
Secure Electronic Voting Over the World Wide Web

by

Mark A. Herschberg

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical [Computer] Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 27, 1997

 Copyright 1997 Mark A. Herschberg. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and dis-
tribute publicly paper and electronic copies of this thesis and to

grant others the right to do so.

Author ..
Department of Electrical Engineering and Computer Science

May 27, 1997

Certified by ...
Ronald Rivest, ES Webster Professor, Electrical Engineering and Computer

Science
Thesis Supervisor

Accepted by ...
F. R. Morgenthaler

Chairman, Department Committee on Graduate Theses

2

Secure Electronic Voting Over the World Wide Web
by

Mark A. Herschberg

Submitted to the
Department of Electrical Engineering and Computer Science

on May 27, 1997

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer [Electrical] Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

It has only been within the past two decades that protocols for electronic voting using
modern computers have been developed. Only in recent years have any of the theories
actually been actually implemented. Unlike its predecessors, E-Vox, based off of Fujioka
et al., is the first implementation which is both easy to use (from the standpoint of the
voter) and system independent. The voter needs only click a few buttons in what can be a
single stage protocol. The entire system requires only that the voter register a name and
password. It does not require voters to use a public key, or other encryption/authentication
system.

Thesis Supervisor: Ron Rivest
Title: ES Webster Professor, Department of Electrical Engineering and Computer Science

.....5

.....5
....6
..12
...1
...18
.22
...26
...26
..27
..33
...37
....42
.42
...43
....44
..45
...47
..47
....49
..62
....
..67
...67
...68
..74
...77
...79
..80
..81
Table of Contents

 1 Introduction...
1.1 Background...
1.2 History..
1.3 Motivation..

 2 Theory...8
2.1 Cryptographic Elements..
2.2 “A Practical Secret Voting Scheme for Large Scale Elections”.....................

 3 The E-Vox System..
3.1 Assumptions..
3.2 Creating a Well-Defined System ...
3.3 The Revised Voting Protocol...
3.4 Proof of Correctness of the Revised Protocol...

 4 Components ...
4.1 Cryptographic Library ..
4.2 Vote Object ...
4.3 GenRand, the Random Number Generator..
4.4 Network Connections...
4.5 Registrar..
4.6 Election Builder ...
4.7 Servers..
4.8 Voting Applet...

 5 Testing..65
 6 Limitations, Their Solutions, and Further Extensions ...

6.1 Code Improvements ..
6.2 Protocol ...
6.3 Architecture..
6.4 Policy ..

 7 Conclusion ..
 Appendix...
 Bibliography ...
3

4

List of Figures
6

7

List of Tables
8

9

andy

eir

d the

also

h cru-

d the

um-

g.
 Acknowledgments

The code for this project was developed by Mark Herschberg, Ben Adida, and R

Milbert, under the supervision of Prof. Ron Rivest. I would like to thank them all for th

contributions. Ben’s knowledge of Java proved invaluable to the project. He create

server’s basic functionality and is credited with the wonderful interface it has. Ben

developed the lower layers of the communications protocol. Randy implemented suc

cial components as the Blowfish algorithm, a terrific random number generator, an

ballot. Ron’s supervision was helpful throughout the development process.

We would also like to thank DARPA, which sponsored our research under grant n

ber DABT63-96-C-0018, and Dr. Karger, for the use of his machine during the codin

Netscape is a trademark of Netscape Communications Corporation.

Pericles is a trademark of the Massachusetts Institute of Technology.

RSA is a trademark of RSA Data Security, Inc.
444

ice.”

lly. A

e the

ecent

tion

video

e long

rnia

ng

DRE

ically.

hese

bines

gh

ident.
Chapter 1

Introduction

1.1 Background

In 1869 Thomas Edison received US patent 90,646 for an “electronic voting dev

He tried to sell his invention to the Massachusetts legislative bodies, unsuccessfu

century later, we are once again attempting to apply electronic wizardry to expedit

democratic process.

It seems as though everything is being automated by computers today. With the r

explosion of growth on the world wide web, the ability to communicate more informa

faster and cheaper is at our fingertips. We have email, electronic newspapers, and

conferencing all leading the trend towards a paperless society.

Elections themselves have not remained completely static. Absentee ballots hav

been common. This idea was extended in April,1997, when Monterey County, Califo

experimented with the first voting by mail (VBM) system. Additionally, Direct Recordi

Electronic (DRE) systems have been used in polling stations since the 1970s. In

booths, unlike their mechanical counterparts, the tallies are stored electromagnet

[Kir95]

Thanks to the recent advances in the field of cryptography we can bring all t

trends together and create a secure electronic voting system. Our system, E-Vox, com

the flexibility of a VBM with the speed and power of modern day computers. Althou

some philosophers may disagree, we take the value of these properties to be self ev
5

act is,

dred

one

stem.

ly the

ent of

e not

n he

offi-

ome

rash.
1.2 History

The cases listed above are, unfortunately, exceptions, rather than the rule. The f

progress in the field of electronic voting has moved very slowly over the last hun

years. It was not until cryptography become a field of public interest, as opposed to

used exclusively for military purposes, did the first protocols begin to surface.

1.2.1 Properties of a Secure Secret Voting Scheme

Fujioka et al. defines seven requirements of a secure, secret election.

1. Completeness: All valid votes are counted correctly.

2. Soundness: The dishonest voter cannot disrupt the voting.

3. Privacy: All votes must be secret.

4. Unreusability: No voter can vote twice.

5. Eligibility: No one who isn’t allowed to vote can vote.

6. Fairness: Nothing must affect the voting.

7. Verifiability: No one can falsify the result of the voting.

Curiously, the above properties are often taken for granted in the US electoral sy

After a voter drops the ballot in the box, he goes home and awaits the return. Certain

need for a photo ID and a signature provides some authentication, but that’s the ext

it. Perhaps his vote was secretly recorded; maybe the tallies from his booth wer

reported correctly; it is possible that the election officials stuffed the ballot box whe

wasn’t looking. Most systems rely heavily on our trust in the government appointed

cials overseeing the election.

There is significantly less trust when computers are involved. This is not without s

justification. Anyone who has spent any time working on a computer has seen it c
666

other

wsers.

uters,

ns do

et the

y not,

ciety.

was

s can

ions.

rol. If

ob’s

oted

an
Bugs are an accepted part of most software. Recently it seemed as though every

week college students were discovering security flaws in supposedly secure web bro

These problems, coupled with the general public’s lack of understanding about comp

makes for a very distrustful populous. (In defense of computers, though, US electio

not exactly have a spotless record either.)

Before any computerized balloting system can be accepted it must stringently me

above requirements. There are also four additional properties a system may, or ma

possess.

8. Receipt-Freeness: The voter does not need to keep any record of his vote.

9. Non-Duplication: No one can duplicate anyone else’s vote.

10. Public Participation: Everyone knows who did, and did not, vote.

11. Private Error Correction: A voter can prove his vote was miscounted without

revealing how he voted.

(Properties 9, 10, and 11 are taken from Schneier [Sch96].)

The value of these four properties really depend on the values of the specific so

Most elections require the user to record some or all of his ballot, to later verify that it

counted correctly. This receipt also allows voters to easily sell their votes. The buyer

use the receipts to verify the way in which bought voters voted. [Gen96] (ckme)

Duplication does not seem to be such a significant problem in most real elect

Schneier gives the example of a three person election between Alice, Bob, and Ca

Alice does not care about the outcome of the election, she can simply duplicate B

vote. The winner is then the person for whom Bob voted (because Alice will have v

with him). Alice knowing the result of the election, effectively sees Bob’s ballot. Given
7

about

oci-

ful.

these

ltiple

f the

rliest

been

eier.

.

d

election with any reasonable number of people, who are assumed to genuinely care

the outcome, this will not be an issue.

The property of public participation is one which may or may not be of value to a s

ety. Private error correction is one which most societies would probably consider use

1.2.2 Secure Election Strategies

There are three main approaches to secure electronic elections. Within each of

categories there are a number of variants, each trading complexity for functionality.

Self-Adjudicating Protocols

The most basic protocols require no external parties. Security is created by mu

layers of encryption and/or signing. Anonymity is generated by repeated reordering o

votes during various steps of the algorithm. Michael Merritt designed one of the ea

schemes. [DeM82] All voters need to have public keys which are assumed to have

distributed before the election beings.

In this scheme, each voter performs the following steps, as summarized by Schn

1. He attaches a random string, R, to his vote, V.

2. Then he encrypts his vote with public keys of Voters 1 through N, in that order

3. Again, he repeats step two, but this time includes a random string within each

layer of encryption.

At this point the votes look like:

EN(RN,EN-1(...(R2, E1(R1, EN(EN-1(...(E1(V,R))...))))...))

where Ri is random string of voter i, and Ej is the encryption of the parenthesize

expression using Voter j’s public key.
888

k-

.

drop-

do so

ll not

licious

ther

ubsti-

nd
4. All votes are passed from voter to voter, starting with voter N and ending with

Voter 1. Each voter decrypts the message and strips off the random string, ma

ing certain it is the one he had used. The voter then scrambles the votes and

sends them onto the next voter (with Voter 1 sending the votes on to Voter N)

Now only the inner encryptions remain.

EN(EN-1...(E1(V,R))...)

5. Again each Voter from N down to 1 decrypts his layer, but then signs the mes-

sage and sends it on. Voter i checks the validity of the signature of voter i+1

and if it is valid decrypts, signs, and passes the message onward.

Partway through this step the votes looks like

Si+1(Ei...(E1(V,R))...)

where Si is the signature of Voter i.

6. All voters confirm the signature of Voter 1 and check the list of votes for their

initial random string to insure their vote was counted.

The number of votes is constant throughout the process and so ballot stuffing or

ping is easily detected. Votes cannot be replaced by a malicious party. An attempt to

in the second round of decryptions (step 5) will be discovered as the signed object wi

be correct. The signatures at this stage make it easy to trace back and find the ma

party.

An attempt to substitute votes during the first round of decryptions (step 4) will ei

be detected later in the round because the random number is incorrect; or, if Voter i s

tutes for Voter j’s vote, for j > i, then Voter j will detect it during the start of the seco
999

cious

par-

too

VR).

ave a

oters

be

se the
round of decryptions. As opposed to second round decryption substitutions, the mali

party cannot be uniquely identified in this case.

The scrambling of votes provide anonymity; and the inner random string R allows

ticipants to insure their Vote is in the final tally.

There are quite a few problems with this scheme. If for no other reason, it is simply

computationally intensive to be useful.

Central Vote Repository

Excessive computation can be avoided by creating a Central Vote Repository (C

This system requires far less computational work. Again the voters are presumed to h

public/private key pair {k,d}.

1. The CVR asks each voter whether or not he will participate in the upcoming

election.

2. A list of all participants is made public.

3. Each voter receives an ID number using an All-Or-Nothing-Disclosure-of-

Secrets (ANDOS) protocol.

4. Each voter anonymously sends the CVR his ID number, I, along with the

encryption of his vote, V, paired with his ID number.

5. The CVR publishes all encrypted votes Ek(I,V).

6. After step 5 is complete, each voter anonymously sends {I,d} to the CVR.

7. All votes are decrypted and their values published alongside them.

This system prevents unauthorized voters from voting, as well as registered v

from repeatedly doing so. While the ANDOS system [Nur91] is too complex to

described here, suffice it to say that votes cannot be traced to the voter, becau
10

ich

t the

of

). Con-

ay of

vote,

com-

omes

enti-

ss

hout

. The

pe of

ith one
ANDOS system prevents the ID distribution center from knowing which voter got wh

ID.

There are some significant limitations to this system. The main drawback is tha

central facility is a single point of failure or corruption. It can forge votes in the name

people who abstain (although step 1 is supposed to reduce the number of abstainers

versely, it can drop valid votes and claim they were never sent. The voter has no w

proving that he did submit a vote. If, instead, the CVR simply chooses to miscount a

the voter’s only recourse is to show the triplet {I, Ek(I,v), d} at which point his vote is

revealed. Finally, the ANDOS protocol is rather complex.

Simpler variations on this theme do not have all the necessary properties. More

plex ones overcome some of the difficulties. [Sak94]

Multiple Voting Organizations

In the spirit of checks and balances, the next improvement to election schemes c

from using two centers, instead of one. Now, instead of a single CVR, there are two

ties: a Validation Agency (VA) and a Tabulation Facility (TF). A valid vote must pa

through both bodies to be counted. The first recognizes the voter’s right to vote, wit

seeing the actual ballot, and gives the voter some token confirming this authorization

second party is then anonymously passed the validation token and the vote. This ty

scheme, of course, assumes that the two groups are set up so as not to collude w

another.

1. Each voter, after providing his identity, asks the VA for an authorization number.

2. The VA randomly generates authorization numbers and distributes them.

3. The list of all such authorization numbers is given to the TF.
111111

uni-

e his

voter

ples.

he

alid

ame.

r, this

is an

. The

soci-

day’s

ent,

sional
4. Each voter picks a random ID number and sends it, along with his vote and

authorization number to the TF.

5. The TF checks the authorization number and, if it is on the list, crosses it off and

publishes the vote along with the ID number.

While this protocol does not require that the voters all have public keys, all comm

cation needs to be encrypted in some manner. Additionally the voter needs to prov

identity to the VA somehow. Finally, an anonymous channel is again needed by the

to communicate with the TF.

This type of system has some notable improvements over the previous two exam

Neither body, by itself, has enough information to link a specific ballot with a voter. T

VA’s validation numbers prevent both unauthorized voters from participating and v

voters from voting repeatedly.

