MUSIC AS EMBODIED MATHEMATICS:
A STUDY OF A MUTUALLY INFORMING AFFINITY
Jeanne Bamberger
MIT
Andrea diSessa
University of California, Berkeley

January 2003

Abstract

The argument examined in this paper is that music—when approached
through making and responding to coherent musical structures and facilitated by
multiple, intuitively accessible representations—can become a learning context in
which basic mathematical ideas can be elicited and perceived as relevant and
important. Students’ inquiry into the bases for their perceptions of musical
coherence provides a path into the mathematics of ratio, proportion, fractions, and
common multiples. In a similar manner, we conjecture that other topics in
mathematics—patterns of change, transformations and invariants—might also
expose, illuminate and account for more general organizing structures in music.
Drawing on experience with 11-12 year old students working in a software
music/math environment, we illustrate the role of multiple representations, multi-
media, and the use of multiple sensory modalities in eliciting and developing

students’ initially implicit knowledge of music and its inherent mathematics.

“Music is the arithmetic of the soul, which
counts without being aware of it.”
--Leibnitz--

INTRODUCTION

Interest in the mutual affinities between music and mathematics has had a
long history—Plato, Aristotle, Pythagoras, Leibnitz, and more recently Hofstadter
(1979), Rothstein (1995), Lerdahl and Jackendoff (1983), Tanay (1998), and others. But
unlike these carefully crafted and in some cases formal theories, the connections we
discuss are empirical and “cognitively real” in the sense that they seem naturally
embedded in the structures that generate the perception and invention of musical
coherence. These functional connections initially came to the surface as college

students reflected on their own creative processes during composition projects
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facilitated by the text Developing Musical Intuitions and its computer music
environment, Impromptu (Bamberger, 2000).

The initial design of Impromptu was not at all intended to introduce
mathematical principles. Instead, the text and software were meant to support an
alternative approach to college level music fundamentals instruction. The goal was,
as the title Developing Musical Intuitions suggests, to provide an environment
where, rather than giving up their intuitions, students could learn in the service of
developing and better understanding them (Bamberger, 1996).

To this end, students begin with semi-structured melodic composition
projects, go on to create percussion accompaniments to their melodies, and
eventually more complex, multi-part compositions. To encourage students to reflect
on these activities, they are asked to keep a log of their decision-making process
while composing. These logs (which students turn in with their completed
compositions) have constituted an empirical base for an initial study of intuitive
musical knowledge and its development (Bamberger, 2003). Indeed, it was in
analyzing musically novice students’ accounts of their work-in-progress, particularly
as they experimented with rhythmic possibilities, that we noticed mathematical
relationships playing a role in their perception and composition of musical
coherence.

It may seem unremarkable that the principal mathematics college students
spontaneously put to work involved ratio, proportion, fractions, and common
multiples. However, it turns out that these intuitively generated and perceived
music/ mathematical relationships are some of the important mathematical
concepts that are found to be most problematic for middle school children (Confrey
& Smith, 1995; Wilensky & Resnick, 1999; Thompson, 1996, Arnon et al, 2001. Thus,
it seemed worth exploring if music, through the mediation of Impromptu, could
help children understand and effectively use this apparently troublesome
mathematics. Engaging both domains together might also enhance the children’s
appreciation and understanding of aesthetic relations shared by mathematics and
music.

To explore these ideas, we carried out an informal experiment with a group of
6th grade children in a multi-cultural, mixed socio-economic public school setting.

Working together with one of their two regular classroom teachers, we (JB) met

with a group of six children once or twice a week for 45 minutes over a period of
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three months. Activities were drawn, in part, from projects in Developing Musical
Intuitions, facilitated by Impromptu. In addition, as a way of confronting their work
in this virtual world with the more directly sensory experiences of real-time action
and perception, computer-based projects were coupled with singing and playing real

instruments—primarily drums of various sorts.

Impromptu, Mathematics, and Alternative Representations
Before considering the students” work, we need to provide some background on

Impromptu along with a bit of music theory (for those who are not already familiar
with it), and the psychology of representation. Subsequent sections will show how these
ideas are realized in the work of children. In working with Impromptu, there are two
basic aspects that initially encourage students to make practical use of structures shared
by music and mathematics. The first aspect is internal to the structure of music,
particularly (but not only) how music organizes time. The second aspect is the way these
musical structures are represented in Impromptu.

