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By scattering α particles produced by 241Am on gold foil, the scattering-cross section per atom
of gold leading to deflections above θ = (2.6 ± 0.3)◦ was measured to be (4.0 ± 0.4) × 10−24 m2.
In addition, by varying the scattering angle, thickness, and type of the target, the Rutherford
differential cross section formula for the nuclear atom was verified, in terms of angular dependence,
atomic number dependence, and energy dependence, all within 2σ. Finally, by measuring the change
in particle energy, the thickness of the gold foil itself was measured to be (1.96± 0.06) µm.

I. INTRODUCTION

In the early 1900s, scientists began investigating the
structure of the atom. One of the first models of the
atom, named the ‘plum pudding’ model, envisioned an
atom as a sphere of positive charge, with electrons be-
ing distributed across the sphere. Unfortunately, this
model failed to explain the numerical regularities of op-
tical emission wavelengths found by Balmer.

Another piece of experimental evidence against this
model was with scattering experiments, carried out by
Rutherford. In these experiments, charged α particles
produced by radioactive decay are sent through metal
foils, and their angular deflection θ is measured. With
the plum pudding model, the α particle would experience
many random small-angle deflections as they traverse the
foil, leading to extremely low probability of large scatter-
ing. Specifically, Rutherford showed that the fraction of
particles scattered at an angle ≥ θ was given by

f(θ) ≈ exp(−θ2/θ2m)

where θ2m is the mean multiple scattering angle, equal to
about 1◦ for gold foil. The sharp peak of this function
meant that under the plum pudding model, large-angle
scattering was essentially impossible [1].

However, Rutherford found that large-angle scattering
did indeed happen at an observable rate, thus disproving
the plum pudding model. By instead modeling the atom
with a small nucleus that concentrated positive charge,
and modeling the trajectories of alpha particles near the
nuclei, he derived the Rutherford scattering differential
cross section per target atom:
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where θ is the scattering angle, ke is the electrostatic con-
stant, Z and Z ′ are the atomic numbers of the incident
particle and target, and E is the kinetic energy of the
incident particle [1].

The number of particles scattered at a specific angle
is then given by I0N

dσ
dΩ · ∆Ω, where I0 is the incident

particle flux, N is the area density of the target, and ∆Ω
is the solid angle that the detector subtends [2]. The

FIG. 1. A diagram of the experimental setup. α particles pro-
duced by 241Am first pass through a gold-foil energy reducer,
and then hit the target itself, before scattering at an angle
of θ into the detector. The howitzer itself can be rotated, in
order to measure various scattering angles. Adapted from [1].

area density is given by N = ρZtZNa

MZ
where Na is Avo-

gadro’s number, MZ is the atomic mass of Z, and ρZ is
the density of Z.
Thus, keeping the detector setup constant, we have:
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MZ

· 1
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.

We can then verify these proportionalities by varying the
target foil and scattering angle θ.

II. EXPERIMENTAL SETUP

A 1.5mCi · in−2 activity 241Am α-particle source
(5.5MeV), which is sealed with a protective evaporated
gold coating of 1.5 µm thickness, is positioned inside a
howitzer of length 8 cm and radius 0.25 in. The howitzer
is pointed directly at a target with radius 0.5 in, whose
center is 14 cm away from a silicon barrier detector of
radius 0.5 in. The howitzer and target is rotationally ad-
justable and can be rotated all the way around the cham-
ber, in order to observe various scattering angles.



2

FIG. 2. A run at a θ = 14.4◦ scattering angle. The howitzer
on the right is positioned to be in line with the gold foil target,
and counts are recorded by the silicon barrier detector on the
left.

FIG. 3. A sample MCA output. This measurement is ob-
tained by scattering through an iron foil at 0◦.

The silicon barrier detector is connected to a Canberra
2006 pre-amplifier, which converts the detector signal to
a step voltage pulse proportional to the total charge. This
signal is then amplified again with a Canberra 471 Spec-
troscopy Amplifier, set to a gain of 500, to produce out-
put pulses of approximately 7V. These pulses get passed
into an Ortec Multi-Channel Analyzer, which records all
pulses and sorts them by energy.

III. EXPERIMENTAL PROCEDURE

III.1. General Measurement Procedure

Vacuum was applied to the entire chamber until the
pressure reading was below 200 microns of mercury.
Then, the target was set in place and the howitzer (along
with the target) were rotated to the desired angle. The
exact angle between the howitzer and the detector was
recorded with a phone camera placed at a constant posi-
tion. The chamber was then covered to prevent ambient
light from reaching the detector, and the experiment was

run until clear peaks could be seen in the MCA readings.
In practice, this meant a few minutes for high-intensity
peaks, and a few days for low-intensity peaks.

