

Summing these two representations, we have that

2I =

∫ 1

0

dx

1 + x2
=
π

4
=⇒ I =

π

8

Example 6.1.5

Evaluate
∫ 1

0

log(1 + x)

1 + x2
dx

Use the standard trigonometric substitution x = tan θ in order to get that I =

∫ π/4

0

log(1+tan θ) dθ.

Now, enforce the substitution u = π
4
− θ and use the tangent subtraction formula, to obtain that

I =

∫ π/4

0

log

(
1 +

1− tan θ

1 + tan θ

)
dθ =

∫ π/4

0

log

(
2

1 + tan θ

)
dθ.

Summing these two representations we see that 2I = π log 2
4

and so I =
π log 2

8
.
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6.2 Exercises

1.
∫ π

2

0

1

1 + (tan x)π
dx

2. (Putnam 1987)
∫ 4

2

√
log(9− x)√

log(9− x) +
√

log(x + 3)
dx

3. Prove that
∫ ∞

1

log(x)

1 + x2
dx = G, where G is defined in 5.2.4. Hint: It may help to consider∫ ∞

0

log(x)

1 + x2
dx

4. (BMT 2015) Compute
∫ 2

1/2

x2 + 1

x2(x2015 + 1)
dx

5. (BMT 2018)
∫ π/2

−π/2

cos x

1 + e−x
dx
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6.3 Solutions

1. Enforce the substitution u = π
2
− x. Then, when we add the original integral and this one,

the denominator cancels out, and we obtain that 2I =
∫ π/2

0
dx. Thus, I = π

4
.

2. Substitute 9− x = u+ 3 in order to take advantage of symmetry in the problem. Adding the

resulting integrals, the fractions cancel out to give that 2I =
∫ 4

2
dx =⇒ I = 1.

3. After enforcing the substitution u = 1
x
on the integral given in the hint, the integral is equal

to the negative of itself, hence it is equal to zero. Since we know from the Ex. 5.2.4 that

the integral from 0 to 1 is −G, the integral from 1 to infinity must be G.

4. Enforcing the substitution u = 1
x
, the integral simplifies in a similar manner to example 3 in

the section. The denominator cancels and we find that the integral in question is equal to 3
2
.

5. Enforce the substitution u = −x, then add the resulting integrals. The denominators once

again cancel out, and the answer turns out to be 2.



Chapter 7

Gaussian Integral; Gamma/Beta Functions

7.1 Gamma Function

The Pi Function is defined by the following integral:

Π(x) =

∫ ∞
0

txe−t dt

Π(x) has the special property that Π(x + 1) = (x + 1)Π(x), and Π(0) = 1 which implies that for

each natural x, Π(x) = x! where the ! denotes the factorial. This can be proven through repeated

integration by parts and induction. Π(x) is undefined at negative integers x.

However, the Pi function is not well-known within the mathematical literature. Instead, the Gamma

function is used for extending the factorial. Γ(x) is defined as follows:

Γ(x) = Π(x − 1) =

∫ ∞
0

tx−1e−t dt

This implies that Γ(x) = (x − 1)! for natural x and that Γ(x + 1) = xΓ(x). Γ(x) is undefined at

nonpositive integer x.

7.2 Beta Function

The Beta Function is defined as the following integral:

β(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt

21
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It has the special property that β(x, y) =
Γ(x)Γ(y)

Γ(x + y)
, which can be proven with theorems from

multivariate calculus. The Beta Function is also symmetric: β(x, y) = β(y , x).

Note that from the definition, we have that β( 1
2
, 1

2
) =

Γ2( 1
2 )

Γ(1)
= Γ2

(
1
2

)
. We can also evaluate the

integral on the left directly to see that Γ2
(

1
2

)
=
√
π. This value can be used, along with the previous

recurrence relation, to find Γ(n
2

).

Example 7.2.1
Find Γ(−3

2
).