Still, this system is not perfect. The VA can create false voters and vote in their n

Collusion between the VA and TF can break the system. Despite these flaws, howeve

system is a good starting point, and the Fujioka et al. system we implemented

improvement on this theme.

1.3 Motivation

1.3.1 Impediments to Development

There have only been a handful of papers in the area of secure electronic voting

result is that there have been only a handful of implementations. This is likely due to

etal needs. Electronic data transfers and communications are commonplace in to

world. Business, government, and military applications all require strong, effici

encryption and authentication schemes. Elections, on the other hand, are occa
12

rnout

been

hereas

col.”

row.

hich

sonal

gate

e can

hese

edge,

theory

re far

a et

mu-

elec-

e the

de in

voters

g the

elec-

.

events; and not very popular ones in places like the United States with only a 55% tu

rate for presidential elections. It is no surprise that most cryptographic research has

devoted to mainstream topics such as data encryption and public key systems, w

electronic voting is considered by experts like Bruce Schneier to be an “esoteric proto

However, as the use of the internet increases, we expect work in this field to g

Elections are really just a special case of secure multiparty computation, [Kil90] in w

a group of people wish to perform a calculation together, perhaps each using per

data, without revealing their individual data. Contract bidding, negotiations, and aggre

demographic data, just to name a few examples, are related computations which w

expect to see calculated on the internet in the future. Our work will be relevant to t

areas, as well as general security developments. At the very least, it is, to our knowl

the first secure electoral system built under Java.

This lack of need for secure elections has resulted in a rather large gap between

and practice. Although the algorithms are sound, certain assumptions they make a

from trivial to implement, as we’ll see in the case of E-Vox, based on a paper by Fujiok

al. (2.2.1)

There are also a number of logistical problems. Two parties desiring a secure com

nication channel, can, together, develop their own program and each take a copy. An

tion usually has a much larger base of participants, each of whom will need to receiv

code. Whereas a physical meeting could be used to verify the authenticity of the co

the former case, that is unfeasible in the latter. The code must also be trusted by the

not to perform any malicious activities, such as erasing the hard drive, or recordin

keystrokes and forwarding them to someone wishing to defeat the anonymity of the

tion. Again, this is easier among a small group of people such as in the former case
131313

we

blem

ple-

rs of

orting

how-

ring

Paul

for

lim-

f the

ystem.

e, and

Jason

sys-
Finally, there are a number of policy issues that come with elections. By policy

mean problems which cannot be solved by cryptography alone. The fundamental pro

of key distribution becomes a registration problem in this case. Throughout this im

mentation there will be a number of places in which the problem is left open to the use

the system.

1.3.2 Previous Work

Despite the obstacles listed above, a number of universities have begun supp

electronic voting, in the past few years, often for student elections. These systems,

ever, all have some drawbacks.

Pericles (MIT)

At MIT, student government elections are held both electronically and on paper du

disjoint periods. The computer-based voting system, Pericles was developed by

Kirby. [Kir95] It is a C based system, which runs over Mosaic.

There are two drawbacks to this system. First, it relies on the Kerberos system

authentication and message encryption, making its application to the general public

ited. Second, it is a single server system. Although it is set up to protect the privacy o

students and insure a fair election, anyone with access to the server can defeat the s

Despite this cryptographic dependency, Pericles does have a very good user interfac

works extremely well for the type of election for which it was designed.

Princeton

The scheme at Princeton, developed by Ben Davenport, Alan Newberger, and

Woodward is also an implementation of the Fujioka, et al. [Dav96] The details of this

tem will be discussed fully in section 2.2.
14

enta-

web

voter.

SSL

per-

sys-

at a

bject to

96]

three

h are

two

s has

t of a

nt and

ing it

ill is a

not
We believe our implementation has certain advantages over theirs. Their implem

tion is written in Perl and uses a web based interface. The downside to this is that the

browser must connect to a server to perform the actual computations required of the

This system is vulnerable to a spoofing attack from which their suggestion of using

will not protect them (see section 6.3.4). This server also must be trusted to reliably

form a step critical to the voting process, hours after the voter has interacted with the

tem (see section 2.2.2).

The servers themselves are limited in that they can only handle one connection

time. The messages passed between them, although all encrypted with PGP, are su

all sorts of timing analysis, which could defeat the anonymity of the system.

Sensus

Lorrie Cranor and Ron Cytron have implemented Fujioka et al., as well. [Cra

Again, we believe our system has certain benefits over theirs. First, they employ a

stage protocol. That is, the voter must perform three separate actions, two of whic

absolutely necessary for their vote to be tallied. Our implementation requires only

actions on the part of the voter, only one of which is necessary (see section 2.2.2).

Second, their system is written in C and Perl, and makes use of CGI scripts. Thi

the code logistical problems mentioned earlier (see section 1.3.1). In the environmen

college campus (or even business), where the computers are maintained by a vigila

knowledgeable group of system administrators, this is not a problem. However port

across intranets, so otherwise disjoint groups can participate in the same election st

problem.

Finally, it presumes the use of a public key system for all voters. Again, this may

be a problem on a given intranet, but will be in the general case.
151515

tand-

t al.

t the

elec-

gistra-

here

rea-

effi-

gis-

cess

any

ser,

r can

had

erface

el of
1.3.3 Goals

With the above systems in mind, our goal was to develop a secure, user-friendly, s

alone system for a small scale election.

Secure

We define secure to mean meeting the seven requirements as listed by Fujioka e

User-Friendly

The system was designed to be completely user-friendly. By this we mean tha

voter himself needs to perform the bare minimum number of actions required of any

toral process and no more. The two steps absolutely required of any election are re

tion and voting. Note that our requirement is procedural rather than computational. T

is no constraint on the computation, save the implied limit of it being finished within a

sonable amount of time. Much of the literature has been devoted to improving the

ciency of elections, but that is not one of our goals.

From the voter’s standpoint, both activities are performed quickly and easily. To re

ter, the voter must go to the appropriate registration office, prove his identity (the pro

by which this is done is left as a matter of policy), and then simply enter his name, or

unique ID, and password into a program (both of which he needs to remember).

When it comes time to vote, he can simply download the applet using a web brow

enter his name and password, and then click a few buttons. At that point, the vote

walk away from the process knowing he has completed the act of voting, just as if he

stepped out of the election booth. (As explained in section 2.2.2, because the user int

was such an important goal of this system, we did significantly alter the security mod

the protocol to achieve it, but we still meet our definition of secure nonetheless.)
16

, and

g. Peri-

ake no

sup-

ed to

x, there

ntly

scaled

and

stem

h the

t up to

oten-

epa-

tions
Both registration and voting programs take on the order of seconds to complete

the user interface is self-explanatory.

Stand-Alone

Our system was designed to be a stand-alone system. Some current systems (e.

cles) assume certain structures are in place, such as key-distribution systems. We m

assumptions of this sort. All we require are some servers and a web browser which

ports the JDK1.1 (Java Development Kit). Specifically, the user (voter) does not ne

download any code ahead of time; and because Java applets are run inside a sandbo

is no need to worry about system security.

Size

E-Vox can easily support elections on the order of a hundred people. With sufficie

fast servers, a few thousand can be quite reasonable. Moreover, the system can be

further without significant effort. The limit is really the speed and size of the servers,

the bandwidth of their connections. There is also a slight bottleneck in terms of file sy

latency. Currently, each registered voter is stored in a separate registration file. Wit

release of the JDBC (Java Database Connectivity), a database backend can be se

more efficiently manage a larger number of people. We claim that this system can p

tially handle tens of thousands of voters. Note that for any sufficiently large system, s

rate elections still need to be held, much like the way in which current US federal elec

are broken into a number of small districts.
171717

ese

n sys-

stems.

That

ing it

e sig-

eable,

le, so

78]

an

n who
Chapter 2

Theory

2.1 Cryptographic Elements

Election protocols are built from a number a low level cryptographic structures. Th

structures, alone or in combination, create the various properties we desire in electio

tems. The reader is presumed to have a basic understanding of public key cryptosy

[Dif77]

2.1.1 Digital Signatures

Digital signatures are intended to be the electronic analog of written signatures.

is, some object “attached” to another (say a document or file), undeniably associat

with the signer. The signature must have three properties. First, it must be unique; th

natures of different parties must be different. Second, the signature must not be forg

Alice cannot create Bob’s signature. Third, the digital signature needs to be verifiab

anyone can confirm the authenticity.

E-Vox implements digital signatures using the RSA public key cryptosystems. [Riv

They work as follows. Alice, with public key e, private key d, and modulus of n, signs

object, M, by encrypting it with her private key.

S = Md mod n

Because she is the only person who knows her private key, she is the only perso

can create the signature, S, for this object, M.
18

blic

t be a

. He

lice

Alice

l her

of the

actu-

igned

and

nd n.
Anyone can verify that S is indeed her signature of M by encrypting S with her pu

key.

M = Se mod n = (Md)e mod n = Mde mod n = M mod n

2.1.2 Blind Signatures

Our voting system’s need for signatures has an additional constraint in that it mus

blind signature. To illustrate what a blind signature is, suppose Bob doesn’t trust Alice

does, however, trust Trent, who trusts Alice. Bob is willing to accept a message from A

only if Trent signs it. Unfortunately, the message is of a rather personal nature and

doesn’t want Trent to see it. She can use a blind signature.[Cha82]

Schneier provides a good analogy of the solution. In the real world, Alice can sea

message in an envelope filled with carbon paper. Trent can then sign the outside

envelope and his signature will get transferred to Alice’s message, without Trent ever

ally seeing it. Alice can then remove the message from the envelope, and give the s

message to Bob, who can verify Trent’s signature.

The cryptographic version is as follows. Trent has a public key e, private key d,

modulus n. First Alice blinds her message, M, using a random value, k, between 1 a

B = Mke mod n

Then Trent signs it by

S’ = Bd mod n = (Mke)d mod n = Mdk mod n

Alice can unblind this to yield Trent’s signature of M as

S = (S’/k) mod n = Md mod n

This can be verified as it is now a normal digital signature.
191919

hing

in a

n a

t is

and

oc-

as the

ct, it

iven

pared

its,

er any

two

fe to
2.1.3 (One-Way) Hashing

A one-way hash is a mathematical function. We say h is the hash of M for has

function H

h = H(M).

A one-way hash has the following properties. For any size M (or any size with

given range of sizes), the size of the output, h, is constant. The inverse, H-1, is hard to

compute, such that given h and H, it is hard to find any M such that H(M) = h. Give

message M, it is hard to find another message M’, such that H(M) = H(M’). Finally, i

hard to find two messages M, M’ such that H(M) = H(M’).

We employ a version of SHA, the Secure Hash Algorithm, designed by the NIST

the NSA. Specifically, we use SHA-1. SHA takes any input up to 264 bits in length and

produces 160 bit output.

Hashing is often used in conjunction with digital signatures. The signing of large d

uments can be computationally expensive. Because the hash, sometimes referred to

fingerprint, of an object is unique, and often of a shorter length than the original obje

is the hash of an object which is often signed, rather then the object itself. For a g

object and signed hash, the object itself can be hashed by the recipient, and then com

to the signed hash after the “un-signing” function has been applied to it.

2.1.4 (Blind) Commitment

A commitment is a way in which one party can commit to an object (e.g. string of b

message, contract) without the anyone else seeing what that object really is. Howev

attempt by the first party to change the object can be detected.

A good analogy would be for Alice to lock away a message in a safe requiring

keys, which she would then split between her and Bob. Alice cannot open the sa
20

help of

way

keys,

Sim-

g R

nary

key is

e keys

ssarily

can
change the message, and Bob cannot open the safe to see the message, without the

the other.

A few ways to commit to a bit pattern are available. In our protocol we use one-

hashing to insure bit commitment. Alice generates two random bit strings, R1 and R2. She

then hashes those, along with her message, M, and sends it to Bob with one of the

say R1.

C = H(R1, R2, M)

Bob cannot compute M from C because of the properties of the hashing function, H.

ilarly, Alice cannot not find another message and bit string pair (M’, R’) such that

C = H(R1, R’, M’)

and so she cannot change her message to M’ without detection by Bob. By keepin2

secret, Alice prevents Bob from hashing every possible string, along with R1, to try and

find the message to which Alice committed. (This type of attack is known as a dictio

attack.)

Specifically, we use

h= SHA(k1, SHA(message, k2))

In the above equation, the message is actually hashed twice. During each hash, a

first appended, and then prepended, to the object being hashed. In our application, th

are used to add random bits to the hashed message.

2.1.5 Anonymous Channels

The final piece needed by our system is an anonymous channel. This is not nece

a purely cryptographic beast. An anonymous channel is simply one in which Alice
21

ply to

” by

the-

ple-

in-

mous

oter

bal-

the

al-

is

tching

otes,

min-

lid, it
send a message to Bob without revealing her identity (some channels allow Bob to re

Alice, while maintaining Alice’s anonymity). [Anon]

Anonymous channels will be discussed in more detail later in section 3.2.

2.2 “A Practical Secret Voting Scheme for Large Scale Elections”

2.2.1 Core Protocol

E-Vox is based on “A Practical Secret Voting Scheme for Large Scale Elections

Fujioka, Okamoto, and Ohta [Fuj93]. The paper itself is quite concise. It gives a ma

matical framework for a secure election. However, many details needed for a full im

mentation were left out (see section 3.2).

The protocol is similar to the third scheme listed in section 1.2.2. It involves an adm

istrator, a counter, and the voter. Like most election protocols, it requires an anony

channel.