III.2. General Peak-Finding Procedure

To find peak locations, we fit a Gaussian to the peak
produced by the MCA. The peaks themselves had longer
tails on the left than what would be expected from a
Gaussian. However, by including only data points near
the center of the peaks, Gaussian distributions fit well, as
tested by χ2 tests. Thus, to find peak position, we first
fit a rough Gaussian to the whole dataset (after removing
background noise). Afterwards, we used that estimate of
the mean and standard deviation to include only the data
within 2σ of the mean, and finally fitted those datapoints
to determine the peak’s center location.
In order to estimate the systematic uncertainty of the

fitting procedure, we fit the peak multiple times, us-
ing data from within 1σ, 1.5σ, 2σ, 2.5σ, and 3σ of the
mean. We then took the maximum difference between
fitted peak locations as the systematic uncertainty for
this peak-finding procedure.

IV. EXPERIMENTS AND RESULTS

IV.1. Energy Calibrations

The variation of stopping power with respect to kinetic
energy is known from the NIST database on α-particle
stopping energies [3]. Using a piecewise linear interpola-
tion for stopping power and numeric integration, we can
then predict the particle energy after traversing a specific
distance.
By using the known thickness of (1.50 ± 0.05) µm for

the deposited gold foil on the howitzer, and using the ma-
jor peak of the initial 241Am decay energy of 5.486MeV,
we find that the energy of the incident open-hole radia-
tion should be (4.833± 0.023)MeV. Using an open-hole
energy measurement (see Sec. IV.2) as a baseline for the
correspondence between channel number and energy, we
obtain a ratio of (3.389 ± 0.024) keV per channel num-
ber. This correspondence between channel number and
energy is used for all future energetic measurements.

IV.2. Gold Foil Thickness

By varying the number of the gold foils in the tar-
get, we observed marked changes in the resulting en-
ergies of the α particles on the MCA. Using the peak-
fitting procedure and stopping power integration, we re-
spectively obtain the final energies and corresponding
thicknesses of the gold foils. A linear fit between the
number of foils and the final energies was reasonable,
with a χ2 value of 3.0 with corresponding probability
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P (χ2 > 3.0; df = 2) = 22%. The exact results are tabu-
lated below:

Sample Energy Thickness per Foil
Open Hole (4833± 33) keV NA
1 Gold Foil (3824± 38) keV (2.09± 0.15) µm
2 Gold Foils (2903± 27) keV (1.90± 0.06) µm
3 Gold Foils (1738± 68) keV (1.88± 0.06) µm
Average NA (1.96± 0.06) µm

IV.3. Scattering Cross-Section

To estimate the overall scattering cross section, we
looked at the rate of scattering by computing the differ-
ence of rates between the open hole and gold foil target
at θ = 0◦. A 0.49 ± 0.01 fraction of particles are scat-
tered by the gold foil beyond the detector. Since the
ratio should also be given by N · σ, where N is the num-
ber density per area, we can calculate the cross-section
σ = (4.0± 0.4)× 10−24 m2.
We also note that a scattering angle θ = 2.6◦ ± 0.3◦,

corresponding to the detector width, has impact param-
eter b = (1.05± 0.13)× 10−12 m. The circular scattering
cross section then has area (3.5 ± 0.7) × 10−24 m2. This
theoretical estimate is in line with the experimental esti-
mate based on scattering rates.

IV.4. Angular Distribution

As the detector has nonzero angular acceptance, parti-
cles can actually scatter through a range of angles while
still hitting the detector. In order to obtain an accurate
model of the cross section’s angular dependence, we mea-
sure the spread of the howitzer’s angular distribution.

Let the angular response function g(θ, ϕ) be the prob-
ability density function (with respect to θ) of scattering
an angle θ, when the howitzer is at an angle ϕ. Then, the
recorded count rate at an angle ϕ is

f(ϕ) =

∫ π

θ0

g(θ, ϕ)r(θ) dθ

where r(θ) ∝ sin−4(θ/2) is the count rate of scattering
at an angle of θ, and θ0 is a physically-imposed cutoff
angle. We can measure the angular distribution h(θ) by
observing the count rates through an open hole at small
angles, and then set g(θ, ϕ) = h(θ− ϕ) to be the angular
response at an arbitrary howitzer angle ϕ.
To measure h(θ), the howitzer and an open hole target

were rotated to angles between −8◦ and 8◦, at approxi-
mately 2◦ degree angles. Counts were recorded for only a
few minutes, as the count rates at small angles are high.
The resulting count rates, along with a fitted Gaussian,
are displayed in Fig 4. The y-uncertainties were calcu-
lated by assuming a ±0.1◦ uncertainty in the angle, and
by measuring the variation of the fitted count rate when
the input angle is shifted by such an amount.