With regard to the first, the most direct connection lies in the fact that all the music

with which we are most familiar consistently generates an underlying periodicity.

Formally, this is called a beat—that is, what you “keep time to,” tap your foot to, in

listening to music. The underlying beat becomes a temporal unit as it marks off the
continuous flow of time into discrete and regularly recurring events—the “counts”
alluded to by Leibnitz in the quote fronting this paper. Further, most familiar music

generates several levels of beats—a hierarchy of temporal periodicities. Beats at each

level occur at different rates, but there is a consistent proportional relationship among
them—usually 2:1 or 3:1.

These periodic and proportional relations are easily responded to in action—clapping,
swaying, dancing, tapping your foot. In contrast, through history, temporal relations have
shown themselves to be persistently problematic to represent. In this regard, the history of tl
evolution of music notation is particularly cogent. Beginning around the 9" century and up
until the 13" -14th Centuries, notations had been kinds of gestural squiggles inserted above |
words in religious texts to guide the singers in how to coordinate words and music. These

graphic marks, called neumes, represented whole little motifs as shown in Figure 1 where
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neither pitch nor rhythm (“notes”) was specifically indicated at all. Thus, singing the text fro
this notation depended largely on singers knowing the melody already—that is, the notatior
was essentially a mnemonic device. Staff notation for pitch developed relatively rapidly, but
was only in the mid-16th Century that rhythm notation as we now know it finally emerged.
is noteworthy that, partly as a function of the characteristics of temporal organization in mu:
up to that time, a central issue had been recognizing (or constructing) the notion that an

underlying beat could serve as a "unit" with which consistently to measure and thus to

represent the varied temporal events that were to be performed.
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Figure 1. Gregorian Chant “neumes.”

The issues arising around representations of continuous time and motion are not limite
to music. Stated most generally: how do we transform the elusiveness of actions that take pl:
continuously through time, into representations that hold still to be looked at and upon wh
to reflect. Christopher Hasty in his book, “Meter as Rhythm” puts it this way:

“... how shall we account for those attributes of rhythm that point to the particularity an
spontaneity of aesthetic experience as it is happening? To take measurements or to analy
and compare patterns we must arrest the flow of music and seek quantitative
representations of musical events.... To the extent we find it comprehensible, music is
organized; but this is an organization that is communicated in process and cannot be
captured or held fast.” (Hasty, 1999: 4)!

! Time: First, does it belong to the class of things that exist or to that of things that do not exist? Then
secondly, what is its nature? if a divisible thing is to exist, it is necessary that, when it exists, all or
some of its parts must exist. But of time some parts have been, while others have to be, and no part of it
is, though it is divisible. For what is "now" is not a part: a part is a measure of the whole, which must
be made up of parts. Time, on the other hand, is not held to be made up of "nows."

Aristotle, Physics, Book IV, Chapter 10.
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Instead of finessing these enigmas, we made an effort in designing Impromptu to confrc
them. In particular, by invoking multiple representations, we tried to make explicit the
complex nature of transformations involved in moving between experienced action and sta
representations. Indeed, as we will illustrate, in the process of coming to understand and use
the impromptu representations, users’ productive confusions have led them to discover

interesting and surprising aspects of temporal phenomena.

Impromptu’s Temporal Representations
A. Graphical represenations
Figure 2 shows the Impromptu graphics left behind when one of the synthesizer drums
plays just the rhythm, the varied “durations,” of the simple tune, Hot Cross Buns. The
representation captures only the information available in clapping the tune, without singing

it.

wor ||| T
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Figure 2. A representation of the rhythmic structure of “Hot Cross Buns.” Spaces between lit

show the relative durations of beats.

The unequally spaced vertical lines show a spatial analog for varied durations. “Duratio
here, refers to the time from the onset of one event (clap) to the onset of the next. Thus, in tl
graphics, events that take up more time (go slower in action), also take up more space.
Similarly, events that take up less time (go faster) take up less space. We chose this spatial
representation for actions in time because it is easy to explain: It is like the actual trace you
would leave behind if you “played” a rhythm with a pencil on paper, moving the pencil up
and down in one place, while pulling the paper continuously from right to left. Moreover, t

representation is essentially borrowed from drawings children (even adults sometimes) mal
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spontaneously when asked to: “invent a way of putting on paper what you just clapped so
someone else could clap it (Bamberger, 1995).

