HMMT November 2020 Integration Bee Finals

Sponsored by Five Rings Capital

November 14, 2020

A Message from our Sponsor, Five Rings Capital

Our Contestants (in alphabetical order)

- Adithya Balachandran

Our Contestants (in alphabetical order)

- Adithya Balachandran
- Harry Chen

Our Contestants (in alphabetical order)

- Adithya Balachandran
- Harry Chen

■ Jack Moffatt

Our Contestants (in alphabetical order)

- Adithya Balachandran
- Harry Chen

■ Jack Moffatt

- Jordan Hochman

Format of the Round

■ While we usually do a faceoff-style final round, due to virtualization, we will run it differently this year.

Format of the Round

■ While we usually do a faceoff-style final round, due to virtualization, we will run it differently this year.
■ Each integral will be shown with a 3 minute timer, after which we will check the contestants' answers.

Format of the Round

■ While we usually do a faceoff-style final round, due to virtualization, we will run it differently this year.
■ Each integral will be shown with a 3 minute timer, after which we will check the contestants' answers.

- Scoring will work as follows:
- If 0 or 4 people get the integral - no points for anyone

■ If 1 person gets the integral, then +3 for them, -1 for others

- If 2 people get the integral, then +2 for them, and -2 for others
- If 3 people get the integral, then +1 for them, and -3 for the one person that did not.

Format of the Round

■ While we usually do a faceoff-style final round, due to virtualization, we will run it differently this year.
■ Each integral will be shown with a 3 minute timer, after which we will check the contestants' answers.

- Scoring will work as follows:
- If 0 or 4 people get the integral - no points for anyone
- If 1 person gets the integral, then +3 for them, -1 for others
- If 2 people get the integral, then +2 for them, and -2 for others
- If 3 people get the integral, then +1 for them, and -3 for the one person that did not.
■ If there is a tie at the end, we will have a tie-breaking integral estimation question.

Specifications

■ We will use the same conventions from the qualifiers:

Specifications

■ We will use the same conventions from the qualifiers:
■ All logarithms are base e.

Specifications

■ We will use the same conventions from the qualifiers:
■ All logarithms are base e.

- The constant of integration may be omitted.

Specifications

■ We will use the same conventions from the qualifiers:

- All logarithms are base e.
- The constant of integration may be omitted.
- You may leave your answers unsimplified, as long as they don't contain integrals, summations, or limits.

Specifications

■ We will use the same conventions from the qualifiers:

- All logarithms are base e.
- The constant of integration may be omitted.
- You may leave your answers unsimplified, as long as they don't contain integrals, summations, or limits.
- If you feel that one of our answers is wrong, please let us know ASAP and we will double check it.

Specifications

■ We will use the same conventions from the qualifiers:

- All logarithms are base e.
- The constant of integration may be omitted.
- You may leave your answers unsimplified, as long as they don't contain integrals, summations, or limits.
- If you feel that one of our answers is wrong, please let us know ASAP and we will double check it.
■ For the spectators - feel free to follow along and try these integrals as well!

Any questions before we start?

Problem 1

Evaluate the following Integral (in terms of a):

$$
\int_{0}^{1}\left\lfloor\log _{a}(x)\right\rfloor d x
$$

Solution 1

$$
\frac{a}{1-a}
$$

Problem 2

Evaluate the following Integral:

$$
\int_{0}^{1} \sqrt{x+\sqrt{x}} d x
$$

Solution 2

$$
\frac{7}{12} \sqrt{2}+\sinh ^{-1}(1) / 4=\frac{7}{12} \sqrt{2}+\frac{\log (1+\sqrt{2})}{4}
$$

Problem 3

Evaluate the following Integral:

$$
\int_{0}^{\pi / 2} \frac{\log \left(2 \sin ^{2} x\right)}{\log (\cot (x))} d x
$$

Solution 3

$$
\frac{\pi}{2}
$$

Problem 4

Evaluate the following Integral:

$$
\lim _{n \rightarrow \infty} \int_{[0,1]^{n}} x_{1}+x_{1} x_{2}^{2}+x_{1} x_{2}^{2} x_{3}^{3}+\cdots+x_{1} x_{2}^{2} \cdots x_{n}^{n} d x^{n}
$$

This notation means that n integrals are taken over the variables $x_{1}, x_{2}, \ldots, x_{n} \in[0,1]$.
For example, the integral for $n=2$ is $\int_{0}^{1} \int_{0}^{1} x_{1}+x_{1} x_{2}^{2} d x_{1} d x_{2}$.

Solution 4

$$
e-2
$$

Problem 5

Evaluate the following Integral:

$$
\int \frac{e^{2 x}}{\left(x^{2}-1\right)^{2}} \cdot \frac{2 x^{2}-3 x-1}{x+1} d x
$$

Solution 5

$$
\frac{e^{2 x}}{(x-1)(x+1)^{2}}+C
$$

Problem 6

Evaluate the following Integral:

$$
\int_{0}^{\pi / 2} \sqrt[2020]{\tan (x)} d x
$$

Solution 6

$$
\frac{\pi}{2} \sec \left(\frac{\pi}{4040}\right)
$$

Problem 7

Define $f_{n}(x)=\frac{\pi}{2} \sin \left(f_{n-1}(x)\right)$ and $f_{0}(x)=x$. Evaluate

$$
\int_{0}^{\pi} \lim _{n \rightarrow \infty} f_{n}(x) d x
$$

Solution 7

$\frac{\pi^{2}}{2}$

Sponsored by Five Rings Capital
HMMT November 2020 Integration Bee Finals

Problem 8

Evaluate the following Integral:

$$
\int_{0}^{\pi / 2} \frac{d x}{\sin x+\cos x+1}
$$

Solution 8

$\log 2$

Sponsored by Five Rings Capital
HMMT November 2020 Integration Bee Finals

Problem 9

Evaluate the following Integral:

$$
\int_{0}^{1}\left(\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor\right) x d x
$$

Solution 9

$$
1-\frac{\pi^{2}}{12}
$$

Problem 10

Evaluate the following Integral:

$$
\int_{0}^{\pi}\left(\frac{\pi}{2}-x\right) \tan x d x
$$

Solution 10

$$
\pi \log 2
$$

Problem 11

Estimate the following Integral:

$$
\int_{0}^{1} \pi^{x-x^{\pi}} d x
$$

Solution 11

≈ 1.35717608899