FIG. 4. The variation of count rate as a function of howitzer
position. The Gaussian fit, taking into account only the 5
central data points, has a χ2 value of 5.64, with corresponding
probability P (χ2 > 5.64; df = 2) = 6%.

FIG. 5. The count rates as a function of scattering an-
gle. The naive distribution represents the direct fit of the
sin−4(θ/2) dependence, and has a χ2 value of 46.40 with
P (χ2 > 46.40; df = 7) ≈ 0. The distribution resulting
from the convolution of the Gaussian angular response and
sin−4(θ/2) performs much better, with a χ2 value of 5.03 and
corresponding probability P (χ2 > 5.03; df = 6) = 54%.

Although the Gaussian fit for the angular distribution
overestimates the count rate at the tails of the distribu-
tion, it interpolates the center of the peak well. Since the
majority of the counts come from the center of the peak,
the small additive errors in the tails only introduce small
uncertainties in the resulting count rate.

IV.5. Angular Dependence of Scattering

The howitzer and target were rotated to various an-
gles, ranging from ≈ 10◦ to ≈ 45◦, and the thinnest gold
foil was chosen as the target. The count rate through the
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gold foil at each angle was then measured, for a time suffi-
cient to obtain hundreds of counts. Due to the presence of
background radiation, only counts from channels 861 to
1374 (encompassing nearly the entirety of the previously-
measured 0◦-scattering gold peak) were used in the rate
measurement. In order to estimate the systematic uncer-
tainty of this cut, we note that even after extending the
window by 250 counts in both directions, only at most
a 11% deviation in the rate was observed in the case of
large-angle scattering. By plotting the rates in Fig. 5,
we observe the sin−4(θ/2)-dependence as predicted by
Rutherford’s formula, after convoluting with the angular
response function derived above.

IV.6. Energetic Dependence of Scattering

FIG. 6. The relation between energy and count rate. The
linear fit has a χ2 = 0.8 with corresponding probability
P (χ2 > 0.8; df = 1) = 38%.

The Rutherford differential cross-section formula also
includes an energy dependence. Since the energy of the
particle varies as it goes through the foil, we should in-
stead use the average value ⟨ 1

E2 ⟩ ≈ 1
EfinalEinitial

in the

formula. Thus, the rate of scattering should be directly
proportional to thickness divided by final energy.

To verify this relationship, we scattered off of various
numbers of gold foils at θ = 15◦, and measured the cor-
responding count rates, by counting the total number
of events, and then subtracting off the background rate.
Combining this rate data with the thickness and ener-
getic data from the previous section, we obtain the plot
in Fig. 6, and verify the formula’s energy-dependence.

IV.7. Z-dependence of the Rutherford cross-section

FIG. 7. The relationship of Z to count rate. The uncertain-
ties in x are very large, due to the 25% stated uncertainty
in thicknesses. The gold data used the thickness calculated
previously, taking into account new uncertainties from the
fact that the measurements were not done with exactly the
same angle. The linear fit has a χ2 = 6.3 with corresponding
probability P (χ2 > 6.3; df = 2) = 5%.

The Rutherford differential cross-section formula fur-
ther includes a quadratic dependence on atomic number.
To investigate this relationship, we scattered off of vari-
ous metals with known thickness at θ = 10◦, in addition
to the 10◦ gold data collected earlier. Each element has
a different thickness, density, final energy, and atomic
mass; taking all of these into account, the count rate

should be proportional to Z2ρZt
EfinalMZ

. Plotting this quan-

tity against rate shows agreement (Fig. 7) within 2σ.

V. CONCLUSION

In this experiment, we used 241Am α particles to per-
form scattering experiments on various target foils and
measure the cross-section of gold to be (4.0 ± 0.4) ×
10−24 m2. By varying the angle of scattering and type of
target, we successfully verify the nuclear atom model’s
theoretical dependence on angle, energy, and nuclear
charge within 2σ. In addition, we show that energy loss
data can be used to measure foil thicknesses, by measur-
ing the thickness of a gold foil to 3% uncertainty.
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