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1 Motivation(1/2)

The Boltzmann Equation(BE): describes the evolution of PDF f = f(x, ¢, ). It can be written as:

Vel 2

1
. =—ff (01 +6,=061-02) fi ocrnodQderde;
ot dx 2

ot Collision

The BE is relevant when the Knudsen number Kn = A/ L > 0.1where A is the gas mean free
path and L is problem characteristic length scale

m The Direct Simulation Monte Carlo method allows us to simulate the BE
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1 Motivation(2/2)

= In DSMC properties are explicitly sampled
m The uncertainty in "measurement" is:

O Thermal

O Uncertainty = \/7
N Sam
ples

This causes problems in low signal(=deviation from equilibrium) flows (eg. low Ma flows).

= We want:
o(Signal)

O Uncertainty = \/7
N Sam,
ples

s.t.o(Signal) - 0 as Signal — 0, eg.o(Signal) «« Signal



4 | Presentation.nb

1.1 Previous Work

m Baker & Hadjiconstantinou: Variance Reduction by simulating deviation from equilibrium

—DSMC-like particle method simulating deviation from global equilibrium (particle number diverges for Kn < 1)
—Discontinuous Galerkin solution using variance-reduced collision integral evaluation (Talk tomorrow, Session 22-3-B)

m Chun & Koch: Particle method simulating deviation from global equilibrium using the linearized
Boltzmann equation

(Essentially equivalent to above particle method, ie. particle number diverges for Kn < 1)

= Homolle & Hadjiconstantinou: DSMC-like Particle method can be stabilized by simulating
deviation from local equilibrium (LVDSMC)

0

~Stable wall speed

mfs |

~Currently only for hardsphere collision integral 15
~Extension to other collision models in progress
~Very powerful

10

lllustration of variance reduction : 1 ensemble, -15
3000 particles/cell, wall velocity 0.05 (normalized)
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Distance from left wall (%)
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1.2 Objective

m Can we develop a variance-reduction technique that:

= Uses DSMC as its main ingredient
= Does not substantially increase computational requirements

(Still Under Construction)
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2.0 Solution Approach: Variance Reduction Using Likelihood Ratios

m Consider the following moments:

(R) = fR(C) floydc

fe (c)
mkq=fkaﬂﬁamdc:jkwﬂ:;@))ﬂwdc=jkwnwafwwu

m Using importance sampling :

02
F ~ — R(Ci)
N i=1

1N eq\li
7 fq(c)

[ g—

NG fle

1 N
Rw:N;mmm

féq(ci)
flei)

where W; = W(c;) =

In words: we can evaluate both R and Eeq using samples from f(c) only
(provided the relative likelihood ratios W;s are known)
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2.1 Variance Reduction Using Likelihood Ratios

This formulation can be used to yield variance reduction if (R)q is known by writing,

— - |
R =R=Req + (Rieq = = D (1= W R(@) + (R)eq
i=1

When f is close to foq,i.. | W;— 1| < 1, we can show that

VR 1 & . 1 N N
PR = 5 D020 = W (1= W) Rep Rle) (33N = 1) & R =— > > R Rles) (61N 1)

2
j=li=1 N j=li=1

=

a2 (RV?y < 2 (R}
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2.2 Likelihood ratios: lllustrative Numerical Example
For N =10 000 let us take N samples c; from f(c) = Normal(0.1, 1)
¢= %zﬁil ¢;=0.111786 (+0.01 error)
Let foq(c) = Normal(0, 1). Instead of directly sampling fq(c) we use the previous samples by defining W; = feq(c:) / f(ci)

= Using the samples c; and weights w; we can measure the mean of f,:

Ceq = %Zf\; Wic; =0.0119512 (again £0.01 error)

= Using the fact that (c)¢, is known we get variance reduction by

VR = & — e + (Choq = % N (1 = Wy) ¢;=0.0998347 (+0.001 error)
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3 VR DSMC Using Likelihood Ratios

m Can the above methodology be applied to DSMC?
= How?

By introducing an auxiliary simulation which uses the DSMC data but simulates feq

m What are the auxiliary simulation's Initial Condition and Boundary Condition?

Jeq(€i)
flei)

Yes, from the definition W; =

= What about Particle Dynamics?