The administrator is responsible for rubber stamping ballots. That is, after a v

proves his identity to administrator, the administrator will sign the committed, blinded

lot it is given. Then the voter will be removed from the list of those eligible to vote. At

end of the protocol, the administrator will publish a list with the committed, blinded b

lots, those ballots when signed, and the voters to whom they were given.

The voter will use this signature as proof of eligibility with the counter. The vote

sent to the counter through an anonymous channel. The counter has no way of ma

the ballots it receives to any voter. The counter does, however, know to count the v

because they have the administrator’s signature.

The vote is actually sent in two parts. First the committed ballot signed by the ad

istrator is anonymously passed to the counter. While the counter knows the vote is va
22

ys to

e pro-

d to

h

r

d

cannot break the commitment scheme to actually see it. Rather it must wait for the ke

uncommit the vote to be sent through a second anonymous channel. At the end of th

tocol, a list of the committed ballot, the administrator’s signature of it, the keys use

uncommit it, and the actual ballot are publicly posted.

The steps listed in Fujioka, et al. are as follows.

1. The voter selects his candidates and commits to this ballot.

2. This committed ballot is then blinded and signed by the voter. It is then sent to

the administrator.

3. The administrator verifies the right of the voter to vote, and the signature of the

blinded vote. If the signature is valid, the administrator signs the committed,

blinded ballot, returning this signed ballot to the user, and publishes its log.

4. The user unblinds the ballot, and verifies the administrator’s signature, which,

because of the blinding properties, should still be valid for the committed (but

no longer blinded) ballot.

5. The committed ballots, now signed by the administrator, are then sent, throug

an anonymous channel, to the counter which publishes it along with an index

number.

6. After all the committed votes have been sent in, the voters can confirm that thei

vote is listed, and that all votes have valid signatures.

7. After everyone has had a chance to confirm the entries in the counter’s publishe

list, each voter sends in the keys needed to uncommit his vote, along with the

index of the committed vote. Again the communication is through an anony-

mous channel.
23

s

tor.

diate

The

ll as

lly, it

,

the

f this

many

eep in

rt of

hurt

de is

a pub-
8. The counter then adds to the published list the keys and the uncommitted vote

(which can be confirmed to match the committed votes).

A list of all voters who have had their vote signed is published by the administra

This list includes their name, blinded ballot, and its signature. The counter’s interme

published list (from step 5) has the committed (unblinded) ballot and its signature.

final published list of the counter contains the values form the intermediate list as we

the keys used to uncommit, and the uncommitted (plaintext) vote, itself.

2.2.2 Modifications to the Protocol

The core protocol above does not quite satisfy our design requirements. Specifica

fails to be user-friendly. Fujioka, et al. requires the voter to perform three steps.

1. Get the administrator to sign the vote and send it to the counter

2. Check that the vote is listed by the counter, confirm any of signatures listed, and

if everything appears on the level, send in the keys to uncommit.

3. Confirm that all votes were uncommitted and counted correctly.

While a program can easily do any of the steps, it still involves a button click on

part of the user. People want to drop the ballot in the box and go home. An election o

nature might require 3 days to run, one for each step, an unappealing prospect to

potential users of the system.

In theory, during step one, the executables for the later steps could be set up to sl

the background of a computer, and run at a later time without further effort on the pa

the voter. However, this requires foreign code to be downloaded onto a workstation.

There are two problems with this approach. First, the code must be trusted not to

the system (or be confined to a sandbox which must then be maintained until the co

finished and removed). Second, the code must be safely stored until it executes; on
24

e they

at as

form

aking

r. They

on

one

t, he

be

also

tion

ain,

enta-

con-
lic workstation, someone could come along and delete the sleeping programs befor

execute the remaining steps.

There may be a social solution to this problem. Prof. Rivest cleverly suggests th

electronic voting becomes commonplace, people will entrust other entities to per

these later steps for them. Political parties, for example, have a vested interest in m

sure keys do get sent, and signatures are confirmed, more so than the average vote

would be likely to provide such services to their membership.

In order to meet our goal of user-friendliness, requiring a bare minimum of work

the part of the voter, our revised protocol requires only two steps. Specifically, steps

and two, listed above, get combined, so that if the voter wishes to leave at this poin

may do so knowing that the election will not be disrupted and that his vote will

counted. The voter simply yields his right to confirm that his vote was counted, and

that any other votes are correct. Others may still do so.

The justification for this stems from current election systems. As noted in sec

1.2.1, after a citizen walks out of the polling station, he doesn’t think about his vote ag

but rather assumes everything is on the level. The same can be done in our implem

tion. However, for those who desire to check, the individual votes and the tally can be

firmed.
25

ers in

, we

e do,

-

phic

RSA

se in

usion
Chapter 3

The E-Vox System

3.1 Assumptions

As noted in section 1.3.3, our system was designed as an improvement over oth

that it makes very few assumptions about the environment in which it is run. That is

do not presuppose any public key system or other basic cryptosystem is in place. W

however, make a few basic underlying assumptions.

3.1.1 Assumptions Made by the Protocol.

1. The cryptographic systems used are hard to break.

2. Each of the following parties: voter, administrator, anonymizer, and counter do

not collude with each other. They may work with other parties outside the sys

tem in an attempt to defeat it.

Cryptography

Almost all of the properties we desire in our system are achieved by cryptogra

methods (e.g. blind signatures, encrypted messages). Although certain systems like

are unproven to be secure, conventional wisdom thinks they are. Their continued u

other applications suggests our assumption is quite reasonable.

Independence

The security of this system is based on an adversarial model. To assume coll

defeats the premise around which the system was designed.
26

nd

tails

suffi-

s-

t

3.1.2 Assumptions about the Physical System

The following assumptions are all that are required of a network to run E-Vox.

1. The communication channels provide a low level of data confirmation such as

TCP/IP.

2. The server machines have the JDK1.1 (or better) installed.

3. The host machines run a web browser that supports the Java 1.1 (or better) a

allows the (potentially signed) applet to open connections to multiple hosts.

4. The host machines are secure in that they will not explicitly maintain a record of

operations performed on them.

3.2 Creating a Well-Defined System

Fujioka et al. only described a core theoretical system for voting. Many of the de

needed to actually build the system were left out. There were four general issues not

ciently addressed in their paper.

1. Authentication. Although specified, it called for authenticaion of the voter by

the administrator using a digital signature scheme. We preferred a different

solution.

2. Communication. No communication issues were considered. This included me

sage interception, prevention of data tampering during transmission, and the

anonymous channel itself.

3. Keys. The distribution of keys between servers is not addressed.

4. Errors. Descriptions of how to use the receipts and server logs are mentioned bu

no formal complaint process is specified.
27

ation,

sug-

ormer

ess.

lic keys

ning

must

likely

ires

tronic

sier to

e the

o the

did

pas-

(See

n to

e, and

ween
In defining this system, we leave open policy issues. Such issues include registr

time, and the handling of errors. See section 6.4 for a more detailed description.

3.2.1 Authentication

The two options considered for voter identification were a public key system,

gested by the use of digital signatures in Fujioka, et al. and a password system. The f

was discarded for two reasons. First, one of our highest priorities is user-friendlin

Passwords are a familiar and accepted concept, even to the non-technical user. Pub

are less familiar, and far more confusing. Additionally, the public keys needed for sig

would be on the order of several hundred bits. Second, either a public key system

already be in place, or the keys must be distributed in a secure manner. The most

form of distribution would be for voters get their keys during registration, which requ

that they either remember the unwieldy number, or have some sort of secure elec

transfer available. From a non-technical user’s perspective, passwords are clearly ea

manage. However, our system is a very modular one, such that you could replac

authentication sub-system with one using public keys transparently, with respect t

rest of the system.

3.2.2 Communication

In the protocol as given by Fujioka et al, simple communications (i.e. those which

not require an anonymous channel) had satisfactory cryptographic protection from a

sive attacker. That is, an attacker who can view, but not alter the message.

In reality, communications are more complex, and so are the malicious parties.

section 6.2). Any number of things could happen during a communication. In additio

eavesdropping, there could be noise on the channel, partial or total loss of a messag

partial or total message substitution. To protect against this, all communications bet
28

e fol-

L.

ould

uni-

owfish

entica-

grity

are

low-

nt to

d use

confirm

key

ayer

tion or
any two parties (e.g. the voter applet and the administrator server) are handled by th

lowing protocol for “secure connections.” Note that we do not assume the use of SS

Secure Channels

Alice, the initiator, needs a random number generator, and Bob, the recipient, sh

have a public key. Alice sets up a connection with Bob (e.g. opens a TCP socket).

Figure 3.1:Secure Message passing

We use Blowfish, a block cipher designed by Bruce Schneier, to encrypt all comm

cations. Alice generates a session key, S, which is a random byte array used as a Bl

key. Alice also generates two random byte arrays for padding, k1 and k2. These byte

arrays, along with the message, are then hashed to generate a MAC (Message Auth

tion Code). The MAC is the HMAC-SHA hash of these values, used to ensure the inte

of the bits during transmission. [Kra97] The message, padding keys, and the MAC

then encrypted with Blowfish using the random session key generated earlier. The B

fish key is then encrypted with the recipient’s public key (pk-B). Together these are se

Bob, who can decrypt the second part of the transmission to get the Blowfish key, an

that to get the message and padding keys. Bob can rehash the message and keys to

the integrity of the communication. Note that a regular hash with a single random

would suffice.

Protection from eavesdropping is provided by the Blowfish encryption. The TCP l

guards against noise and occasional packet loss. The MAC prevents partial substitu

Alice BobEs{message, k1, k2, MAC}, Epk-B{S}
29

h our

tocol

, are

gna-

r will

ages

any

ough

er. To

ent a

ber of

ould

from

rred and
loss from going unnoticed. The code for sending and receiving the messages throug

connections (secure or otherwise) makes use of timeout functions. Finally, the pro

itself will catch any total message substitutions.

Replay attacks, being somewhat equivalent to attempts of stuffing the ballot box

also ineffective. The administrator will accept exactly one request per voter for a si

ture. If the message from the voter to the administrator is replayed, the administrato

not honor it, but rather will send a complaint tot he commissioner. All replayed mess

to the anonymizer will be passed on by the server. However, the counter will remove

duplicate votes, so this attempt to vote twice will fail.

While these attacks will not succeed in the cryptographic sense, it is not good en

for our purposes. Replayed messages waste time, bandwidth, and computational pow

further guard against reply attacks (as well as more general attacks) we implem

method of blacklisting to limit messages in the system (see section 4.7.1).

Anonymous Channels

The anonymous channel was largest unspecified component. There are a num

anonymous remailers currently in use throughout the internet. [Anon] Many of these c

have been the basis for our channel. In the end, the approach we took is different

most, because we can make certain assumptions about the messages being transfe

optimize our channel for it. Namely:

1. There is one message per voter.

2. The flow of information is unidirectional, meaning no information about the

sender’s address needs to be saved for a reply message.

3. Messages are all approximately the same size.

4. All messages are sent during a relatively short, fixed time span.
30

r

by

ter to

voter

eys,

key

mitted

to the

an-

the

ounter.

oter to

, as a

h its

mitted

s to

from
5. Messages need only be received by the deadline, there are no chronological o

other ordering requirements.

With this in mind, our anonymous channel uses a single server which works

employing secure connections. Specifically, we layer a secure connection from the vo

the anonymizer on top of a secure connection from the voter to the counter. The

applet will take the signed object, and encrypt it, along with the plaintext vote, hash k

and a MAC, using a Blowfish session key. The applet will then encrypt the session

with the counter’s public key. These two encrypted items become the message trans

in the secure connection to the anonymizer, layered on top of this secure connection

counter.

The anonymizer will, up until the voting deadline, receive votes encrypted in this m

ner. It will store these votes without any information about their origin. Shortly after

deadline, the server will scramble these votes and send them on, en masse, to the c

Consequently, no timing analysis can be performed to correlate messages from the v

the anonymizer, with those from the anonymizer to the counter.

Serialization

All objects are passed through communication channels in serialized form, that is

string of bytes. Any object can be serialized. The structure of the object, along wit

data is recorded using special demarcation bytes. The object can then easily be trans

and deserialized on the other end of the channel. [Cor97]

3.2.3 Key Distribution

Key distribution is a traditional problem in cryptography. How can parties send key

one another and be certain the key is valid? How can we prevent a man in the middle

switching keys during transmission?
31

. The

sys-

each

servers

oting

he

vers (or

vious

were

t the

be

unter

nown

the

rivate

riate

auto-

also

r the

exam-
The solution is to use a secure channel employed specifically for this purpose

design and implementation of this secondary channel is left to the user of the E-Vox

tem.

Included in the E-Vox package is a RSA key generator. Before an election is run,

server must generate its own keyset. The public keys are then exchanged between

in whatever manner is deemed appropriate. At start-up, all servers, as well as the v

applet, will have all the keys, including its own, “hardcoded” (i.e. written explicitly in t

code). By exchanged, we mean passed through a secure channel set up by the ser

their human overseers) beforehand. This could involve trusted couriers, or a pre

meeting at which IDs were confirmed and cryptosystems to allow this exchange

composed and distributed. While a corrupt server could distribute incorrect keys a

outset, it would be immediately detected once the voting commences.

3.2.4 Error Detection and Response

The process outlined in Fujioka et al. does allow certain types of voting fraud to

found somewhat early in the protocol. For example, if, after the second stage, the co

had received more committed votes than the administrator had signed, it would be k

before all the votes are opened and counted.

Unfortunately, with our modification, such errors will not be discovered until after

election is over. It also suggests that the voter, who we presume may vote from a p

workstation, must make the effort to diagnose the error and report it to the approp

authority. The code for the applet and servers recognizes different types of errors and

matically sends complaints to the commissioner server, which logs them. Servers

keep their own error logs in case communications are problematic.