−3
2

Γ(−3
2

) = Γ(−1
2

) and −1
2

Γ(−1
2

) = Γ( 1
2

) =
√
π, so Γ(−3

2
) = 4

3

√
π.

Example 7.2.2
(BMT 2012) Evaluate

1∑
n≥1

2012
n(n+1)(n+2)···(n+2012)

Let us focus solely on the sum in the denominator. It can be rewritten as
∑
n≥1

2012Γ(n)

Γ(n + 2013)
=

2012

Γ(2013)

∑
n≥1

Γ(n)Γ(2013)

Γ(n + 2013)
=

2012

Γ(2013)

∑
n≥1

β(2013, n) =
2012

Γ(2013)

∫ 1

0

∑
n≥1

x2012(1 − x)n−1 dx =

2012

Γ(2013)

∫ 1

0

x2011 dx =
1

Γ(2013)
=

1

2012!
Thus, the requested value is 2012!

7.3 Gaussian Integral

The Gaussian Integral is the famous integral∫ ∞
−∞

e−x
2

dx =
√
π

Though the integrand does not have an elementary antiderivative, the definite integral can still be

evaluated, and shows up fairly often that its result is expected to be known. This result can be

derived from substituting u = x2, which results in equality with Γ( 1
2

).

Remark 7.3.1. Throughout this text, we will see examples of integrals that have no elementary

antiderivative, but nevertheless have definite integrals that can be evaluated in closed form.

Now let’s do some examples with the Gaussian integral and probability distributions, which are

related to the Gaussian.
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Example 7.3.2

Evaluate
∫ ∞
−∞

x4e−x
2

dx.

Since we have a power times an exponential, let’s try to integrate by parts. Integrating by parts

once reveals that the integral is equal to

x5

5
· e−x2

∣∣∣∣∞
−∞
−
∫ ∞
−∞

x5

5
· (−2x) · e−x2

dx

Oh no, the exponent increased by 2! So, let’s integrate by parts with
∫∞
−∞ x

2e−x
2
dx instead:∫ ∞

−∞
x2e−x

2

dx =
x3

3
· e−x2

∣∣∣∣∞
−∞
−
∫ ∞
−∞

x3

3
· (−2x) · e−x2

dx =
2

3

∫ ∞
−∞

x4e−x
2

dx

Now we can integrate the original Gaussian integral by parts in order to relate it with the previous

integral. We get that

√
π =

∫ ∞
−∞

e−x
2

dx = x · e−x2
∣∣∣∞
−∞
−
∫ ∞
−∞

x · (−2x) · e−x2

dx = 2

∫ ∞
−∞

x2e−x
2

dx

and so our desired integral is equal to
3

4

√
π
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7.4 Exercises

1. A way to represent continuous probability distributions of some random variable X is through

a probability density function. Then, the integral from a to b of this probability density

function gives P(a ≤ X ≤ b). A commonly used distribution in many fields is the normal

distribution, given by

P (x) =
1

σ
√

2π
e−(x−µ)2/(2σ2)

where µ is the mean and σ is the standard deviation of the distribution.

A necessary condition on a probability density function is that its integral over the real line

must be equal to 1, or that
∫∞
−∞ P (x) dx = 1. The mean, or expectation value, of a random

variable X with probability distribution P (x) is given by E[X] =
∫∞
−∞ xP (x) dx. The standard

deviation can be defined as
√
E[X2]− (E[X])2.

(a) Prove that the normal distribution has integral 1 over the real line.

(b) Prove that if X is normally distributed, that E[X] = µ and that the standard deviation

of X is indeed equal to σ, as defined.

2. Show that
∫ ∞
−∞

e−αx
2+βx dx =

√
π

α
exp

(
β2

4α

)
. This is an integral commonly seen in physics.

3. The Maxwell Boltzmann distribution for gases states that a gas’s velocity’s probability density

function is P (v) = Kv 2e−Mv
2/(2RT ) where M is the molar mass in kg, R is the gas constant,

and T is the temperature.

(a) Find K in terms of M,R, and T.