The top row of Figure 3 shows the Impromptu graphics for the rhythm of
“Hot” and below it the three levels of beats that are being generated by the varied

durations of the tune—the metric hierarchy.

Hot | | | L N .
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Figure 3. Beats in the metric hierarchy show constant proportions between levels.

To understand the graphics, sing the tune and just “keep time.” That is, instead
of clapping the varied durations of the tune, just accompany the tune by clapping a
steady beat that goes with it. Watching the graphics as you clap, you will probably
find yourself clapping the mid-level beat shown in the graphics—the “basic beat”
that “fits” most comfortably with the tune. If you sing the tune again, you can also
clap a slower beat, called the “grouper,” which fits with the tune, as well. We call the
slower beat the “grouper” beat because it groups the basic beat. If you can tap both
these beats at once using two hands, you will find, as in the spatial graphics, that
there are two basic beats for each grouper beat—a 2:1 relationship between these two
rates. And, as in the graphics, you can also find and clap a third beat that goes twice
as fast as the basic beat—that is, it divides the basic beat, again forming a 2:1
relationship. To summarize, three levels of beats are generated by the tune, and
together they form its metric hierarchy.

If a piece of music, like Hot, generates a 2:1 relationship between basic beat and
slower, grouper beat, it is said to be in duple meter. In contrast, if you listen to a
common waltz tune such as Strauss’s “The Blue Danube,” you will find that the
slower beat groups the basic beat into groups of three—a 3:1 relationship thus
commonly called triple meter. Figure 4 shows a comparison between the

proportional relations among beat levels in duple meter and typical triple meter.
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Grouper 5| | | | Grouper | | |
-1 £ |
Basic beat | | | | | | | Basic beat | | | | | | |
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Figure 4. Duple and triple meter.

It should be evident from these examples that, unlike the arbitrary, outside
fixed reference units typically used to measure and calculate in mathematics and

science, (centimeter, calorie, gram), beats, as units of measure in music, are actually

generated by the relations among events internal to the music itself. Beats are not
seconds or any other “standard” unit of time. Instead, these are self-generated units
that are used, in turn, as a kind of temporal ruler to measure the durationally varied
events that are actually generating them—a nice example of self-reference.’

The periodicities at each level and the proportional relations among them arise
because the relations among the varied durations of performed events are also
primarily proportional. Figure 5 again shows the beat hierarchy as self-referencing
units of measure of the proportional durations of Hot, this time with words to

emphasize the relation between the surface-level of the melody and the metric
hierarchy as temporal ruler:

Grouper | | | | | | | |
E oo L T I e e s R B
beat
Hob  cross  buns Hot cross  bumd ——— one g penmy fwo 4 pen Ny Hat  cross buns
vwider| | | [ LI PP
Figure 5. Proportional relations of Hot.
Note that:

% Scientists also try to use “natural units,” sometimes—such as the atomic mass unit, or the frequency of
some basic oscillation, which illustrates the same self-referential strategy. The problem with the
scientific use of units is that they often need to measure diverse phenomena. Musical beats, for the most
part, need analyze only the “present piece.”
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e The duration of events on the words, “Hot” and “cross” coincide with, and
actually initialize, the unit beat;
e the durations on the word, “buns,” are twice as long—lasting two unit beats,
thus coinciding with the grouper beat;
e each of the 4 events on one-a-pen-ny, are half as long as the unit beat—they
go twice as fast, thus coinciding with the divider beat.
While we do not usually listen just to this underlying temporal metric, it forms the
framework within which we hear both coherence and also, as we shall illustrate, the

excitement associated with composed perturbations of it.

B. Numeric Representations

Durations are more precisely represented in Impromptu by whole numbers.
The general principles are this:

e Larger numbers represent longer durations, smaller numbers
represent shorter durations. The smaller the number, the faster
events will follow one another.

* Proportionality of time can be seen in proportionality of
numbers: e.g., durations of 2 following one another go twice as
fast as durations of 4; durations of 6 following one another, go
twice as slow as durations of 3.

Thus, the beats at the three levels of a typical, duple meter hierarchy can be
represented and generated in Impromptu by specifying integers that have a 2:1
relation between each of the adjacent levels of a percussion piece.