The commissioner server itself is ultimately overseen by humans. During and afte

election, they must make decisions about appropriate responses to complaints. For
32

h to

if one

good

hoose
ple, if half the voters claim an invalid signature from an administrator, they may wis

shut down and investigate the administrator server immediately. On the other hand,

of a thousand voters claims the administrator server refused his connection for no

reason, a noisy connection might have been the culprit and the commissioners may c

to ignore the isolated incident.

3.3 The Revised Voting Protocol

Our specific steps are as follows (displayed in Figure 3.2)

1. The voter selects his candidates and commits to this ballot using HMAC-SHA

(requiring two commitment keys).

2. This committed ballot is then blinded by the voter and sent to the administrator,

along with the voter’s name and password, using a secure connection.

3. The administrator verifies the right of the voter to vote, and the validity of his

password. The administrator then signs the committed, blinded ballot, return-

ing this signed ballot to the voter. (After the deadline, the administrator pub-

lishes a list of voter names, blinded ballots, and their signatures.)

4. The voter verifies the administrator’s signature and then unblinds the ballot.

5. The signed, committed ballots, along with the (unsigned) committed ballot, the

plaintext and commitment keys, are then sent to the anonymous server, using

the two layered secure connection (with the counter server).
33

-

6. All votes received by the anonymous server before the deadline are then ran-

domly reordered and forwarded, en masse, to the counter just after the dead

line. (The anonymous server publishes a list, in the scrambled order, of

messages it sent to the counter).

7. The counter confirms the administrators’ signatures, and tallies the votes. The

counter publishes a list containing the plaintext ballot, commitment keys, com-

mitted vote and signed vote.
34

Figure 3.2:E-Vox Process Chart

VOTER APPLET

Name
Password

COUNTER

ANONYMIZER

ADMINISTRATOR

Registration Files

E
{I

D
, p

as
sw

or
d,

 b
lin

de
d

(c
om

m
itt

ed
)

vo
te

}

E
{s

ig
ne

d,
 b

lin
de

d
(c

om
m

itt
ed

)
vo

te
}

E
{signed (com

m
itted) vote, plaintext vote,

com
m

itted vote, com
m

itm
ent keys}

E
{O

K
}

E{signed (committed) vote,
plaintext vote, committed
vote, commitment keys},

E{OK}

1

7

6

5

4

3

2

35

ntains

cifi-

om-

tures.

rd,

, the

the

itted)

, and

hould

cre-

m the

sed to

is a

mitted

cy is

ances

com-

s not

pted

ion key

o the
The voter selects candidates in all the races and creates a vote object, which co

the ballot with his choices. This ballot is then committed using a hash function. Spe

cally, HMAC-SHA, requiring two keys, is used. This hash, in addition to acting as a c

mitment, allows for smaller, and in our case, constant size, messages requiring signa

This hash is then blinded and sent to the administrator to be signed.

The administrator verifies the right of the voter to vote, the validity of his passwo

and checks to see if he has voted before. If the voter is confirmed as eligible to vote

administrator and signs the committed, blinded ballot, returning this signed ballot to

applet. After the deadline, the administrator publishes the voter’s name, his (comm

blinded vote, and the administrator’s signature of it.

Upon receipt of the signed vote, the applet verifies the administrator’s signature

then unblinds the signed object. The signature, because of the blinding properties, s

still be valid for the committed (but no longer blinded) vote. A secure connection is

ated by the applet to the counter. Layered on top of this is a secure connection fro

applet to the anonymous server. The applet then sends the plaintext vote, the keys u

commit, the committed vote, and the signed committed vote to the anonymizer. This

bit redundant, because the plaintext and keys can be used to reconstruct the com

vote which can be compared with the signed committed vote. However this redundan

useful as an extra check, especially by suspicious humans, against errors.

Note that the anonymizer and counter both send replies. Under normal circumst

they will each send an OK message. If something is awry, either server can send a

plaint notice back to the sender. This reply is not required by the protocol, and so i

explicitly listed in it. However, the replies are a useful safety check. The reply is encry

using the session key chosen by the sender. Recall from section 3.2.2 that the sess

is encrypted with the recipients public key during the transmission from the sender t
36

e ses-

ut its

annel,

nter’s

ple-

hat it

e ano-

ame,

s, the

s, the

llies).

gna-

ct.

. et

.

receiver. Only the intended receiver should be able to decrypt the message to get th

sion key to create the correctly encrypted reply.

The anonymizer saves each vote in a separate file, without any information abo

origin. After the deadline passes, the anonymizer sends the votes using a regular ch

in a random order, to the counter. Note that the votes are still encrypted with the cou

public key because the lower layer of the secure connection is still in place. Upon com

tion of the transmission to the counter, the anonymous server publishes a list of w

sent. The list is published using the same random ordering that was used to creat

nymity when forwarding the votes to the counter.

The counter first removes duplicate votes. By duplicate, we mean every bit is the s

including the session keys and message encrypted with them. Having done thi

counter confirms all administrator signatures, and lists: the committed signed vote

committed votes, the keys used to commit, and plaintext votes (as well as the final ta

All lists are published after the election deadline. Anyone can confirm that the si

tures are valid, that no extra votes were added by a server, and that the tally is corre

3.4 Proof of Correctness of the Revised Protocol

Because this system is only a slight modification of the protocol listed in Fujioka

al., our proofs are based on those from the paper.

Theorem 1 (Security):

No voter or external party can prevent the election or maliciously alter the results
37

gain

ause

ies, no

rties

arge

ients,

en the

ing

d to a

lded

egis-

ts the

er to

etects

t be

s per

ost to

orem
Sketch of Proof:

First we examine the problem cryptographically. A simple eavesdropper cannot

any information because everything is encrypted by Blowfish or RSA. Note that bec

they are randomly generated and used for a single communication between two part

Blowfish session key is intentionally used more than once by party involved (two pa

could independently generate the same key, but this is unlikely given sufficiently l

keys). A man-in-the-middle attack is prevented because the public keys of the recip

which are known ahead of time, are used to effectively encrypt all messages.

If the message is intercepted during transmission, it cannot be altered because th

MAC will not be valid. If instead the interceptor simply blocks the receiver from gett

the message, the communication channel will timeout and the sender will be alerte

problem. (Note that this is the best we can do in the real world as well. If someone we

shut the doors to the polling station, voters could not vote then, either.)

From the standpoint of the physical system, a voter can do one of two things. A r

tered voter can send a bad or partial vote (e.g. no keys to uncommit). This only hur

voter and prevents him from exercising his franchise. The other option is for a vot

send repeated votes (or external party to send garbage). In theory, the counter d

repeated ballots and discards them (as well as any invalid ballots), so they will no

counted more than once. In practice, to maintain efficiency, the number of connection

host are limited (see section 4.7.1), so the voter would have to move the vote from h

host to send a large number of message, greatly slowing down the attack.

(Repeated voting by a registered voter with a signed vote is also addressed in The

3.)
38

ecific

The

nnot

ause

ring

sig-

s the

ded

er re-

can

annot

sees

tion.

se it

ised.
Theorem 2 (Privacy):

Only if the counter and the anonymizer conspire can privacy be broken. [Note this vio-

lates our assumption of non-collusion.]

Sketch of Proof:

The blinded ballot given to the administrator server cannot be correlated to a sp

plaintext vote, committed vote, or (administrator) signed vote sent to the counter.

administrator and counter together, along with all their published information, ca

break the privacy. Any external party would have exactly the same information bec

the lists are public.

When claiming an error occurred, privacy may be maintained. Given a problem du

execution of the protocol, the voter has the following recourse. If the administrator’s

nature is invalid, the voter can show the blinded vote and its signature. (We addres

problem of an administrator switching votes on the voter in section 6.2.4.) The blin

vote cannot be matched to the same committed vote, blinded differently when the vot

initiates the protocol. If the vote is “lost” before or during the counting stage, the voter

show those values in this case, too. Again, the blinded vote (as well as its signature) c

be traced to any other value shown.

If the anonymous server is corrupt, by itself, it can do nothing. The votes that it

are encrypted with the counter’s public key in the lower layer of the secure connec

Only if the anonymous channel is broken, that is, it is no longer anonymous becau

reveals information about the origin of votes to the counter, can privacy be comprom

However this violates our assumption.
39

n the

will

allot,

mp-

person

igna-

lates

two

ioner

izer
Theorem 3 (Unreusability):

Assume that no voter can break the commitment or blind signature scheme. The

voter cannot reuse the right to vote.

Sketch of Proof:

The first vote signed by the administrator for that voter is valid. The administrator

not sign another vote given to it by the voter. The voter must change the committed b

while still keeping the signature valid, which it cannot do by our cryptographic assu

tions.

Theorem 4 (Eligibility):

Assume no one can break the blinded signature scheme. Then a nonregistered

cannot vote.

Sketch of Proof:

For a nonregistered person to vote, he must be able to forge the administrator’s s

ture, since the administrator will never accept one of his votes for signature. This vio

our cryptographic assumption.

Theorem 5 (Recoverability):

Assuming that a voter will never lose his ballot in the process, and given that no

parties collude, a vote dropped by any party can be recovered.

Sketch of Proof:

If the counter drops a vote, the anonymous server can give its list to the commiss

who will then have the counter decrypt them and find the missing vote. If the anonym
40

ps it

f the

par-

er will

r and
drops a vote, the voter can show his signed, blinded vote. If the administrator dro

(which is equivalent to refusing to sign it), the voter complains to the commissioner. I

administrator did sign it, it can show the signed vote to the commissioner.

Note that although we can recover a lost vote, we cannot determine which of two

ties lost the vote. This issue is addressed in section 6.3. The assumption that the vot

not purposely lose his vote is discussed in section 6.2.1. A malicious administrato

forged voting is analyzed in section 6.2.4.
41

the

secu-

shing

ndom

It

om-

, we

and

for

d pro-

ithms

rmed

must

ngth

spe-

then
Chapter 4

Components

4.1 Cryptographic Library

When this project began, the JDK1.0 was available. During its progression,

JDK1.1 was released in various beta forms, and then in its final version. In terms of

rity, JDK1.1 provides much more support than its predecessor. It includes basic ha

functions, as well as key generation, support for arbitrarily large numbers, pseudo-ra

number generation, and object (including applet) signing.Note: At this time, most web

browsers do not yet support JDK1.1, but are expected to in the near future.

The cryptographic library packaged with E-Vox is relatively straightforward.

includes a class/interface hierarchy for keys, encryption, decryption, blinding, and c

mitting. The library can easily be further extended both vertically and horizontally.

While Fujioka et al. does not call for any particular cryptographic class to be used

have implemented the necessary functions in RSA, SHA-1 (referred to as SHA),

Blowfish. Our motivation for RSA was due to both RSA’s simplicity, and out of respect

the author’s thesis supervisor. SHA was chosen because it is the NIST standard an

vided by the JDK1.1. Blowfish was chosen because it is faster than most other algor

in its family (although to our knowledge, no comparative speed tests have been perfo

in Java). However, this speed is partially offset by the large number of subkeys which

be precomputed before encryption/decryption. Also Blowfish allows for a variable le

key up to 448 bits.

The base algorithms have been implemented as follows. An object to perform a

cific type of function is constructed with the appropriate input. This object’s methods
42

r a

done

wfish).

verted

ny

eys.

s pre-

it

ctual

s

d.

(e.g. a

it on

mple,
perform the actual computations. For instance, we might create an RsaEncryptionobject

calledmyRsausing anRsaKeyobject, some subset of keys (say just the public keys), o

seed from which to generate keys. To encrypt a message, we would then perform

RsaEncryption myRsa = new RsaEncryption(seed);

cyphertext = myRsa.encrypt(message);

At this level, all objects passed into, and returned from the objects’ methods, are

so as byte arrays. The decision to use byte arrays instead ofBigIntegerswas made because

the former are more general (easier to concatenate and use in functions such as Blo

However, all of the mathematical computations are done after the input has been con

into aBigInteger.

The hashing is specifically HMAC-SHA. The HMAC requirements do not add a

extra load on the system, as the HMAC keys simply replace the commitment k

Because we are signing the SHA of a vote, rather than the vote object itself, the size i

determined and therefore not too unwieldy to use in our algorithms.

4.2 Vote Object

At the heart of the protocol is theVoteitself, a Java class. This object contains within

fields for the various stages the ballot goes through. This includes a field to hold the a

candidate selections (wrapped in anChoiceobject built for this purpose), as well as field

to hold the value of theChoiceobject when committed, blinded, signed, and unblinde

The object also has methods to perform those functions, given the appropriate tools

signing method which takes anRsaKey object as input).

Code using the object will set the appropriate fields, serialize the Vote, and send

to another party. We may, however, still need some of the original data later. For exa
43

ed to

f the

nistra-

and-

his is

ontain
the voter will set both the committed and blinded fields, in addition to theChoiceobject.

The administrator, on the other hand, only needs, and, in fact, should only be allow

see, the values in the committed-and-blinded field. The solution is to make a copy o

object, clear the fields the administrator should not see, and send that on to the admi

tor server. The administrator sends back this object with an additional field, blinded-

signed, filled in. This new field from the administrator’sVoteobject, is then copied back

into the originalVoteobject created by the applet. In this manner theVoteobject is passed

from one party to the next throughout the protocol.

4.3 GenRand, the Random Number Generator

For key generation throughout the protocol, we need a source of random bits. T

achieved by the GenRand object. The various components (servers and applet) all c

an object of this type.