(b) Find the mean speed of a gas molecule following the Maxwell-Boltzmann distribution.

(c) The root-mean square of a random variable X is given by
√
E[X2]. Prove that the

root-mean square speed of gas molecules following the Maxwell Boltzmann Distribution

is equivalent to the result through classical chemistry, that is, vrms =
√

3RT/M.

4. (BMT 2017) Evaluate
∫ 1

0

(−x2 + x)k · bkxc dx where k = 2017. Try to find a formula for

general k.

5. Find the normalization constant A in the hydrogen atom 3s-orbital wavefunction ψ(r) =

A

(
3−

2r

a0

+
2r 2

9a0
2

)
e−r/(3a0) such that

∫ ∞
0

ψ2(r) dr = 1. (a0 is the Bohr radius, a constant.)

6. Evaluate
∞∑
n=0

1(
2n
n

) .
7. Use the reflection formula Γ(z)Γ(1− z) = π csc(πz) to evaluate

∫ π/2

0

√
tan x dx, an integral

whose antiderivative was found earlier.
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7.5 Solutions

1. To first show that the integral over the real line is 1, rescale the variable with the substitution

u = x−µ√
2σ
. This nicely gets rid of a factor of 1

σ
√

2
and leaves just the integral

∫∞
−∞ e

−u2
du.

To calculate the mean, we need to find 1
σ
√

2π

∫∞
−∞ xe

−(x−µ)2/(2σ2) dx. Once again, we can use

the same substitution as above to rescale the integral and get rid of a factor of 1
σ
√

2
. The odd

integral equals zero, and the remaining integral is equal to µ
√
π, so the mean is indeed µ.

A similar computation yields the standard deviation. One would need to integrate by parts in

order to find the integral of the form
∫
x2e−αx , similar to the example problem.

2. We complete the square in the exponent, and then shift the integration domain:∫ ∞
−∞

e−αx
2+βx dx =

∫ ∞
−∞

e−α(x−β/2α)2+β2/4α dx = eβ
2/4α ·

∫ ∞
−∞

e−αu
2

du =

√
π

α
· exp

(
β2

4α

)
3. Let k = M

2RT
. Then, we need to find

K =

(∫ ∞
0

v 2e−kv
2

dv

)−1

First, enforce the substitution u =
√
kv , then the substitution x = u2. We have that the

integral is then equal to

I =
1

k3/2

∫ ∞
0

u2e−u
2

du =
1

2k3/2

∫ ∞
0

√
xe−x dx

This last integral is equal to Γ
(

3
2

)
=
√
π

2
by definition, and so the integral is equal to

√
π

4k3/2 .

The constant we want is the inverse of this, or 4

√
( M

2RT
)3

π
= 4π

(
M

2πRT

)3/2
.

The average speed of the gas particles is

v =

∫ ∞
0

Kv 3e−kv
2

dv

Using the substitution x = v 2, the integral is equal to

K

2

∫ ∞
0

xe−kx dx =
K

2k2
=

2√
πk1/2

=

√
8RT

Mπ

The root-mean square speed can be evaluated similarly to those above, with the square-speed

being equal to

K

∫ ∞
0

v 4e−kv
2

dv

This integral is similar to the one in the examples earlier, and the final result is
√

3RT
M

as

desired.
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4. First enforce the substitution u = 1− x, and add this integral and the original, to obtain that

2I =

∫ 1

0

xk(1− x)k(bkxc+ bk(1− x)c) dx

The term in the parentheses is constant for almost all x over the integration domain and is

equal to k − 1. Hence I = (k!)2

(2k+1)!
· k−1

2
.

5. An exercise with Gamma function integral computations. Let u = 2r
3a0
, then the integral

equals
3a0A

2

2

∫ ∞
0

(
3− 3u +

u2

2

)2

e−u du

After this this is just no more than an exercise in computation and substitution with the

gamma function, ultimately yielding A = 1

9
√

3πa
3/2
0

.