Figure 6 shows, as an example, a portion of an Impromptu computer screen
where three levels of beats played by three different percussion instruments are
producing a typical 2:1 duple meter hierarchy.
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Figure 6. Duple Meter

The large boxed numbers, called “drumblocks,” in each channel (voice), specify
the duration of events that are repeatedly played by a synthesized percussion
instrument—thus generating a steady beat.

The “repeat box” at the left of each voice indicates how many times a
drumblock in that voice is to be repeated. As can be seen in the graphics, the 12-block
at the top level is repeated 8 times, and it “goes twice as slow” as the 6-block, which
is repeated 16 times. The 3-block in the bottom channel “goes twice as fast” as the 6-
block, and it is repeated 32 times. The total time in each voice is the same,
demonstrating the reciprocal relation between frequency (more properly,
repetitions) and period (or duration of the repeated event). That is, assuming a fixed
overall length of time, the repetitions specify frequency (number of events per unit
time), and the value of drumblocks specifies duration of each event [number of
(absolute) units per event], and these are inversely proportional to each other.

In the graphics window at the bottom of the screen, the relative space between
lines at each level reflects the relative value of beats in each of the three voices.
Thus, since spaces between lines show proportional relations between beats, when
the play button in Impromptu is pressed, the sounding events represented by the

3 In this sense more beats are accomplished.
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vertical lines in the middle voice, for instance, will go by twice as fast (twice as
frequently) as sounding events in the top voice.

Figure 7 shows an example of just two levels (basic beat and grouper beat) of a
triple meter hierarchy. The beat (drumblock) values in this example (6 & 2) have a
3:1 relationship while the repeats (3 & 9) have the reciprocal 1:3 relation. The
graphics in this example are an alternative representation (“rhythm roll”) where the
time /space between percussion attacks is filled in. Rhythm roll contrasts with the
vertical line graphics (“rhythm bars”), where the lines mark just the on-sets (or
attacks) of each event. Figure 8 shows the same triple meter hierarchy represented in
conventional rhythm notation.

CEAE

d=J1

J: J J
T B I I

Figure 7. Triple meter Figure 8. Triple meter
Rhythm bars Conventional notation

Four kinds of representations have been discussed thus far—spatial graphics (2
forms), numeric, and conventional rhythm notation. Figure 9 shows the four

representations for the same tune, Hot Cross Buns.

10
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Impromptu
spatial motations | || || || [[[[[[[[] | ]
{rhythm bars}

{rhythm roll) I I N E— . E—

Impromptu
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Standard notation

IS RTNI

Figure 9. Multiple representations.

Like all representations, each captures some features while ignoring or minimizing
others. For example, thythm bars highlights onsets, which are so critical to listeners’
perceptions of music; rhythm roll highlights duration. Note that the duration of the
final event is simply not shown in rhythm bars. Standard notation shows metric groups

s

with connecting beams (“one-a-penny,” “two-a-penny”), while ignoring others
(phrasing, motivic grouping). The numerical representation highlights precise
durations and ratios. Reflecting on the ontological differences (the differences among
“what they refer to” and emphasize) among these representations brings to the surface
the enigmatic nature of representing time and motion as experienced in music, while
also pointing to the multiple distinct, but related (and confoundable) aspects of the
phenomena, itself. So despite our efforts in designing Impromptu to derive
representations in close relation to the common experience of clapping a beat or a
familiar rhythm, the elusiveness of representing complex, multi-aspected experience
remains. These issues have emerged particularly in our observations of various users of
Impromptu. As we will illustrate in what follows, the confusions that arise are often
more revealing and enlightening than bothersome.

Multiple representations and the different perspectives they offer are important
particularly in an educational (as opposed to professional) environment. Individuals in

particular disciplines tend to take the objects and relations named by descriptive,

11
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symbolic conventions associated with the discipline as just those that exist in the
particular domain. Through practice, symbol-based entities become the objects, features,
and relations that tacitly shape the theory and structure of the domain—how users
think, what they know, teach to others, and thus what they take to be knowledge. As a
result, units of description may come perilously close to (pretending to be) units of
perception—we hear and see (only) what we can say.

The ontological imperialism of homogeneous symbol systems is educationally
problematic in at least three ways. First, the discipline is often (or always) much more
than what can be easily captured in (small numbers of) conventional representations.
For example, novice musicians can “play the notes” but miss phrasing, nuances of
emphasis and pace change that distinguish “musical” from “mechanical” performance.
Furthermore, the notations do not show novices how to hear even the entities that are
most easily depicted. Conversely—and finally—conventional notations may not
adequately capture the easiest-to-hear aspects of the phenomenon (Bamberger, 1996).