Figure 4.1:GenRand dialog box
44

ialog

use

ytes

ts of a

s are

quent

the

erializ-

able.

ones

Both

ectly

ction

mber,

be

ey is

rypted
Just after construction, a GenRand object will be seeded. When this occurs, a d

box will pop up (Figure 4.1) and the user will be asked to randomly move the mo

around in the window. A bar across the middle of the object indicates how many b

have been recorded.

The mouse positions are tracked as the mouse is moved. Each position consis

32-bit x, and 32-bit y, coordinate. Those are cast to 8 bit bytes (that is, the higher bit

removed). These bytes are then hashed using SHA to create a seed for Java’sSecureRan-

dom object, a pseudo random number generator provided by the JDK. Subse

(pseudo) random bits are generated by this Java object.

4.4 Network Connections

Java provides basic networking functionality (i.e. the java.net API). This includes

ability to create sockets and send object streams through them. Objects are also s

ible, that is, transformable to and from byte arrays, which are more readily transfer

On top of this we have added our own protocols to allow for secure connections,

which do not require the use of a SSL connection.

We offer two types of connections, simple connections and secure connections.

are used in the protocol, though mostly the latter. A simple connection is provided dir

by the JDK. A secure connection then adds a cryptographic layer on top of it (see se

3.2.2).

Specifically, a secure connection is created using the server address and port nu

the RSA keys of the receiver (again, a different family of encryption functions can

used), and aGenRandobject.

Using GenRand, we create a Blowfish session key of a specified length. This k

used to encrypt the serialized object we are sending. The session key is then enc
45

ssion-

tion

the

the

ost

e bal-

ndom-

cre-

listed

re con-

, and

key

lay-

a Bob

ey are

ob’s

d with

ssary

p of a
using the receiver’s public key and also sent to the receiver, who can decrypt the se

key, and then decrypt the message.

The Blowfish encrypted message also carries with it a MAC (Message Authentica

Code). This is used to confirm the integrity of the bit stream. The MAC itself is simply

HMAC-SHA of the plaintext message, and two random keys, which are also sent in

communication. Normally, a simple single hash is sufficient, i.e. SHA. Assuming m

people will vote for candidates on the ticket, there are a rather small number possibl

lots, and consequently, a small number of possible messages. The keys add some ra

ness to the messages to reduce their similarities.

Secure connections can be “layered” an arbitrary number of times. That is we can

ate a secure connection, which consists of cyphertext and an encrypted key, as

above, and then take that pair as a new message, which is sent using another secu

nection.

Note that there is no handshaking in this protocol. The sender encrypts everything

sends it without requiring any work on the part of the recipient. (The recipient’s public

is known by the sender ahead of time.) The result is that we allow for middle men in

ered, multi-party secure connections. That is, Alice can send a message to Carol vi

in such a way that 1) Bob cannot see the messages being sent because the th

encrypted with Carol’s public key during transmission, and 2) Carol cannot match B

incoming and outgoing messages with each other, because the former are encrypte

Bob’s public key, whereas the latter are not. This type of layered connection is nece

for creating the anonymous channel. If desired, handshaking can be added on to

layer used by any two parties in “direct” connection.
46

ng eli-

. This

vote

files

trator

bject

ct is

The

n. For

box

own
4.5 Registrar

There needs to be some person or persons who ultimately confirms people as bei

gible to vote. Those that are eligible can then register using the registration program

simply records each voter’s information - unique ID (e.g. name), password, status of

(“Has the person voted yet?” initially false) - in a file named as the unique ID. These

are given to the administrator server. The status field is marked true by the adminis

during the signing process, to prevent repeated voting by a single person.

4.6 Election Builder

There is an application which allows users to create an Election Object. This o

contains the “list” of questions and possible answers (including write-ins). The obje

used by both the applet and counter in performing their duties.

The election builder creates an Election Object within a file specified by the user.

user can select the number of questions, and the number of choices for each questio

any question write-ins may or may not be allowed. The program pops up a dialog

which runs through a series of “cards,” prompting the user for input. Two cards are sh

in Figures 4.2 and 4.3.
47

Figure 4.2:Election Builder Questions Card

Figure 4.3:Election Builder Answer Card for Question Number 2
48

her-

rs are

at the

ction

e nor
4.7 Servers

4.7.1 Server Interface

All servers have some basic functionality in common. This is a Java interface, in

ited by all servers, which defines their general properties.

Figure 4.4:Server Interface

Figure 4.4 shows a typical server, in this case the commissioner server. All serve

window based. The top box indicates its status, currently “Server running.” We see th

server runs two threads, one of which, thread number two, is busy taking a conne

from the localhost. There are currently no connection requests waiting on the queu

are there any blacklisted IP addresses (see below).
49

menu

an-

dress.

ption

rvers

n all

ogram

gus

vote.

ede

er, an

m that

with,

sys-

nals

s may

opri-

ster

be a

l and

ublic

es. To

lace
Information on the threads and blacklisted addresses can be viewed using the

bar at the top of the window. Thread information might include a list of connections it h

dled. Blacklisted Addresses could contain a record of all attempts made from an ad

At this time, we do not store either of those records. However, there is currently an o

to remove an address from the blacklist.

All servers support both secure and regular connections. One attack to which se

are vulnerable is flooding. That is, the members a group wishing to disrupt the electio

sit down at terminals and keep requesting connections to the servers (or have an pr

to do this for them). Every thread will repeatedly waste time dealing with these bo

requests, similar to anarchists who keep walking into a polling station and asking to

If 10,000 people continually did this at a single polling station, they would greatly imp

the system from performing.

To protect against this sort of attack, after a set number of connections to a serv

IP address is blacklisted, an idea first suggested by Ben Adida, and connections fro

IP address will no longer be accepted. While a request to connect must still be dealt

it is blocked at a lower level, requiring less of the server’s time. Larger, more complex

tems, may require a more complex blacklist. For instance, certain “public” termi

(defined as having more than one possible user) such as those at libraries or college

be allowed many more requests than a private PC at a home or office. Still, with appr

ate numbers for apportioning voting districts, the number of public terminals per clu

(e.g. building), and the number of connections before being cut off, this should not

problem, unless early one morning the attackers run around from terminal to termina

blacklist every physically local IP address. It is reasonable to assume, however, that p

terminals are monitored to some extent, and the attackers cannot access private on

this end, districts can set up special computer polling stations, which would simply rep
50

their

s an

ntry.

s up

n a

on

ner.

unica-

cast

rs

bove.

erver
the current mechanical booths and paper ballot boxes. (People could still vote using

private PC, of course.)

.

Figure 4.5:Sample Log (from the Administrator)

All servers maintain a log file. There are two types of entries to this log. The first i

entry which will eventually published, as per the protocol. The second is an error e

Figure 4.5 shows the record log of the administrator. Double clicking on an entry pop

another window with the specific information about the entry. In this case, clicking o

name would bring up a window with the blinded vote and its signature. Double clicking

the “warning” entry would give a description of the complaint sent to the commissio

The errors are recorded because a well-prepared attacker might cut off the comm

tions lines to the commissioner (or the commissioner might be corrupt).

The values to be published (e.g. committed vote) are all simply byte arrays. We

these objects intoBigIntegers to display them. Part of the first of the two numbe

recorded by the administrator can be seen is the main window shown in the figure a

Finally, all servers will have their keys generated beforehand. On start-up, each s

will have its key set, and all public keys of other servers hardcoded within them.
51

and

sts it

curely

same

h will

pass-

oted.

n han-

. At

sent,
4.7.2 Administrator Server

The administrator server is responsible for verifying the voter’s right to vote,

authenticating the ballot. It must sign at most one vote per legitimate voter who reque

to do so.

The server has access to all the registration files, which need to have been se

transferred to it ahead of time. (One option is to run the administrator server on the

machine used for registration.) The server runs a number of threads, each of whic

respond to secure connection request from a voter applet, confirm the voter ID and

word, and sign the committed, blinded vote, and then marks the voter as having v

There is also a queue of finite size should the server receive more requests than it ca

dle. A voter applet trying to connect to the server when the queue is full will be refused

this point, a complaint may be sent to the commissioner (if enough complaints are

the commissioner may suspect foul play and investigate.)

The protocol should work as follows:

Figure 4.6:Voter-Administrator Communications

Voter Administrator
Es{blinded vote, ID, password, MAC}, Epk-A{S}

Confirms
signature.

Confirms the ID
and password,
and signs the vote.

Es{signed (blinded) vote, MAC}
Marks voter as
having voted.
52

r.

rtain

oter

to try

ween

mid-

pe of

fic on

mous

ous

ut not

nfor-

them

ithout

y dif-

et cre-

so the

sed

using

Fig-
Here S is the Blowfish session key and pk-A is the public key of the administrato

If the administrator finds that the message is not valid (e.g. bad MAC, missing ce

components, the voter is not listed, incorrect password), it will inform both the v

applet and the commissioner server of the problem. The voter/applet may decide

again, give up, and/or complain to the commissioner.

4.7.3 Anonymous Server

Fujioka et al. calls for an anonymous channel. This is one of the largest gaps bet

theory and practice. A few simple anonymous channels were considered in which a

dle man strips off the headers. Prof. Rivest noted that they all suffer from the same ty

timing attack. Namely, eavesdroppers can record the times and sizes of network traf

both sides of the channel.

Our approach was to use an anonymous server, somewhat similar to an anony

remailer. The high-level model is as follows. The voter applets connect to the anonym

server (aka the anonymizer), at various times, which will see their IP addresses, b

their votes. The anonymous server then strips off the headers, with their identifying i

mation, and just after the voting deadline, randomly re-orders the votes, and sends

off, en masse, to the counter at a specified time. The counter sees only the votes, w

knowing their point of origin.

Connections are handled much like they are by the administrator server. The onl

ference is in the message itself, what gets sent, and how it is handled. The voter appl

ates a secure connection with the counter (remember, there is no handshaking,

applet can initiate this protocol with no interaction from the counter). Two object are u

in the secure connection to the counter, the message, keys, and MAC, all encrypted

Blowfish, and the Blowfish session key encrypted with the counters public key (as in
53

a sec-

applet

g this

rds the

riate

h two

ony-

nony-

arlier

ld be

er

voters

e the

er has

ned

d just

te-in

 6.3.2)
ure 3.1). Together, these two objects become the new message, and are wrapped in

ond layer of secure connection. This outer layer is used as a connection between the

and the anonymous server. The vote is then sent to the anonymizer. Upon receivin

message, the anonymizer strips off the outer layer (as well as the headers) and reco

vote, which is still encrypted so that only the counter can see it, in a file. At the approp

time, the anonymizer reorders all votes and sends them on to the counter.

Suppose we did not double encrypt the message from the voter to the counter wit

layers of secure connection. Suppose the outer layer were left off. Although the an

mous server prevents timing attacks, anyone (especially the counter) tapping the a

mous server’s communication lines could defeat the scrambling, because the e

message will include unencrypted header info, and the body of the message cou

matched against the server’s outgoing messages.

Looking at it the other way, if we left off the inner layer of encryption, the anonymiz

would see the plaintext votes. Knowing the sources of these votes, it can correlate

with votes. (This, of course, would be almost the same as having the anonymizer b

counter with no anonymous channel.)

Under the protocol listed above, the message received by the anonymous serv

been “doubly encrypted” (not in the sense of triple-DES, but rather in the one defi

above). The message sent from the anonymous server to the counter is encrypte

once. The only variation in vote size at this stage comes from the length of the wri

names (if any). Traffic analysis attacks and their prevention are discussed in section
54

cond

4.7

r. When

ent”

n be

ives

been
.

Figure 4.7:Anonymous Server Record Window

In addition to the server interface listed in section 4.7.1, the anonymizer has a se

window. This window lists the status of the votes. The Anonymizer shown in Figure

shows that one vote has been received, and none have been sent on to the counte

the deadline passes, the votes will be sent to port 6666 on ibis.lcs.mit.edu. If “Votes S

does not match “Votes Received” after they have all been sent off, the log file ca

checked to find the votes that were not sent.

4.7.4 Counter Server

The counter server is relatively simple. At one or more designated times, it rece

encrypted votes from the anonymous channel. As noted above, the votes have
55

ublic

the

f the

tally,

com-

itted

ion-

their
encrypted with a session key, and this session key is encrypted with the counter’s p

key.

Upon decryption, the counter will confirm that each vote has a valid signature from

administrator. Moreover, it checks that the committed vote matches the commitment o

keys and plaintext vote. Any discrepancies cause the vote to be excluded from the

and are reported to the commissioner. The counter publishes the plaintext vote, the

mitment keys, the committed vote, and the administrator’s signature of the comm

vote.

The votes are then tallied. Any voter can confirm that his vote is on the list. Addit

ally a voter, or any other party, can confirm that all votes there are valid (by checking

hashes and signatures) and counted correctly.

Figure 4.8:Counter List (Vote 3 of 5 selected)
56

with

a

ion

ig-

ment

was

ted,

the

dow

not

but
Figure 4.8 shows the counter’s listing of votes. Each vote number is listed along

the byte arrays (cast toBigIntegers) which are the vote. This interface works exactly like

log file, such that double clicking on a vote will bring up a window recording informat

for that specific ballot, as shown in Figure 4.9.

Figure 4.9:Vote Number 3, Question 2

Note that in the figures above, not all information is listed in the windows. That is, F

ure 4.8 did not list the committed, signed and plaintext vote, as well as the commit

keys. Nor are those numbers explicitly given in the window shown in Figure 4.9. This

done only for the sake of clarity and could certainly be included in the display.

