A molecule A, present at a concentration of 1 M , decomposes irreversibly into either molecule \mathbf{B} or molecule \mathbf{C}. The rate law for decomposition into molecule \mathbf{B} is $\frac{d B}{d t}=k_{1}$ and that for molecule \mathbf{C} is $\frac{d C}{d t}=$ $k_{2}[A]^{2}$. For this problem, express your answers in terms of t, k_{1}, and k_{2}.

1. Write the rate law for the rate of decomposition of \mathbf{A}.
2. Find the time dependence of the concentration of \mathbf{A}.
3. How long will it take for all of \mathbf{A} to be consumed?
4. After time t, what is the concentration of \mathbf{B} and \mathbf{C} ? What is the ratio of the concentrations of \mathbf{B} and \mathbf{C} after the time found in part (c) elapses?

You may find the following integral useful:

$$
\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \arctan \frac{x}{a}+C
$$