What, for instance, do we mean by “faster” in musical situations; how would you
teach that meaning to one who didn’t easily perceive it; and how does it show up in
various representations? The language of “going faster (or slower),” in fact, is
exceedingly natural and usually spontaneously applied in everyday talk. However,
continuing the conceit that it is not obvious, a sensible explanation (word
representation) is surprisingly difficult. We might make the presumption that the root
meaning of “faster” refers to physical motion—getting to a standard place in less time,
or getting to a more distant place in the same time. But, marking a beat literally “goes”
nowhere.

We might try to explain that “motion” through time is metaphorically related to
motion through space. But this explanation has the fault that “faster” level of the
hierarchy of beats doesn’t get to the end of the piece any more quickly.* The most

obvious description of “faster” here is “more beats per unit time.” But this presumes the

* Although this is not a paper about word semantics, we feel it is plausible that the root meaning of
“faster” that makes it transparently descriptive of both musical pace and physical motion is that
“more is happening in a given time.” In the case of motion of objects, more distance is accomplished, and
in the metaphorical sense more beats are accomplished. A more concrete explanation of the connection
between the senses of faster is that in our common experience of running, increased frequency of steps
(beats) is associated with increased speed of locomotion. So it is easy to “read” increased frequency

(beats per unit time) as “increased speed.”

12
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understanding of a technical concept, frequency, and in any case does not account for the
intuitive obviousness of the characterization that we would like to achieve.
Let us turn to graphical representation of “faster”: In Impromptu, faster is shown
numerically by the numeral on a drumblock, the beat value, which shows the
“duration” of the events that are repeatedly played. That convention is both highly
functional and useful in that it leads directly to important mathematical insights about
music (see later sections). But, it might well be viewed as “unnatural” by scientists, who
see “faster” better expressed by frequency (events per unit time), which varies inversely
with duration. Doubling a beat value halves the frequency (“per unit time”) of beat
events. Indeed, many people, not just scientists expect a bigger drumblock number to
correspond to a faster pace.
Ontologies are difficult things. Descriptions or representations are, at best partial.
Certainly some make better starting points, perhaps connecting better to naive
experience (e.g., thythm bars and clapping). Some, also, make better conduits to
normative representations and expression (numbers). Others, and relations among
representations, might raise good questions, initiate good inquires. We don't
systematize or settle these issues in this paper, but highlight them and the deep
cognitive issues they represent in the data to come.
One additional brief example will show a more realistic problem of
representation, ontology, and instruction. Consider an instance of musical
terminology—a conventional definition of triple meter.
"3/4 meter (or 3/4 time) means that the basic values are quarter-notes and
these recur in groups of three. Such metric groupings are indicated by bar-lines
that mark off measures." (Harvard Concise Dictionary of Music, 1978)
Notice that the definition is intra-symbolic, exclusively in terms of the symbols of
conventional notations, themselves (“3/4,” “quarter notes,” “bar-lines,”
“measures”). The definition is, so to speak, about the notation more than about the
musical phenomena being represented. Such definitions finesse the fundamental
issue of how one perceives the given relations in favor of how one denotes them.
“Limiting vision” to formally notated aspects is particularly problematic in music
since, in the service of giving concise performance instructions, the notation leaves
out critical aspects of the coherence directly experienced by the listener.

Definitions in terms of representations hide ontological aspects of the
experienced phenomena. One cannot literally hear quarter notes or bar lines, so the
perceptual objects to which these symbolic objects refer are not even obliquely

referenced in the definition. By the same token, conventional music notation

13
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makes it more difficult to go beyond the features represented by these conventions
to other phenomena that share similar underlying structures (harmonics in sound
analysis, gears, pendulums, patterns in laying multiply-sized tiles).

We conjecture that definitions that finesse perceived relations in favor of how
one denotes them severely limit the sense students can make of mathematics and
science. In this regard, diSessa and Sherin (1998) have argued that the essence of
understanding some scientific concepts lies precisely in developing strategies that
allow for the perception of (“noticing”) the entities and relations of the conceptual
fields in question within the varied phenomena in which those entities and
relations occur. We believe this is a deep, rather than accidental relation between
music and science, and that the cognitive theory of music shares much with that of

mathematics with respect to representation and ontology.