6.
∞∑
n=0

1(
2n
n

) =
∑
n≥0

(2n + 1)β(n + 1, n + 1) =

∫ 1

0

∑
n≥0

(2n + 1)(x(1− x))n dx

Now we can invoke the standard geometric series and the result that
∑

n≥0 nx
n = x

(1−x)2 (see

sec. 9.2) to yield that the integral is equal to (after simplification)∫ 1

0

−
1

1− x + x2
+

2

(1− x + x2)2
dx

These integrals are both elementary and can be evaluated with a trigonometric substitution,

with a final value of 4
3

+ 2
√

3π
27
.

7. To evaluate this integral, we perform the substitution t = sin2 x. Then, we have that

I =
1

2

∫ 1

0

t−1/4(1− t)−3/4 dt

=
1

2
β

(
3

4
,

1

4

)
=

1

2
Γ

(
3

4

)
Γ

(
1

4

)
=

1

2
π csc

(
3

4
π

)
=

√
2

2
π.
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Differentiation Under the Integral Sign

8.1 Theory

Differentiation under the integral sign is a technique where an artificial parameter is introduced,

then the integral is differentiated with respect to that parameter, often simplifying it significantly.

Then, it is re-integrated with respect to the parameter, and using known values, the constant term

in the integration can be found.

Also, note that the technique can be applied in reverse, for example, in evaluating
∫ 1

0
x(log x)n dx

Example 8.1.1

Evaluate
∫ π

0

log

(
1 +

1

2
cos x

)
dx

We can convert this integral into one involving a parameter as such: I(µ) =

∫ π

0

log(1+µ cos x) dx.

Differentiating we find that I ′(µ) =
1

µ

∫ π

0

cos x
1
µ

+ cos x
=
π

µ
−

1

µ

∫ π

0

1

1 + µ cos x
. This second integral

can be evaluated to be
π√

1− µ2
, using 3.2.2 and symmetry.

Integrating with respect to µ implies that I(µ) = π(log(µ) + sech−1(µ) + C).

From the original integral, we know that I(0) = 0. So, we take the limit µ→ 0 in the above form and

find C = log 2. Hence, the integral equals π(− log(2) + sech−1(1/2) + log(2)) = π log(2 +
√

3)

27
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8.2 Exercises

1. Show that
∫ 1

0

x5 − 1

log(x)
dx = log(6). (This can also be done by introducing an integral, see Ex.

5.3.8.)

2. Find x such that
∫ 2π

0
log(x + sin(t)) dt = 0. You may want to find the integral in terms of x

directly.

3.
∫ ∞

0

arctan x

x(x2 + 1)
dx

4. (Putnam)
∫ ∞

0

arctan(πx)− arctan(x)

x
dx

5. (Putnam)
∫ 1

0

log(1 + x)

1 + x2
dx (This can be done with a substitution about the domain, as seen

in Section 5. Try finding a different solution.)
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8.3 Solutions

1. Let

I(α) =

∫ 1

0

xα − 1

log x
dx

Note that

I ′(α) =

∫ 1

0

xα dx =
1

α+ 1

hence I(α) = log(α+ 1) +C. Now, note that I(0) = 0, hence C = 0. Thus I = I(5) = log 6.

2. If we let I(x) =

∫ 2π

0

log(x + sin(t)) dt, then I ′(x) =

∫ 2π

0

1

x + sin(t)
dt =

2π√
x2 − 1

. Hence

I(x) = 2π cosh−1(x) + C. Note that I(1) =∫ 2π

0

log(1 + sin x) dx =

∫ 2π

0

log(1 + cos x) dx = 2π log(2) +

∫ 2π

0

log(cos2(x/2)) dx

= 2π log(2) +

∫ 2π

0

log(sin2(x/2)) dx = 2π log(2) + 4

∫ π

0

log(sin(x)) dx = 2π log 2, hence

C = −2π log 2. Since cosh−1(5/4) = log 2, the integral is equal to zero at x = 5/4.

