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Abstract

Over the past few years, & number of competitive electric power
markets have emerged in the United States. While market structure
differs by region, the common denominator has been the high leve!
of price volatility experienced in these markets As power suppliers,
marketers and consumers sock to manage their positions in this
volatile environment, understanding the locational spreads in power
prices is becoming increasingly important. The paper develops a
dynamic model describing the interplay of electricity prices in a
multi-market environment. In contrast to most existing price models,
1t is based on the fundameatal intersction of demand and supply
processes. We illustrate how delays in the information flow to market
participants causes pnce differentials to occur between markets with
unconstrained transmission mterfaces. Furthcrmore we examine how
correlation between load processes transistes into s correlation
between the price processes in 8 dual-market environment. These
results are illustrated in & simulated example.

In the context of the new model we examine current state of the art
algorithms for valuing locational spread options. The work presented
suggests that & single cowelation factor may not be sufficient to
describe the interplay of prices in a dual-market environment. The
model illustrates how the price correlation shifts between two states
based on the state of congestion on the system. Possibilities for
extensions of current option valuation schemes are discussed,

I. Introduction

This paper addresses the question of how one should
model the dynamics of electricity prices in the presence
of muitiple interconnected power markets. This
question is becoming increasingly relevant for utilities
and power marketers in the United States with the
emergence of numerous power pools and power
exchanges throughout the country. In practice this
problem takes on different shapes. On the east coast we
have the interplay between power pools in New
England, New York and PJM, where transmission
capacity is relatively scarce and prices can diverge
significantly. California on the other hand has
experienced the emergence of competing power
exchanges (the California PX and the APX) covering
the same geographic region. We attempt to formulate a
general modeling framework, which can incorporate
both the constrained and unconstrained interaction of
power markets. Such modeling is crucial to the analysis
of power markets from several perspectives.

1. Bidding Strategies: If a generating unit is positioned
so that it is able to bid its output into two or more
markets, it needs a good understanding of how the
various prices evolve in relation to one another in order
to optimally divide its capacity between the markets.
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2. Asset Valuation: What additional value does one
assign to a generator that ‘can potentially bid into
multiple markets. .

3. Hedging Strategies: If the correlation between prices
on various power markets can be accurately modeled,
then this information can be used to generate effective
risk management strategics for market participants.

4. Transmission valuation: In the case were markets are
separated by a constrained transmission interface,
modeling the evolution of the price differential between
the markets can be used to estimate the value of
holding transmission rights on that interface.

5. Market Structure: Understanding how price
interactions change as a function of market structure
allows regulatory agencies to address issues such as
whether to allow physical bilateral contracts or
competing markets inside a control area.

Il. The Modeling of Electricity Prices

Before we can address the issue of how electricity
prices in neighboring markets interact, we have to ask
what is reasonable model for electricity prices in a
single market environment. A significant amount of
literature has emerged lately on modeling electricity
prices (see [1], [3], [4], [7]). The models proposed are
generally adaptations from financial markets (stocks
and interest rates), or from mature commodities
markets (oil and gas). Such adaptations of existing
models often run into trouble because of the unique
characteristics of power markets: »
1. Extreme price volatility coupled with non-Gaussian
characteristics of the implied probability distribution on
spot and forward prices.

2. Strong seasonal effects on yearly, weekly and daily
cycles.

3. Inability to store electric power.

4. Scarcity of transportation network, coupled with the
noncompetitive, tariff based, pricing of inter-area
transmission.

The models proposed to deal with these challenges are
generally a combination of the following, well-studied,
financial models for the evolution of the spot price (S).
For an in depth discussion of these and other pricing
models see Hull [2].
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Geometric Brownian motion:
%S'__ = udt + odz

This process, where z is a Wiener process, produces a
lognormal distribution on S(t). This is the underlying
process for the Black-Sholes equation.

Mean reverting Brownian motion (Hull and
White):

dS =a(u~x)dt +o,dz,

or in log-normal form,

ég— =a(u-Inx)dt +o.dz,

Jump Diffusion model:

%‘S =a(u—Ak)dt + o dz, +dg

where dq is a Poisson random incidence process.

Challenges for existing models

The usefulness of any pricing model depends on the
ability of the user to accurately calibrate the model
parameters such as, mean-reversion rate, volatility,
jump size, and jump frequency. This process is further
complicated by the fact that each of the parameters
exhibits seasonality. Calibrating such a model would
therefore require many years worth of consistent price
data. In reality however, many of the markets have
only existed for one or two years. Even in the case
where historical prices are available for a longer period
changes in the market rules make historical prices all
but useless in the prediction of future volatility.