A typical way in which an interface like this may be used is for the votes to be lis

having been sorted by the number which is the commitment of the vote. Clicking on

actual vote listing would perform a consistency check and, if it passed, pop up the win

above.

Finally, a tally is generated by clicking the “count” button on the server’s vote list (

shown). When clicked it will open another window, which looks like a specific vote,
57

are
with the final tallies and all write-ins displayed. The tallies for our sample election

shown in figures 4.10 and 4.11.

Figure 4.10:Question 1 Final Tally

Figure 4.11:Question 2 Final Tally
58

cess.

t for

the
Figure 4.12:Vote 3, Question 2

4.7.5 Commissioner

The commissioner is the party responsible for overseeing the entire election pro

The commissioner’s job is generally a passive one. Most of the time, it will sit and wai

complaints. The following is a list of possible complaints. Listed in parenthesis are

party or parties who would send such a message.

1. Connection Error (Any)

2. Bad MAC (Any)

3. Bad Message Format (Any)

4. No Keys to Uncommit (Counter)

5. Voter Not Registered (Administrator)

6. Invalid Password (Administrator)

7. Vote Already Signed (Administrator)

8. Vote Already Committed (Voter)
59

mis-

this

from

n sort

t it.

pass-
9. Vote Already Uncommitted (Counter)

10. Bad Signature (Voter)

11. File Error (Any Server)

12. Math Error, when performing cryptographic calculations (Any)

13. Unknown Error, used when no other case applies (Any)

14. Vote Received after the Deadline (Anonymizer)

15. Voter Already Voted (Administrator)

Anytime one of the above cases occurs, one or both parties will contact the com

sioner (via a secure connection) and note the problem, parties involved, and time

occurred (i.e. time complaint was sent). The commissioner will note the time, and

whom the complaint was received (IP address). A commission of humans can the

through the complaints and take appropriate action.

Figure 4.13:Commissioner’s Complaint Log

As with all logs, double clicking on an entry gives more detailed information abou

For example, suppose someone tried to vote in Randy’s place, but did not know his
60

ator

ut did

M on

ali-

s like

not

t all

mis-

e who

ner’s
word. In this example, the error log of which is shown in Figure 4.14, the administr

complained to the commissioner that someone using Randy’s name tried to vote b

not provide a valid password. The attempt was made from the localhost at 11:52 P

May 23. (Note: unfortunately, typos made by legitimate votes will be considered m

cious attempts. It is up to the human commissioners to use their judgement in case

this.)

Figure 4.14:Complaint Number 3. Someone tried to vote in Randy’s name, but did
know the password.

Finally, the commissioner must check the record of each server to confirms tha

votes passed from one stage to the next, and votes were neither added nor lost.

A server is given to automate the complaint process. However, most of the com

sioner’s job depends very much on the specific instance of an election, and how thos

are running it wish to handle such complaints. Consequently, the commissio

responses to complaints have been left unspecified.
61

that

applet

ve file

let fea-

e), so

only.

ropri-

very-

uld

t to

, and

nfor-

d in

word.

that

let is

rified,

rmed to

seen
4.8 Voting Applet

The voting applet is the program used by the voter. It is run using a web browser

supports Java. Browsers give different classes of applets different permissions. This

needs permission to open connections to multiple addresses, and ideally should ha

accesses, too (see below). The best way to achieve this is to use the JDK signed app

ture, to allow safe downloading of the appropriate applet (and not some trojan hors

the granted functionality won’t be abused, and can be limited to this trusted applet

Unfortunately, JDK1.1 only partially supports this feature andapplet signing is not yet

available (but expected shortly).

Once the applet has been downloaded, the voter simply needs to click on the app

ate choices, enter his name and password and click on the “Vote” button. After that e

thing should be done automatically, including the filing of most complaints, sho

something go awry. At the end of the applet’s execution, it will print the voter’s receip

the screen, which includes his committed vote, blinded vote, signed blinded vote

signed unblinded vote, as well as any complaints.

If the applet has access to the local file system, it could be extended to write this i

mation (and any complaints) to a file. Taking this idea further, it could be made to rea

the voter’s personal registration file so the user would not need to remember a pass

The voter could get a copy of his registration file on disk when he registers and upload

in an appropriate place in the local file system for the applet to use.

Of course, automating the applet in this way is dangerous. However, if the app

signed, there should be no problem. The applet byte codes can be downloaded, ve

and then reverse-compiled to generate the source code. The code can then be confi

be innocuous. Or, more mundanely, the source code could be widely distributed, and
62

th the

elds

). The

lists the

ut and

ything
to be safe. Then anyone wishing to do so can compile the code, and compare it wi

signed applet byte code.

Figure 4.15:Sample Applet

This is just one of many possible layouts of the applet interface. In this case, two fi

are used to take in the voters name and password (which is not displayed in the clear

messages text area reports the status of the vote as it is processed. The receipt field

appropriate numbers. If the applet cannot access the filesystem, the user must c

paste the numbers to record them. The third box is used for error messages. If an
63

oter.
goes wrong during the execution of the protocol, it will be reported here to alert the v

Finally, at the bottom of the applet is the ballot.
64

e was

sted

other

secu-

um-
Chapter 5

Testing
This project has been tested on small elections. It ran and worked fine when ther

no foul play. By altering our code and/or physically manipulating the data files, we te

the following cases, alone and in combination.

1. Voters tried to vote repeatedly.

2. Unregistered voters tried to vote.

3. Bad passwords were used.

4. The administrator gave invalid signatures.

5. Votes were lost by the anonymous server.

6. Votes were lost by the counter.

7. Duplicate votes were given to the counter.

8. Invalid votes were given to the counter.

9. The administrator shut down before scheduled.

10. The anonymizer shut down before scheduled.

11. The counter shut down before scheduled.

12. The commissioner shut down before scheduled.

In all cases tested, the code followed the protocol and worked correctly.

It should be noted however, that security problems are a negative goal. Where

programs can show they achieved something, we cannot conclusively demonstrate

rity short of testing every possible input combination (e.g. different ballots, different n
65

es,

cation

rther

ses.

e did

be

, not

annot

tch a

all

ondi-

the

local-

t was

.

ber of voters, different voters trying different attacks in different orders at different tim

etc.).

We do believe we have tried a reasonable set of test vectors to give us some indi

of the security of the system, in addition to our own analysis of the code. However, fu

testing and tuning is necessary before the system can be used for meaningful purpo

We were unable to test transmission errors (say, due to “corrupted wires”), as w

not have the hardware available. However we believe the protocol will hold work.

We did not explicitly “test” cases in which the various servers “lied” and needed to

caught. We skipped this family of tests for two reasons. First, this is an issue of policy

cryptography. Second, in most cases with a single server, the cheating party itself c

be uniquely determined (see section 6.3), only the error corrected. To actually ca

party, multiple servers are needed. Although we did not “test” this case, we confirm

data is printed correctly and so the votes can be recovered.

Perhaps most importantly, the testing was not performed under true operating c

tions. Resource limitations allowed us only one machine on which to work. During

election, all servers, as well as the applets, were run on the same host (this is why “

host” is listed as the machine address in many of the figures). Additionally, the apple

run under the JDK1.1 appletviewer because currently no browsers support Java 1.1

Further testing is recommended and planned.
66

m-

ns to

ing,

no

ction

uld

y edit-

ill do

ould

n the

stem,

di-

bula-

dun-

ystem,

bles
Chapter 6

Limitations, Their Solutions, and Further Extensions
The system is still in its infancy. E-Vox is currently a working prototype of what pro

ises to be a tremendous tool for democracy. Currently, there are a number of limitatio

E-Vox. Fortunately all of them can be solved without too much effort by more cod

internet advances, and policy choices.

6.1 Code Improvements

6.1.1 Election Instantiation

The first type of limitation suffered by E-Vox is the naivete of the code. There are

macro programs by which to set up the system. The only automated part is the ele

builder, allowing us to substitute different ballots in different elections. Ideally, we wo

like to automate more of the code. The parameters (e.g. key size) can only be set b

ing a specific file, whereas in the future we hope to have a master program which w

this for us. The same is true for the specific encryption protocols (the library itself sh

certainly be expanded). Even the counting, as it stands, is done by explicit code i

counter server. The system cannot currently support, say, a preferential balloting sy

without a nontrivial effort. It could, but the low level code itself would need to be mo

fied, as opposed to being able to select a back-end counting plug-in from a pool of ta

tion plug-ins.

The master program, would ask for all system parameters, including key sizes, re

dancy among servers and architecture layout, server addresses, ballot, tallying s

cryptographic building blocks, and deadlines. It would then set all system wide varia
67

inde-

eci-

logical

dline

viewed

ts of

is a

cov-

to an

rob-

ceipts,

mpo-

) hash

, keys

ote

ny con-
and create the appropriate structures. At this point the server code could be moved to

pendent machines, and the public keys for the servers can be generated.

6.1.2 Public Postings

The protocol calls for public listings of the votes from various servers. Given our d

sion to use a web browser as the voting booth, a posting on a web page seems like a

continuation. A simple (scripting) program can be execute by the servers after the dea

has passed which will cause HTML pages to be created. These pages can then be

and their contents checked for validity by anyone wishing to do so.

6.2 Protocol

The E-Vox architecture, as specified in section 3.3, has a number of single poin

failure. Any of the servers can attempt to disrupt the protocol. A good example of this

problem found both in Fujioka et al. and our system. Although a lost vote can be re

ered, the corrupt party often cannot be uniquely determined. (Fujioka et al. refers

example of this as an illegal key problem.) We propose a number of solutions to this p

lem.

6.2.1 Receipts

Because every server has a RSA public key set, we can use that to create re

allowing for certified message passing. Recall that secure connections have two co

nents, a Blowfish encrypted message and an encrypted Blowfish session key.

The message Alice sends to Bob is just as before. Now, Bob takes the (unkeyed

of the contents of the first part of the communication, that is, the encrypted message

and MAC, and signs it to create a receipt, H. This receipt is then returned to Alice. N

that the receipt does not need to be encrypted, because the hashing has removed a
68

nection

ed it

is sig-

ture to

d her

ve-

sume

not

ver’s

any

ong

ld be
nection between the receipt and the message, but it can be sent using a secure con

just like any other message. If Alice’s message is lost, she can prove Bob receiv

because she can rehash it to get H, and then and show that the receipt from Bob is h

nature of H.

.

Figure 6.1:Secure Connection with a Receipt

This does, in some sense, only shift the problem. Bob can refuse to send a signa

Alice, making her think he never received the message. He can later claim he did sen

the message, but that Alice lost it in an attempt to discredit him. Still, this is an impro

ment over the previous case.

The lack of receipts may not be a significant problem. It seems reasonable to as

every voter is motivated to cast valid vote. A voter, then, would have no interest in

sending his vote. A malicious voter may wish to lose his vote, and claim it was the ser

fault in order to frame the server. However, it would take a coordinated effort among m

voters to truly cast suspicion in this manner. That is, if only one or two voters, am

thousands do this, the server will most likely be considered trustworthy and they wou

Alice Bob

Es{message, k1, k2, MAC}, Epk-B{S}

Eprivate-B{H}

Where H = Hash(message, k1, k2, MAC)
69

erver

ow-

tter of

cked

way

ity of

the

ypted

er can

wfish

tiple

pplet.

vote,

ption

e first

e bro-

econd

that

is not
suspected of foul play. If, on the other hand, a few hundred voters did this, then the s

would appear faulty. The possibility of sufficiently large conspiracy among voters, h

ever, seem unlikely. (The point at which the server does become suspected is a ma

policy.)

6.2.2 Communications as a Single Point of Failure

The system tends to put all its eggs in one basket. Ideally the vote should be lo

away in a vault (committed) and the keys to the vault should be sent separately. This

if one of the two messages is compromised, the anonymity of voter, and/or the integr

the vote, is not. By reducing the protocol to only two stages, we send the keys with

vault. This does create a single point of failure.

For example, all messages are subject to a dictionary attack. That is, the encr

messages can be recorded during the election process. Then, off-line, the attack

decrypt the first part of the secure connection message by trying every possible Blo

key to decrypt the message. This attack is hindered by the use of large keys.

We could hinder this type of attack by splitting up our message, and using mul

anonymous channels, each with its own, independent secure connection from the a

Now instead of sending the message, M, in the clear, which includes the plaintext

committed vote, and commitment keys, we encrypt it using another random encry

key, Q. Q is then sent through the second anonymizer. Breaking the encryption of th

message will only yield the attacker another encrypted message, which must then b

ken using the same computationally expensive attack of brute force. Breaking the s

message reveals even less, as it is only an encryption key to an unknown message.

Figure 5.2 shows an example of this type of distributed anonymous channel. Note

the inner secure connection, that is, the one between the applet and the counter,

shown in this diagram.
70

index

y the

arge,
Figure 6.2:Split Message Passing Through the Anonymous Channel

The two messages must somehow be paired. this is easily achieved through

numbers (also not shown in Figure 6.2). The index numbers can be generated b

applet, or by requesting a number from one of the servers. The use of sufficiently l

Applet

Anonymizer 1

E s{
E

Q
{M

},
 k

1
, k

2
, M

A
C

},
 E

pk
-A

1
{S

}

Counter

Anonymizer 2

E
s’ {Q

, k
3 , k

4 , M
A

C
}, E

pk-A
2 {S

’}

ki is a key used to

pk-Aj is the public

generate the MAC

key of anonymizer j

Note: The inner layer of
 the secure connection (to
 the counter) is not shown.
71

r the

pro-

more

d the

to an

lain-

tions

has a

cker

duced

of no

ys for

es a

d by

fore

her

.

randomly generated index numbers makes collisions unlikely in the former case (o

latter case with redundant servers).