3. Let I(a) =

∫ ∞
0

arctan(ax)

(1 + x2)x
dx, then I ′(a) =

∫ ∞
0

dx

(x2 + 1)(a2x2 + 1)
. This integral is ele-

mentary and can be evaluated through partial fractions, ultimately yielding that it is equal to
π

2

1

1 + a
. Integration and setting a = 0 yields that I(a) =

π

2
log(1 + a), hence the integral is

equal to
π

2
log(2).

4. Let I(a) =

∫ ∞
0

arctan(ax)− arctan(x)

x
dx, then I ′(a) =

∫ ∞
0

dx

1 + a2x2
=

π

2a
. Integration

yields that I(a) = π
2

log(a), hence the total integral is
π

2
log(π).

5. We parameterize the integral as follows: I(a) =

∫ 1

0

log(1 + ax)

1 + x2
dx. Differentiation with

respect to a yields I ′(a) =
πa + 2 log 2− 4 log(a + 1)

4(a2 + 1)
Hence I(a) =

log(2) arctan(a)

2
+

π log(a2 + 1)

8
−
∫ a

0

log(1 + t)

1 + t2
dt, and thus I(1) =

π log 2

4
− I(1). Solving for I(1) we find

that it is equal to
π log 2

8
.



Chapter 9

Frullani’s Theorem

Frullani’s Theorem is a generalized version of Exercise 5.2.3. It states that if f is continuous and

differentiable, monotone, and lim
x→∞

f (x) = L, then
∫ ∞

0

f (ax)− f (bx)

x
dx = (f (0) − L) log(b/a).

Exercise 5.2.3 is simply the case with L = 0.

9.1 Exercises

1. Prove Frullani’s Theorem.

2. Do exercise 8.2.4 with Frullani’s Theorem.

3. We previous saw that with differentiation under the integral, that
∫ 1

0

xa − 1

log(x)
dx = log(a+ 1).

Instead, use the substitution x = e−t and Frullani’s to arrive at the same result.

30
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9.2 Solutions

1. Let u(x) = f (x)−L. Then, we can apply Ex. 5.2.3 to u(x), and back substitution yields the

theorem.

2. We have f (x) = arctan(x), a = π, b = 1, L = π/2, hence plugging in values we obtain that

the integral is equal to π
2

logπ.

3. The integral is equal to −
∫ ∞

0

e−(a+1)x − e−x

t
dt, which upon applying Frullani’s theorem,

yields that the integral is equal to log(a + 1).
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Further Exercises

These integrals will use various combinations of the aforementioned techniques. Some integrals

may even fall to standard methods. It is left to the reader to decide which method would be most

suitable.

1. (Putnam 1968) Show
∫ 1

0

x4(1− x)4

1 + x2
dx =

22

7
− π > 0, and thus prove that π 6=

22

7

2. (BMT) Evaluate
∫ ∞

0

xI0(2x)e−x
2

dx where I0(x) =
1

π

∫ π

0

ex cos θ dθ

3. Show that
∫ ∞

0

1

(1 + xφ)φ
dx = 1 where φ :=

1 +
√

5

2
is the golden ratio.

4. (Putnam 1985)
∫ ∞

0

x−1/2e−1985(x+1/x) dx.

5. (BMT 2013) Prove that
∑

0≤k≤2n

(−1)k

m + k

(
2n

k

)
> 0 for all positive integers m, n.

6. (BMT 2017) Find
k∑
n=1

(
k

n

)
Hn(−1)n, where Hn =

n∑
j=1

1

j
, and k = 2017. Try to find a formula

for general k.

7. (BMT) Find
∑
n≥1

1

(3n − 1)(3n − 2)

8. Find
∫ 2π

0

log(1− 2a cos x + a2) dx for a > 1.

9. (SMT) Find
∫ ∞

0

log x

x2 + 4
dx

10. (SMT) Find
∫ 2

1/2

arctan x

x2 − x + 1
dx

32
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