Convenient to look at advection and collision process separately (like DSMC)
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3.1 Auxiliary Simulation: Advection

DSMC simulates the non-equilibrium BE. For the auxiliary simulation the governing equation is:
9 feq 9 feq
+c-
ot Oox

=0

Making the substitution f.q = W f we obtain

ow ow of of
(2 e )l e )
ot ox ot ox

The main DSMC simulation causes the 2nd term to drop giving us:
ow ow

—+c-— =0
ot ox

= Advecting weights satisfies the BE for equilibrium
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3.2 Auxiliary Simulation: Collision (1/2)

Collision integral for equilibrium:

d fe
[ c?tq

1
] = —ff (0] + 05 =01 = 02) foq1 feqrcr20dQdceider
Collision

Making the substitution foq > W f =

[

X 12
= — O + 05— (01 + ) Wy W- —ocdQdcidc
Py fff(l 5 — (01 +02)) W, 2f1f2MX 1der

Collision

Which can be re-written as:

1y /M
_fof ————+6 +62]W1W2f1f2( X)o’dﬂdcldcz + —foff ——61— 2](112/TZ)W1W2f1f20'(1—&)dﬂdcldcz

MX
"acceptance" + "rejection"
MX = MaX{ Wc12}
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3.2 Auxiliary Simulation: Collision (2/2)

= Weight "bookkeeping"

Event In Intermediate Steps Final Result
Accepted WieC, |Create: Wi W @ C; &W, W, @ C,| W, W, @ C}and
(Prob.=Cpp/Mx) |W2@ C; | Apnihilate: W, e C;, Wre C, Wi W, e ()

. C]2 C]2 1-W, 3}%
Rejected W@ C, | Create: W1 ( ) @ C, —n W@ C,
(Prob.=1-Cp/MX) | Wr@ C, C12 C12 I-§x

W, MX (1 ) @ C,
s C12 Cip C
Annihilate : W, W o ( MX) 1- ch e W6 C,
@ C &Cy 1—%
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4 Stability (1/2)

m These weight update rules are not stable
m Weights grow exponentially = loss of Variance Reduction

m Why does the instability happen?

A number of ways to think of this :

= 1. No conservation of mass, momentum and energy

Weights are not conserved in steps. Since the weight update formula is a function of weight values
themselves the random walk quickly diverges.

m 2. We are calculating probabilities of samples and not of a local PDF

These weight update rules calculate Peq(cfrl | I | ! ) not feq(c;) only the latter PDF is expected

to converge to f at long time.
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4 Stability (2/2)

= From definition W; = feq(c,-)/f(c,-) = we need knowledge of PDF

= Solution: Need to reconstruct the PDF from samples

This is a standard numerical method known as Kernel Density Estimation

= Specifically, for every particle at ¢

fle) = fK(C' -0) f(chdc

feq(e) = fK(C' —¢) feq(c) dic’ =fK(c' —c) W(c) f(c')dc’

Using sampling we can get:

Sj Sj
i< S 3
i=1 i=1

S;= {particles within € of ¢ j}
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4 Final Algorithm Summary

e 1 . feq(ct=0)
0. Initialize N particles at ¢; & W; = ———
Sflex=0)
1. Advection: x; = x; + Atc;

2. Collisions:

2.1 Select candidates (i and j) & process with PNg = ¢j; / MX &
Peq = W;c;; /MX

P
Accepted: Scatter both particles & W; = W; Peq
NE

1-P
Rejected: Keep same velocity & W, = W; . Peq
—PNE

3. Sample: R'X = %Zﬁl (1 =W R(c;i) +(R)eq
4. Use Kernel Density Estimation to produce W; from W} of all particles around c;
5. Take W/ — W;, repeat steps 1,2,3.4&5
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5 Results: Problem Setup

We study the relaxation of f ¢t f(c)dec in a homogeneous calculation from the initial condition:

(cx — @)% + 2 + ¢2 (cx + @)% + 2 + ¢2
f(c) _ ﬁ [EXP[_ X y < ] + Exp[— X y Z ]
c? c2
0 0
ct

(‘1 >0
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T
Variance Reduction: — a=0.1 > VR = 400
— a=001 = VR = 6.25%x 10°
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5 Results: Error vs. ¢

Ale, t) <Ci>NE,Exact Solution <Cx—4>@ €

¥lss

C

c?) on ~
*/NE Exact Solution Evaluated at time=¢
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5 Stability Results

) A4
Variance attime 41t __ Var {(I_W’) Cx.i }at time=4T1

Initial Variance ~ Var {(1-w;) Ci,i}

Defining our stability parameter H =

attime=0T1
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6 Conclusions

m Variance reduction using likelihood ratios is viable and promising

= The main DSMC simulation is never perturbed. This is one of the advantages compared to other
variance reduction techniques developed by our group

= Need to find NN of particle at end of every step making the total cost O (N Log (N))

= Current kernel density estimator very crude.
Only looks at c¢;'s within £ of sample point

m There is a trade-off between stability and numerical error