WORKING WITH CHILDREN

Organizing Time

The examples that follow illustrate how the group of six 6th grade children
with whom we worked were sometimes guided by Impromptu’s multiple
representations and appeal to multiple sensory modalities. In addition, confronting
differences in representation stimulated provocative questions as the children
interrogated one another’s work. As they developed projects in this environment
the children discovered principles of embodied mathematics in the common music
all around us and also went on to use their discoveries to create original melodies
and rhythms. The initial examples focus on rhythm where the mathematics is most
clear. More subtle and perhaps more interesting intersections between music and
mathematics were discovered as the children composed melodies—particularly as
the graphic representations helped them come to consider patterns such as
symmetry, balance, grouping structures, orderly transformations, and structural
functions. Structural functions include, for instance, pitch/time relations that
function to “create boundaries,” or entities (e.g., phrases) some of which sound
“incomplete” and thus function to move a melody onward, in contrast to entities
that sound “complete,” thus functioning to resolve or settle onward motion.
Structural functions are not directly shown in either conventional notation or in
Impromptu’s notations. And yet, as we will show, these structural differences are
immediately noticed by children who have grown up listening to the familiar music
of this culture.

14
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Examples
Example 1a: By the third session of the project the children were generally familiar
with Impromptu’s proportional rhythm notation and with the computer
synthesizer’s percussion instruments. This session began with the children, as a
group, playing real drums. One child played a slow, steady beat on a large Native
American drum. We asked the others, using claves, woodblocks or just clapping, to
play a steady beat that went “twice as fast. With just a little guidance, the children
were quite quickly able to create the two levels of beats.

Then we asked the children to use the computers to make a drum piece such
that two of Impromptu’s percussion instruments, each playing its own part, would
play beats that were related to one another like the beats they had just played on real
drums. That is, they should experiment with Impromptu drumblocks and pairs of
percussion instruments so that one of the instruments in one channel would be
playing “twice as fast” as the percussion instrument in the other channel. They
should find as many different pairs of drumblocks with this relationship as they
could.

Figure 10 shows examples of Sam’s and Anna’s first solutions for the task.

Elt’ E E'[}E
EII} s @I[}
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Figure 10. Sam’s and Anna’s “twice as fast.”

Sam has 6 repeats for his 4-beat and also 6 repeats for his 2-beat. Anna makes
10 repeats for her 6-beat and 20 repeats for her 3-beat. Max, listening to the two
examples, had an interesting question: “How do you make them [the instruments]

come out even, ‘cause Anna’s do, but Sam’s faster beat stops too soon?” Anna

15
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explained that, “...like 3 is twice as fast as 6, so the ‘repeat’ has to be twice as much,
too.” Sam tried it—making his 2’s repeat twice as many times (12) as his 4’s (6). He
also switched to the rhythm roll graphics in order to see more clearly that the two

drums really did come out even (Figure 11).

==
]

A |

Figure 11. Sam's new solution.

Listening to the result, Sam had a different way of explaining what he heard:
“It works because the 2 is half as big, so it gets twice as many repeats as the 4. I mean,
the “twice as much’ is the same but it’s in reverse—4 is to 2 like 6 is to 12 only upside
down.” We think it is quite likely that the evident spatial relations of size and
number in the rhythm roll graphics supported Sam’s insight and way of talking
about it. One can literally see (if one is attuned to such things!) “half as big” and
“twice as many.” “Upside down,” on the other hand, refers to vertical placement of
the duration numbers (drumblocks) on the Impropmtu diplay in relation to the
repeat numbers (and/or possibly the spatial representation of standard fraction
numerals—note Sam’s “formal” language: “4 is to 2 like 5 is to 12”). The design of
Improptu, with corresponding numbers in a vertical relationship, encourages
making the connection to standard mathematical presentations of ratios or
reciprocal relationships.

Sam, learning from Anna, had discovered that there is a reciprocal relation
between duration of events (how much) and number of repeats (how many). That
is, if the total time is the same for both instruments (they “come out even”), the
ratio for the durations and the ratio for the number of repeats is the same but, as
Sam said, “in reverse” (or “upside down”).