6.2.3 Cryptographic Attacks

In general, a cryptographic attacker can do worse than just eavesdropping. Often

tocols are designed to withstand a specific type of attack. In our case, however, no

than two messages are ever known to be encrypted with the same Blowfish key. An

encrypted Blowfish keys themselves, being random, do not easily lend themselves

attack on the private keys of the servers.

There is one potential cryptographic weakness in our system, which is that the p

text messages are often partially known. Certainly the attacker can expect correla

within a vote, as people vote party lines. More to the point, the Java serialized object

well defined pattern. [Cor97] Knowing simply how the messages are laid out, the atta

knows some of the bits in the encrypted message.

As to whether this is of any use is open for debate. There are some attacks on re

round Blowfish encryptors. Schneier, the author of the encryption scheme, knows

attacks on the full 16 round implementation; he notes that there are some weak ke

Blowfish, but “they seem impossible to exploit.”

6.2.4 Administrator Voting

The administrator is the single most powerful entity. Its signature alone validat

vote. This leaves the administrator a few avenues of deceit.

First the administrator can simply create false ballots. All signed ballots are liste

the administrator with a voter’s name. However, this is not a problem. Five minutes be

the deadline, if the administrator notices Alice didn’t vote, he can create a vote in

name. If she didn’t bother to vote, she probably won’t bother to check the lists either
72

per-

dmin-

so.

lem.

gna-

ncrypt

can-

s to

regis-

s not

ends

f the

the

trator

to this

rd, the

ng is

onable

cks are

hin-
Alternatively, the administrator can create a vote in anyone’s name. If, later, that

son tries to vote, or claims the administrator cheated, the voter cannot prove it. The a

istrator can claim the voter voted before, and is simply pretending not to have done

Digital signatures alone, like those used in Fujioka et al. do not solve the prob

Because the vote is committed and blinded, it looks random. If a public key digital si

ture system like RSA is used, the administrator can create a random object, S, and e

it with the voter’s public key, e and n, to create another object, M, such that M= Se mod n.

Now it appears as though, the voter signed M. If the voter claims this is garbage and

not be uncommitted, the administrator replies that the voter simply lost they key

uncommit on purpose.

The above problem, we believe, is a fundamental one faced by any system, like

tration. There are some solutions to guard against it, though.

The first solution is “one-time passwords.” When a voter registers, his password i

recorded, but rather, the registrar records the hash of it. When voting, a voter only s

the hash of the password to the administrator who can verify it is correct. At the end o

protocol, the original password is sent to the counter, who got a list of all hashes from

registrar. The password itself is hashed and confirmed to be on the list. The adminis

cannot reverse the hashing function and so cannot find the password. An alternative

approach is to use secret sharing. [Sha79] Instead of saving the hash of the passwo

encryption of it, using a public key, can be stored. The private key used for decrypti

shared among a number of parties (perhaps in a threshold scheme) so that a reas

subset must come together in order to be able to see the actual password. Both atta

vulnerable to a dictionary attack by the registrar or administrator. This attack can be

dered with the use of salt.
73

min-

oters

n tab-

, an

pt the

work,

, is to

y given

e the

s any

ding it

tching

xtra

s all

ana-

a-

bal-

er
Finally, Davenport, et al. [Dav96] suggest a practical approach to help deter the ad

istrator form voting. If the voting is being used on a system where all the registered v

have email accounts, the commissioner can notify all voters that their votes have bee

ulated by emailing everyone on the administrator’s published list of voters. Again

abstainer may be so passive as to not care, and the administrator can try to interce

email, but this approach has the right idea in that the attacker must perform more

and the victim can recognize the attack with less work.

6.3 Architecture

Another approach to the corrupt server problem, one suggested in Fujioka et al.

create redundant systems. To guard against dropped votes, parallel servers at an

level will all (or some subset of them) get the message. If all receivers but one hav

message, the fault lies on the receiving end. On the other hand, if only one receiver ha

record of a transmission, the sender may have tried to incriminate the servers by sen

to only one. These cases rely on a “preponderance of the evidence” approach to ca

the malicious party.

6.3.1 Redundant Administrators

As noted earlier, when voters are not looking, a polling official can drop a few e

ballots in the box. This is often prevented by having members of adversarial partie

watching the ballot box together.

One possible solution to the problem of the malicious administrator is the natural

log of this. That is, provide a number of parallel administrator servers, sayn. For a vote to

be accepted by the counter, it must havet of n valid signatures, from separate administr

tors. Therefore,t of n administrators would need to be corrupt in order to create false

lots. Clearlyt must be greater thann/2 (rounded up), to prevent a voter from voting und
74

or in

ugh.

onable

). To

ld be

er and

) by

cor-

from

m a

ony-

th (it

tween

from

shed

mous

e vote
two disjoint subsets of administrators (or two subsets with one corrupt administrat

common).

This system however, is not as efficient as the original. Still, it may be good eno

Testing is recommended.

6.3.2 Anonymizer-Counter Additional Message Passing Security

The messages may be sent to the counter in any number of ways, at any reas

interval (long enough to insure a significant number of votes to have been scrambled

further avoid the above problem with differing message lengths, a block of votes cou

grouped together, and a secure connection established between the anonymiz

counter server, so that the individual votes cannot be viewed (in their encrypted form

an eavesdropper.

Of course, the counter still sees the individual votes, so this will not help against a

rupted counter which compares message lengths. The only variation in length comes

write-in votes. These are likely to be rare and not significantly different in length fro

regular ballot (one with no write-ins). Still every message from the applet, to the an

mizer, to the counter, can include padding to insure that they are all the same leng

assumes write-ins are all bound to some reasonable size). The communications be

the applet and the administrator is of a fixed size because of the hashing.

6.3.3 Redundant Anonymizers

Another potential problem is that the anonymizer could simply drop the message

the voter. Again, the lost vote would not be detected until after the election has fini

and the counter has published the results. To protect against this, multiple anony

servers can be used in parallel, such that only one needs be reliable to pass th

through the channel.
75

mes-

the

rob-

mous

ous

n the

ader

any-

h can

d a

down-

or,

plet

ves

ords

ta on

one

ous)
An orthogonal problem occurs when the anonymous server keeps record of the

sage origins, or does not randomly reorder them. If the anonymizer works with

counter, granted, this collusion is contrary to our assumption, anonymity is lost. The p

lem can be circumvented by using chained anonymous servers (a la the nym anony

remailer system [Nym]). The vote would be sent from the voter to the first anonym

server in the chain. It would then be passed along the chain, with the final server i

chain forwarding it on to the counter. Only one server need reliably strip off the he

and randomly scramble votes for the channel to be anonymous.

6.3.4 Web Spoofing

The World Wide Web is a rather untamed area. A number of attacks exist against

one who ventures into it. Relevant to our purposes, there is a spoofing attack whic

learn votes without the voter knowing.

The attack is really that of a man-in-the-middle. Suppose Alice tried to downloa

web page, or Java applet. Bob can create a special interface applet and trick her into

loading that instead. Bob’s applet will mimic the one Alice was originally looking f

without even knowing which one she wanted ahead of time.

Bob will intercept Alice’s request and download his applet to her instead. Bob’s ap

is a “shell” in which the applet Alice really wants is run. Any data Alice gives, or recei

from the applet she wants to run, will really be given to Bob’s applet. Bob’s applet rec

the information, and then mimics the behavior of the original applet by passing the da

to it, and returning the results to Alice. Or, Bob’s applet could simply impersonate the

Alice wants, and won’t really contact it.

Attacks have this nature have been studied by Felten et al [Fel97]. A (humor

example of this type of web spoofing is the Zippy Filter [Zip].
76

g the

cor-

ach

onably

ary.

his

eep

laint.

their

mis-

elay

ioner,

eed to

later

ne for

ation
Such an attack is prevented by signed applets. As long as the key used for verifyin

signature is publicly known, a web browser can confirm the downloaded applet is the

rect one before running it.

6.4 Policy

6.4.1 Time

An issue for any distributed system is that of time coordination. A common appro

is to create time beacons which can be used as a universal standard (to within a reas

small error). The use of beacons would work here, too, but it is most likely unnecess

In current, real world elections, if a voter shows up to the polls late, and claims

watch was slow, he forfeits his right to vote. It is the responsibility of the voter to k

track of the time. We require the same of a user voting electronically.

The only case where unsynchronized time may come into play is during a comp

The times of complaints may be useful in diagnosing the problem. If everyone has

own definition of time, the time stamp becomes meaningless. Fortunately, the com

sioner marks the time of receipt of the complaint. Assuming a sufficiently small d

between the act about which the complaint is made, and the receipt by the commiss

the unsynchronized time should not be an issue. (Redundant commissioners would n

coordinate time, but they can be easily synchronized at start-up.)

6.4.2 Registration

The Registrar can create ghosts. That is, it can register non-existent voters and

cast votes under those names. The prevention of ghosts is a policy issue, and not o

cryptography. A practical solution is to have adversarial parties oversee the registr

process, to make sure the dead do not rise to vote again.
77

vers

for-
6.4.3 Key Distribution

As noted earlier, we face the fundamental problem of key distribution. The ser

must securely share public key information. Additionally, if the applet is signed, this in

mation, too, must be publicly dispersed.
78

rs to

ion,

ntly,

ions in

ign,

ainst

we

plets.

uild

t far

m of

com-

stem

t.

d to
Chapter 7

Conclusion
Only within the last few years has electronic voting moved from the realm of pape

actual computer implementations. Although E-Vox is not quite the first implementat

we believe it is the first secure, user-friendly, stand-alone system.

Our model is only a prototype, and further work needs to be done. Most importa

the system needs to be run and attacked. We have suggested a number of extens

Chapter 6. All of these increase security at the cost of simplicity. To optimize our des

we must find which attacks are the most cost-effective for the attacker and protect ag

those types of attack.

As the world wide web continues to become more integrated in our daily lives,

believe future protocols will follow our design and use web-based servers and ap

Additionally, projects such as digital cash, which face similar design problems, can b

on our work. (When voting becomes electronic, is it any surprise that cash is no

behind?) Actually, Prof. Rivest has pointed out that voting can be considered a for

spending special coins.

While smart cards may be years in the future, digital certificates are becoming

monplace. Such certificates, could effectively provide a general authentication sy

throughout the world wide web, making protocols like ours even easier to implemen

Given all these trends, work in this area is certain to continue. We look forwar

learning from the further expansion of the field.
79

in

ers, we

the

ome

ed

nical

even

e out-

s to

d sys-

r bal-

For

ges

care-
Appendix

Electronic Voting and Its Effects on Society

A full investigation into the effects of electronic voting on elections, and society

general is far beyond the scope of this paper. Nonetheless, as scientists and engine

have a social responsibility to inform society of the power of what we build, and

effects it might have.

Kirby [Kir95] has both surveyed the literature in this area, as well as conducted s

limited testing as to the effects of electronic voting at MIT. Although MIT is a very bias

population form which to sample, it is a good start.

By the very nature of it being computer based, we might expect to see both a tech

and monetary bias. Voting will have become easier for the people who can afford or

know how to use a (public) computer.

On the other hand, a distrust of computer security could cause people to doubt th

comes of elections in which computer voting was popular. This might cause politician

back away from such schemes. On the other hand, E-Vox and other computer base

tems allow every voter to verify the election returns for himself.

Studies of the effects of the physical ballot layout have been done for both pape

lot, and DRE systems. Voting over the web offers a much more complex ballot.

instance, hypertext links could be on the ballot, linking the voter to multimedia web pa

of the candidates, parties, and special interest groups. Web pages of this sort will be

fully created in an attempt to give the voter that final push, while at the ballot box!

We look forward to further research in this area.
80

ryp-

,

ical

sity

ttp://

ital

p://

d-

.

An

Om-

for
References

[Anon] Web site http://www.stack.nl/~galactus/remailers/

[Cha82] D. Chaum, “Blind Signatures for Untraceable Payments,” Advances in C

tography: Proceedings of Crypto 82, Plenum Press, 1983, pp 199-203.

[Cor97] G. Cornell and C. S. Horstmann,Core Java. Sunsoft Press, Mountain View

CA, 1997.

[Cra96] L. F. Cranor and R. K. Cytron, “Design and Implementation of a Pract

Security-Conscious Electronic Polling System.” WUCS-96-02, Washington Univer

Department of Computer Science, St. Louis, January 23, 1996. Taken from h

www.ccrc.wustl.edu/~lorracks/sensus/

[Dav96] b. Davenport, A. Newberger, and J. Woodward, “Creating a Secure Dig

Voting Protocol for Campus Elections,” Princeton University, 1996. Taken from htt

www.princeton.edu/~bpd/voting/paper.html

[DeM82] R. DeMillo, N. Lynch, and M. Merritt, “Cryptographic Protocols,” Procee

ings of the 14th Annual Symposium on the Theory of Computing, 1982, pp. 383-400

[Dif77] W. Diffe and M. E. Hellman, “New Directions in Cryptography,” IEEE Trans-

actions on Information Theory, v. IT-22, n. 6, Jun., 1977, pp. 74-84.

[Fel97] E. W. Felten, D. Balfanz, D. Dean, and D. S. Wallach, “Web Spoofing:

Internet Con Game,” Technical Report 540-96 (Revised Feb. 1997), Department of C

puter Science, Princeton University.