Modeling the price differential between two
markets

As discussed in the introduction, modeling the price
differential, or spread, between two markets, can be a
very useful hedging and valuation tool, To create such
a model we need to go through three basic steps:

1. Select a stochastic process describing the evolution
of price in each market, assuming no interaction.

2. Postulate additional constraints for how the variables
in the two models interact, .

3. Solve for the joint stochastic process of the two
markets.

Deng Johnson and Sogomonian {1] show how a
locational spread option can be valued by assuming
that the futures price process of electricity in each
market (F,,,, F,.,) follow mean-reverting processes:

dF,, =x(u,, ~InF,)F, dt+0,,1 )F,,dB'
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dF,, =Ky, (th, =InF,,)F, ,dt + 0, ,()F, ,dB 2

The interaction between the markets is modeled by
assuming that the two Wiener processes B' and B’
have instantancous correlation p. Based on this
assumption, the authors proceed to provide a solution
to the valuation of locational spread options.

I1l. Bottom up approach to modeling
electricity price dynamics

The model described above has many attractive
features. Similar approaches have been used in other
markets, and the solutions are well understood. Why
then is there any need for further research in this area?
The question we try to answer in this paper is whether
the joint price dynamics in electric power markets can
be accurately described by a simple correlation. To do
this we develop a bottom up model of spot market
prices, building on the fundamentals of supply and
demand.

Defining ‘Interactions Between Power Markets’

Up to this point we have used the term ‘interaction
between power markets’ -rather freely. The sense has
been that the amount of interaction between the
markets is somehow related to the degree of correlation
between the prices. We will now provide a more
rigorous definition of what we mean by markets
interacting.

To better illustrate our definitions, consider the
following scenario. Two power pools are connected by
a single transmission line, with total transmission
capacity T. Each pool operates under the. following
rules. On a day-ahead basis, generators submit
marginal bid curves to the pool. Loads are assumed to
be fully inelastic, and the pool operator estimates their
demand. For each hour the pool operator stacks all
supply bids to generate a total supply bid curve (SBC)
for the pool. The market-clearing price for the pool is
set at the intersection of the SBC and the anticipated
demand. Generators are able to submit bids into either
pool as long as sufficient transmission capacity is
available,

Given this scenario we now attempt to postulate a joint
process for the evolution of electricity prices on the
two markets. First we recognize that at any given time
t, the price (P') for a given pool (i) is fully defined by
the current load (L) and current SBC for that pool.

P (e)= f(L(1),SBC' (1))

Rather than modeling price directly as a stochastic
process, we attempt to characterize the underlying
supply and demand processes. The load and supply
curve in each market is modeled as a separate
stochastic process.
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Load model:
dL' =a,(p, - L)dt + 0,dz,,

dl’ = ay (g, - Ly)dt + 0,4z,

The load in each pool is modeled as a mean reverting
process. z,, and z,, are Wiener processes with
instantaneous correlation p. The means (pu; and py;)
are time varying (seasonal) but assumed to be known.
Since load is fundamentally weather driven (at least in
the short and medium term) we would expect the
process to mean revert at the same rate as we lose
information in the weather forecast.

Supply Bid Curve Model

Our model for the SBC is based on two main
assumptions;

1. At any given point in time, the bid curve (the
function translating load to price) can be approximated
as an exponential function.

2. All variations in electricity price can be explained by
either changes in load, shifts in the bid curve, or a
combination of both.

Given these assumptions, our expression for the spot
price of electricity takes on the following form:

I),(t) - e“lLr 0)+4,(1)

Where L(t) is the load process described above, b(t)
represents a shift in the bid curve, and a is a constant.

Why an exponential bid curve?

The exponential shape of the bid curve was chosen
because it fit two important criteria. Primarily it is a
well-behaved function which in the end greatly
simplifies any attempts to value electricity derivatives.
For example, a normal distribution on the load
produces a lognormal distribution on price, creating a
nice link to traditional models. In addition the
exponential captures an important characteristics
observed in the marginal cost stack of all major
markets, and reflected in the actual bids of these units.
As load crosses a critical level, the slope of the
stack/bid curve increases drastically. Furthermore the
point at which this change in slope occurs varies over
time. In our model, the change of slope is modeled as a
smooth function of load (approximated as an
exponential), and the uncertainty in the location of the
breaking point is modeled as a stochastic shift in the
bid curve. '

Figure (1) shows actual day ahead market clearing
prices and volumes from the California Power
Exchange for July 1999. The scatter plot shows how
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the slope of the bid curve tends to increase at higher
load levels. We approximate this as an exponential bid
curve,