These students are exploring and describing relations among particular kinds
of phenomena in a specific situation. In order to confront the implicit ontologies of

16
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representations and perception, let us couch the children’s descriptions in the

mathematical terms of the following equations:

mx =c
ny =c
(x>y)

We emphasize that the equations do not express the same meanings or even
(necessarily or transparently) refer to the same kinds of entities as the children’s
descriptions. Specifically, The power of the equations lies precisely in generalizing
beyond any particular phenomena and any specific situations. One could go on to
specialize the meanings of those equations with the following statement: This pair
of equations expresses the accumulation of a number (m and n, respectively) of
instances (measured by x and y, respectively) that total a constant amount (c). While
This description is still more abstract and general than the students’ meanings.
However, it is more specific to this case than the pure algebra because the terms are
intended to refer to things to which the students are responding, such as iterations,
accumulation, and total. But the equations miss what Anna sees directly something
that is only implicit in the equations: She says “...3 is twice as fast as 6, so the ‘repeat’
has to be twice as much, too.” To relate this to the equations, we must do several
things: First, we must connect the second equation, ny = ¢, with the size of y
(smaller) and the intuitive perception that this condition is “faster.” Then, we must
connect this with the inference that the faster occurrence (involving y, which is less
than x) must receive more repetitions. Thus, in equations, Anna is stating that n
must be greater than m). In fact, “faster by a factor of two” translates into “more by a
factor of two.”

That Anna has an intuitive feel for multiplicative, as opposed to additive,
relations seems fair enough and this is not a trivial accomplishment in itself. Anna
is almost certainly not learning that here, although other students might be (in
particular, Sam might be, though he did express his own version of the sense he
made of this constraint after it was pointed out to him). However, neither Anna nor
Sam’s explanations have any of the generality of the formal mathematical
statements. Both Anna and Sam’s descriptions apply specifically to this situation
and what they are hearing as influenced, in part, by the particular notations of
Impromptu: Numbers afford easy expression of multiplicative relations, and also,

for example, Sam plausibly saw “half as big, but twice as many” in rhythm roll
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graphics. Put most directly, Anna, with Sam learning from Anna, have succeeded in
recognizing in this situation, relations that are reminiscent (“correctly” and
insightfully so) of relationships they have seen before (and will see again) in their
“school math.” The significant thing is that they have, indeed, recognized the
relations while working in an entirely new medium, and they have been able to put
them to work in this new situation; the particular, musically important work to be
done is “to make things come out even.” This is, we believe, a move in the
direction of generalizing.’

However, we can be quite sure that the students cannot generalize these
relations in the way expressed in the formal mathematics, and this raises interesting
and fundamental questions: How can we describe the specific ontological differences
between the students” understanding and the implications of the mathematical
formalisms; what is the nature of the transformations involved in moving from
limited practical situations to generalizations such as expressed in the proposed
equations? And why is this move apparently so difficult?

Backing off from intractabilities, what we do see (we believe irrefutably) in the
students” work is the following: Some students (Max and, initially, Sam) do not
immediately perceive the relations that Anna notices immediately upon being
questioned by Max. But in the context of sounding events coupled with the use of
graphical and numeric representations, they are able to generate, perceive, and thus
validate these relations. From this we infer that (1) the multiple Impromptu
representations and their immediate sound-back in familiar musical structures can
help students understand (possibly, generalize) the basic relations involved, and (2)
these can be steps toward understanding proportional reasoning robustly in a range

of situations.

Example 1b. Joe made several pairs of drum beats that worked: 10 and 5, 8 and 4, 6 and 3
16 and 8. Playing back what he had made for the other children, Joe said, as if just telling the
obvious, “Well, they’re just equivalent fractions”! Joe again made a direct connection

between sounding rhythmic structures and school math: the equivalence of equivalent

® Notice that generalizing amounts to adding a new, particular way of interpreting some basic
mathematical relations of proportionality. This view of “generalizing” (bringing to more contexts) not
by abstracting, but by adding “concrete” instances of reasoning is inherent in the ideas in diSessa &

Sherin, 1998, and also in some more recent work on “transfer” (Wagner, 2003).
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fractions could be heard! We don’t take it to be a trivial matter that this child has found a
context in which the equivalence of fractions is directly salient and also powerful (identifyin
things that “sound the same”)—in contrast to an inference based on rules that have been
memorized. See also, Arnon, Nesher, Nirenburg (2001).