[Fuj93] A. Fujioka, T. Okamoto, and K. Ohta “A Practical Secret Voting Scheme

Large Scale Elections,”Advances in Cyptology - AUSCRYPT ‘92.
81

Effi-

f

s-

put-

uter

l

ly,”

s

, n.
[Gen96] R. Cramer, R. Gennaro, and B. Schoenmakers, “A Secure and Optimally

cient, Multi-Authority Election Scheme,” MIT, Nov 6, 1996. A preliminary version o

which was submitted anonymously to theSecurity in Communications Networkswork-

shop, Sep. 16-17, Amalfi, Italy, 1996.

[Kil90] J. Kilian, Uses of Randomness in Algorithms and Protocols, MIT Press, 1990.

[Kir95] J. P. Kirby, “Electoral Method Effects of Decentralized Electronic Voting.”

[Kra97] M. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for Me

sage Authentication,” RFC 2104, Feb. 1997. Taken from http://src.doc.ic.ac.uk/com

ing/internet/rfc/rfc2104.txt.

[Nur91] H. Nurmi, A. Salomaa, and L. Santean, “Secret Ballot Elections in Comp

Networks,”Computers & Security, v. 10, 1991, pp. 553-560.

[Nym] Web site http://www.cs.berkeley.edu/~raph/n.a.n.html.

[Riv78] R. L. Rivest, A. Shamir, and L. M Adleman, “A Method for Obtaining Digita

Signatures and Public Key Cryptosystems,”Communications of the ACM, v. 21, n. 2, Feb.

1978, pp. 120-126.

[Sak94] K. Sako “Electronic Voting Schemes Allowing Open Objection to the Tal

Transactions of the Institute of Electronic, Information, and Communication Engineer, v.

E77-A, n. 1, 1994, pp. 24-30.

[Sch96] B. Schneier,Applied Cryptography. John Wiley & Sons, New York, 1996.

[Sha79} A. Shamir, “How to Share a Secret,” Communications of the ACM, v. 24

11, Nov 1979, pp. 612-613.

[Zip] Web site http://www.metahtml.com/apps/zippy/welcome.mhtml.
82

	Secure Electronic Voting Over the World Wide Web
	by
	Mark A. Herschberg
	Submitted to the Department of Electrical Engineering and Computer Science
	in Partial Fulfillment of the Requirements for the Degrees of
	Bachelor of Science in Electrical [Computer] Science and Engineering
	and Master of Engineering in Electrical Engineering and Computer Science
	at the
	MASSACHUSETTS INSTITUTE OF TECHNOLOGY

	May 27, 1997
	Copyright 1997 Mark A. Herschberg. All rights reserved.

	The author hereby grants to M.I.T. permission to reproduce and distribute publicly paper and elec...
	Author
	Department of Electrical Engineering and Computer Science
	May 27, 1997

	Certified by
	Ronald Rivest, ES Webster Professor, Electrical Engineering and Computer Science
	Thesis Supervisor

	Accepted by
	F. R. Morgenthaler
	Chairman, Department Committee on Graduate Theses

	Secure Electronic Voting Over the World Wide Web
	by
	Mark A. Herschberg
	Submitted to the
	Department of Electrical Engineering and Computer Science
	on May 27, 1997
	In Partial Fulfillment of the Requirements for the Degree of
	Bachelor of Science in Computer [Electrical] Science and Engineering
	and Master of Engineering in Electrical Engineering and Computer Science

	ABSTRACT
	Table of Contents
	1 Introduction 5
	2 Theory 18
	3 The E-Vox System 26
	4 Components 42
	5 Testing 65
	6 Limitations, Their Solutions, and Further Extensions 67
	7 Conclusion 79

	List of Figures
	List of Tables
	Acknowledgments

	Chapter 1
	Introduction
	1.1 Background
	1.2 History
	1.2.1 Properties of a Secure Secret Voting Scheme
	1. Completeness: All valid votes are counted correctly.
	2. Soundness: The dishonest voter cannot disrupt the voting.
	3. Privacy: All votes must be secret.
	4. Unreusability: No voter can vote twice.
	5. Eligibility: No one who isn’t allowed to vote can vote.
	6. Fairness: Nothing must affect the voting.
	7. Verifiability: No one can falsify the result of the voting.
	8. Receipt-Freeness: The voter does not need to keep any record of his vote.
	9. Non-Duplication: No one can duplicate anyone else’s vote.
	10. Public Participation: Everyone knows who did, and did not, vote.
	11. Private Error Correction: A voter can prove his vote was miscounted without revealing how he ...

	1.2.2 Secure Election Strategies
	Self-Adjudicating Protocols
	1. He attaches a random string, R, to his vote, V.
	2. Then he encrypts his vote with public keys of Voters 1 through N, in that order.
	3. Again, he repeats step two, but this time includes a random string within each layer of encryp...

	EN(RN,EN-1(...(R2, E1(R1, EN(EN-1(...(E1(V,R))...))))...))
	4. All votes are passed from voter to voter, starting with voter N and ending with Voter 1. Each ...

	EN(EN-1...(E1(V,R))...)
	5. Again each Voter from N down to 1 decrypts his layer, but then signs the message and sends it ...

	Si+1(Ei...(E1(V,R))...)
	6. All voters confirm the signature of Voter 1 and check the list of votes for their initial rand...
	Central Vote Repository
	1. The CVR asks each voter whether or not he will participate in the upcoming election.
	2. A list of all participants is made public.
	3. Each voter receives an ID number using an All-Or-Nothing-Disclosure-of- Secrets (ANDOS) protocol.
	4. Each voter anonymously sends the CVR his ID number, I, along with the encryption of his vote, ...
	5. The CVR publishes all encrypted votes Ek(I,V).
	6. After step 5 is complete, each voter anonymously sends {I,d} to the CVR.
	7. All votes are decrypted and their values published alongside them.

	Multiple Voting Organizations
	1. Each voter, after providing his identity, asks the VA for an authorization number.
	2. The VA randomly generates authorization numbers and distributes them.
	3. The list of all such authorization numbers is given to the TF.
	4. Each voter picks a random ID number and sends it, along with his vote and authorization number...
	5. The TF checks the authorization number and, if it is on the list, crosses it off and publishes...

	1.3 Motivation
	1.3.1 Impediments to Development
	1.3.2 Previous Work
	Pericles (MIT)
	Princeton
	Sensus
	1.3.3 Goals

	Secure
	User-Friendly
	Stand-Alone
	Size

	Chapter 2
	Theory
	2.1 Cryptographic Elements
	2.1.1 Digital Signatures

	S = Md mod n
	M = Se mod n = (Md)e mod n = Mde mod n = M mod n
	2.1.2 Blind Signatures

	B = Mke mod n
	S’ = Bd mod n = (Mke)d mod n = Mdk mod n
	S = (S’/k) mod n = Md mod n
	2.1.3 (One-Way) Hashing

	h = H(M).
	2.1.4 (Blind) Commitment

	C = H(R1, R2, M)
	C = H(R1, R’, M’)
	h= SHA(k1, SHA(message, k2))
	2.1.5 Anonymous Channels
	2.2 “A Practical Secret Voting Scheme for Large Scale Elections”
	2.2.1 Core Protocol
	1. The voter selects his candidates and commits to this ballot.
	2. This committed ballot is then blinded and signed by the voter. It is then sent to the administ...
	3. The administrator verifies the right of the voter to vote, and the signature of the blinded vo...
	4. The user unblinds the ballot, and verifies the administrator’s signature, which, because of th...
	5. The committed ballots, now signed by the administrator, are then sent, through an anonymous ch...
	6. After all the committed votes have been sent in, the voters can confirm that their vote is lis...
	7. After everyone has had a chance to confirm the entries in the counter’s published list, each v...
	8. The counter then adds to the published list the keys and the uncommitted votes (which can be c...

	2.2.2 Modifications to the Protocol
	1. Get the administrator to sign the vote and send it to the counter
	2. Check that the vote is listed by the counter, confirm any of signatures listed, and, if everyt...
	3. Confirm that all votes were uncommitted and counted correctly.

	Chapter 3
	The E-Vox System
	3.1 Assumptions
	3.1.1 Assumptions Made by the Protocol.
	1. The cryptographic systems used are hard to break.
	2. Each of the following parties: voter, administrator, anonymizer, and counter do not collude wi...

	Cryptography
	Independence
	3.1.2 Assumptions about the Physical System
	1. The communication channels provide a low level of data confirmation such as TCP/IP.
	2. The server machines have the JDK1.1 (or better) installed.
	3. The host machines run a web browser that supports the Java 1.1 (or better) and allows the (pot...
	4. The host machines are secure in that they will not explicitly maintain a record of operations ...

	3.2 Creating a Well-Defined System
	1. Authentication. Although specified, it called for authenticaion of the voter by the administra...
	2. Communication. No communication issues were considered. This included message interception, pr...
	3. Keys. The distribution of keys between servers is not addressed.
	4. Errors. Descriptions of how to use the receipts and server logs are mentioned but no formal co...
	3.2.1 Authentication
	3.2.2 Communication
	Secure Channels
	Figure 3.1: Secure Message passing

	Anonymous Channels
	1. There is one message per voter.
	2. The flow of information is unidirectional, meaning no information about the sender’s address n...
	3. Messages are all approximately the same size.
	4. All messages are sent during a relatively short, fixed time span.
	5. Messages need only be received by the deadline, there are no chronological or other ordering r...

	Serialization
	3.2.3 Key Distribution
	3.2.4 Error Detection and Response

	3.3 The Revised Voting Protocol
	1. The voter selects his candidates and commits to this ballot using HMAC-SHA (requiring two comm...
	2. This committed ballot is then blinded by the voter and sent to the administrator, along with t...
	3. The administrator verifies the right of the voter to vote, and the validity of his password. T...
	4. The voter verifies the administrator’s signature and then unblinds the ballot.
	5. The signed, committed ballots, along with the (unsigned) committed ballot, the plaintext and c...
	6. All votes received by the anonymous server before the deadline are then randomly reordered and...
	7. The counter confirms the administrators’ signatures, and tallies the votes. The counter publis...
	Figure 3.2: E-Vox Process Chart

	3.4 Proof of Correctness of the Revised Protocol
	Theorem 1 (Security):
	Sketch of Proof:
	Theorem 2 (Privacy):
	Sketch of Proof:
	Theorem 3 (Unreusability):
	Sketch of Proof:
	Theorem 4 (Eligibility):
	Sketch of Proof:
	Theorem 5 (Recoverability):
	Sketch of Proof:

	Chapter 4
	Components
	4.1 Cryptographic Library
	4.2 Vote Object
	4.3 GenRand, the Random Number Generator
	Figure 4.1: GenRand dialog box

	4.4 Network Connections
	4.5 Registrar
	4.6 Election Builder
	Figure 4.2: Election Builder Questions Card
	Figure 4.3: Election Builder Answer Card for Question Number 2

	4.7 Servers
	4.7.1 Server Interface
	Figure 4.4: Server Interface
	Figure 4.5: Sample Log (from the Administrator)

	4.7.2 Administrator Server
	Figure 4.6: Voter-Administrator Communications

	4.7.3 Anonymous Server
	Figure 4.7: Anonymous Server Record Window

	4.7.4 Counter Server
	Figure 4.8: Counter List (Vote 3 of 5 selected)
	Figure 4.9: Vote Number 3, Question 2
	Figure 4.10: Question 1 Final Tally
	Figure 4.11: Question 2 Final Tally
	Figure 4.12: Vote 3, Question 2

	4.7.5 Commissioner
	1. Connection Error (Any)
	2. Bad MAC (Any)
	3. Bad Message Format (Any)
	4. No Keys to Uncommit (Counter)
	5. Voter Not Registered (Administrator)
	6. Invalid Password (Administrator)
	7. Vote Already Signed (Administrator)
	8. Vote Already Committed (Voter)
	9. Vote Already Uncommitted (Counter)
	10. Bad Signature (Voter)
	11. File Error (Any Server)
	12. Math Error, when performing cryptographic calculations (Any)
	13. Unknown Error, used when no other case applies (Any)
	14. Vote Received after the Deadline (Anonymizer)
	15. Voter Already Voted (Administrator)
	Figure 4.13: Commissioner’s Complaint Log
	Figure 4.14: Complaint Number 3. Someone tried to vote in Randy’s name, but did not know the pass...

	4.8 Voting Applet
	Figure 4.15: Sample Applet

	Chapter 5
	Testing
	1. Voters tried to vote repeatedly.
	2. Unregistered voters tried to vote.
	3. Bad passwords were used.
	4. The administrator gave invalid signatures.
	5. Votes were lost by the anonymous server.
	6. Votes were lost by the counter.
	7. Duplicate votes were given to the counter.
	8. Invalid votes were given to the counter.
	9. The administrator shut down before scheduled.
	10. The anonymizer shut down before scheduled.
	11. The counter shut down before scheduled.
	12. The commissioner shut down before scheduled.

	Chapter 6
	Limitations, Their Solutions, and Further Extensions
	6.1 Code Improvements
	6.1.1 Election Instantiation
	6.1.2 Public Postings

	6.2 Protocol
	6.2.1 Receipts
	Figure 6.1: Secure Connection with a Receipt

	6.2.2 Communications as a Single Point of Failure
	Figure 6.2: Split Message Passing Through the Anonymous Channel

	6.2.3 Cryptographic Attacks
	6.2.4 Administrator Voting

	6.3 Architecture
	6.3.1 Redundant Administrators
	6.3.2 Anonymizer-Counter Additional Message Passing Security
	6.3.3 Redundant Anonymizers
	6.3.4 Web Spoofing

	6.4 Policy
	6.4.1 Time
	6.4.2 Registration
	6.4.3 Key Distribution

	Chapter 7
	Conclusion

	Appendix
	Electronic Voting and Its Effects on Society
	References