Cal PX Hourly MCP July 9%

0 §000 10000 18000 20000 28000 30000 33000 40000
Volume Traded (MW)

Figure 1

The notion of native bid curves

In our two-market scenario, we assume each generator
is physically located inside the boundaries of one of the
pools. A generator located in pool 1’s territory is
considered native to region 1. The supply bids into
each pool can thus be decomposed into a subset of bids
originating from native generafors, and bids submitted
by external generators. Note that since no demand side
bidding is allowed, the load in each pool is composed
entirely of native demand. We adopt the following
notation for characterizing supply bid functions:

SBC/ = the aggregation of all supply bids into pool j,
from generators native to region i.

Using this notation we can define the aggregate supply
bid curve into a given pool as,

SBC’ =" SBC/
{

We now introduce the notion of a native supply bid
curve (SBC)), defined as

SBC, =Y SBC/
J

In contrast to the aggregate SBC into a pool, the native
SBC cannot be directly observed in the market. It is a
measure of how much power the native generators are
willing to provide at a given price. From this point on,
we will assume that the native SBCs for each region
remain constant over time.

SBC,(t) = SBC,

This is a strong assumption to make. Market realities
such as unit outages and supply side gaming will cause
the native SBCs to shift (see [5]). We consider. these
events to be intra-market effects, in that they can be



- modeled for individual power markets. In order to
isolate the dynamics associated with the
interconnection of markets, we assume the intra-market
effects to be negligible.

Consolidating the SBC constraints with the
exponential price model

In a previous section we postulated that changes in the
pool price could be modeled as changes in the regional
load and shifts in an exponential bid curve.

P/(f)= %k (e,
Now assume that the SBC’s take on this exponential
form. We rewrite the equation to show the amount of
power generators are willing to supply into pool j as a
function of market clearing price P.

SBC’ (P’ ,t) = -al-(ln P'(H)-b , ®)
7
Setting supply equal to load at all times yields:

L= P ()=5,0)
F)

which is equivalent to the exponential price model
above.

We now incorporate the constraints on the native SBCs
into the model. Recall that we assumed the native
supply bid curves to be stationary over time. This is
equivalent to assuming that the quantity supplied is a
constant function of price. Clearly this constraint does
not hold for the pool bid curves, which have a time
varying shift in the exponential curve, characterized by
b(t). For the native SBC we therefore assume this term
to be constant (b(t) = b).

SBC,(P)=~-(1n P()-B)

1]
If the two markets were fully disconnected, that is the
transmission capacity between them was zero, then all
native generation would have to be bid in the local
pool. As a result, the pool supply bid curve would have
to equal to the native supply bid curve. As a result,
price in each pool would be defined by,

PI (f) = ea.,l..(:)o'bl

Pi(t) = ea,L, )+dy

As we introduce transmission capacity between the
Jregions, we allow bid curves to shift. These shifis are
characterized by deviations in the b parameter. Since
bids are not lost or created, but merely moved from one
market to another, every positive shift in the bid curve
for the first market must bg accompanied by a negative
shift in the second market. Formally we derive the
relationship between these shifts as follows.

Starting with the conservation of bids:

0-7803-5935-6/00/$10.00 (c) 2000 IEEE

1112

Z SBC,(P) = Z SBC/(P)
and combinmg it with the deﬂmtion of the SBC:
2—(1np-b.)=2—(1np-b ©)
For our two-market example this reduces to:
L0 U bn

4 & g az

which shows how shifts in the supply curves are
directly related,

= constant

A __Ab()
a9 a

Closed loop model for supply curve shifts
The derivation in the previous section describes the
relation between supply curve shifts in the two
markets. We now address what is the driving force
behind these shifts, We will assume that whenever a
price differential exists between our markets, suppliers
will shift bids from the low price region to the high
price region to increase their profits. Because price
information is not available until after the auction is
closed however, there is a delay between the price
signal and the redistribution of the bids. We capture
this delay by modeling supply shifts for a given day as
proportional to the previous days price differential.
bk +1]= b[k]-G(P'[k)- P*[k])
Applying the constraint on supply curve shifts between
markets: '
bylk+1)=b,[k] - G[ ](P’[kl - P'[k))

]

Summary of load driven price model

Price is a time varying exponential function of load.
P[] = enuttivhik]

PA[k) = ehlkihit)

Load is modeled as a mean reverting process.
Lk+1)-L'k)= a(uy, - LikD+o,2,(k)
L'k +1]- Lk} = ay(p,, = Ly[k]) + 0,52,k
Supply curve shifts are proportional to price
differences between markets.

by[k+1]= b [k]-G(P'[k]- P’ [k])
bylk +1) = b,[k] - G( }(P’[k] P'[k})



IV. Incorporating transmission constraints

We now consider the case where there is a constraint
on the total transmission capacity available between the
regions. The notation for these constraints is given by,

T/ = total transmission capacity

from market i to market j

Using the notation developed in the previous section
for native supply, we can define imports (imp) into a
market as,
Imp = Native Load — Native Supply
Substituting the expression for native supply,-

SBC,(P) = ;'T(ln P(1)-b,)
and for native load,
L= ;:'-an PO)-b)
- we arrive at,
imp == (I P'(1) b, 1) - al,““”") -5)

(]
which can be simplified as,

(%)

For our two-market system we can rewrlte the
transmission constraint as:

Imports into market 1 < Tz

Imports into market 2 < T?

This allows us to derive upper and lower limits on the
supply curve shifts:

~aT} +b <b <all+b
~a,T} +b, <b, <a,T} +b,

V. Simulation

For the simulation, we assume that the two markets
have identical native supply curves, and the same
average on and off peak loads. Loads are modeled by
the mean reverting process described in the previous
sections. The mean of the process is time varying and
cyclical over a 24 hour period to reflect on and off peak
demand. To make the results more interesting we have
chosen a case where the two markets have nom-
coincidental peaks. That is, the maximum load during
the day occurs at different times in the markets.

In all parts of the simulation, a solid line is used for
load/price in market one, and a dashed line is used for
market two. The first part of the simulation shows the
ovolution of load in two markets. The second plot
shows how prices evolve when unlimited transmission
is available. The third plot shows price evolution in the
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presence of transmission congestion. Two aspects of
the simulated price plots are especially worth noting.
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In the unconstrained case, we clearly see the effects of
the delay in price information to bidders. In a system
with no delays we would expect prices in the two
regions to track each other perfectly. As it stands we
see, at times, a significant divergence in prices. If the
suppliers’ response to the price differential increases,
corresponding to an increase in the G parameter in our
model, prices will tend to converge faster. However, if
the price feedback becomes too strong, the price
dynamics will go unstable.

In the constrained case, prices closely reflect the time
shit in the underlying load processes. As the
transmission line becomes congested, the supply curves
in the two markets can no longer shift and thus become
static. The two price processes are then decoupled, and
driven purely by the native load in each region.

VI. Relevance of results in valuing spread

_ options
The modeling and simulation presented above
illustrates some fundamental characteristics of

electricity prices in multi-market environments.

If the markets are connected by an uncongested
transmission line, prices are highly correlated, but sills
exhibit some divergenoe The extent to which a price
differential exists, depends on the inertia of the bidding
behavior of the participants.

If markets are connected by a congested interface, the
price processes are decoupled and driven by native
load. When the transmission interface is-constrained,
the b(t) state in the price process becomes a constant.
We can then write the log of price in each market as:

In(P’())=a,L (1)+b,



Since Li(t) is a normal mean reverting function, P/(t)
then becomes a lognormal mean revering function. In
our case:

1
P
Note that the Wiener process z,; is the same as for the
loads. Therefore the degree of cormrelation between
prices is governed by the correlation between loads.
These result indicate that the correlation between prices
in dual-market environments will take on one of two
possible values depending on the current state of
congestion on the transmission interface. There are
several possibilities for incorporating this effect into an
option valuation scheme. One can stay with the single
correlation model, where the correlation coefficient
represents some form of weighted average between the
congested and uncongested correlations. An alternative
is to allow the correlation to behave as a stochastic
variable with two possible states. The probability of
being in a given state would then reflect the estimated
probability of the transmission interface being
congested.

Q, (#}'[ - ln(P' )) + a:audzu

VIH. Conclusion

In this paper we have attempted to provide some
insight into the interplay between electricity prices in
multi-market environment. Rather than attempting to
characterize price changes directly as a stochastic
process, we used the basics of demand and supply to
arrive at the closed loop price dynamics. In doing so
we focused on the accuracy of the model in reflecting
actual characteristics of the market, rather than finding
a convenient mathematical structure for the valuation
of derivatives. The modeling shows that the correlation
between prices can take on a finite number of values,
depending on the number of markets modeled. This
challenges the effectiveness of the single-correlation
models in accurately predicting the value of locational
spread options for electricity. Further research is
needed to translate this understanding into an effective
algorithm for the valuation of such options. Yet even as
it stands, the work provides some framework by which
to evaluate models currently in use in the industry.
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