Overall, the children, working in an environment using joined media (numbers, spatic
representations, and sound-in-time) were able actually to generate coherent structures using
their understanding of the principles of ratio and proportion expressed and experienced in
novel situations; they were learning about the reciprocal relationship between how much
(duration) and how many (frequency); and they were learning the connection between
equivalent fractions and proportion embodied by pairs of iteratively sounding events that ar
different in absolute “speed,” but the same in their internal relations.

We played out these relations with other students in a different modality. First, we
marked off 8 equidistant lines (about 1 foot apart) on the floor. Then, while one child played
a slow beat on a big Native American drum, two other children, side-by-side, walked “in
time” with the drummer. The children were given the following instructions: “One of you
(Rachel) will walk along stepping on each line in time with the drummer. You (Simon) will
take two steps for each one step of Rachel’s and two steps for each one of the drummer’s
beats. But you have to arrive together at the end of the lines.” Thus, the students were doing
in action—literally embodying—what Anna and Sam did using the computer and the trace
left by the rhythm bar graphics. When the children had reached the end of the marked lines,
we asked, “So who was going faster, Rachel or Simon?” The first and immediate response
from several children was, “Simon!” But then Simon quickly added, “But we arrived at the
end together.” Considerable discussion followed. Agreement was finally reached when
Steven proposed that “Simon’s feet were going faster, but their heads were going together.”

Of particular importance is the effectiveness of the activity and the environment (whic
includes, again, sound, action, and periodicities as units of measure) in externalizing what
might otherwise be tacit dilemmas. Specifically, the students are working to stabilize the
multiple possible senses of going faster—“attend to feet,” or “attend to heads.” Although we
do not pursue this stabilizing here, later on, playing with huge cardboard gears and also with
pendulums, these same children were able to distinguish linear from rotational speed, and

between linear speed and frequency: Linear speed—the number of teeth passing a point in

19



January 15, 2003

unit time—is preserved in contact between a bigger and smaller gear; but rotational
speed—revolutions per unit time—is not. A pendulum offers a similar challenge. As it
winds down, linear speed decreases, yet “speed of repetition” stays the same. (For more on

the children's work with gears and pendulums see Bamberger, 1990 & 1998.)

Example 2: During the next session in working with Impromptu, we (JB) suggested the
children try a beat with a duration value of 4 (a 4-beat) in one percussion instrument and a 6
beat in another. See Figure 12. Listening to what they had made, they agreed that it sounded

“really cool.”

ERI=

C=

Ry=

Figure 12. 6:4 sounds “really cool.”
Going on, we asked, “So where do the two drums meet? Where do the 6-beat and the 4-

beat come together at the same time?” Using the rhythm bar graphics to make it easier to see

where events came together, Kathy said, “They meet at 12” (Figure 13).
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Figure 13. “They meet at 12.”

When Kathy was asked how she knew, Joe interrupted to say, “Oh that’s that least
common multiple stuff!” To test if we could really hear this “least common multiple,” we
added a third instrument playing the 12-beat (Figure 14). Listening to the result, it was as if
the 12-beat “pulled the other two beats together.” Once again, perceived rhythm met school

math.

Figure 14. “Least common multiple stuff.”
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It is important to note that the coincidence of periodicities is not intrinsically about leas
common multiple. But when experienced in a context that numericized the control of
repetitions, coincidence came to be about least common multiple.

Further discussion and experimentation revealed more connections between
mathematics and music: For instance, there were two 6-beats for every three 4-beats. “Well,
of course, because it takes 2 6’s to make 12 and 3 4’s to make 12: 6 x 2 is 12, and 4 x 3 is 12.”
Looking and listening, those expressions became more clear as they became sound in action:
You could see and hear that 6 x 2 means, “do 6’s, 2 times,” and 4 x 3 means, “do 4’s, 3 times.”
We could also see and hear, once again, that the bigger number and the slower beat needed
fewer elements (2 of them), while the smaller number and the faster beat needed more
elements (3 of them). Moreover, the 2:3 in number of beats per common multiple was the
same ratio as the value of the beats, 6:4, “but upside down.” And finally, the number of
repeats in each instrument, 16:24 was the same ratio as 6:4 but still “upside down.” And all
for the same reasons: bigger/slower events need proportionally fewer elements than
smaller/faster events to be equal in total time.

So why did the drums sound so “cool”? This is an example of rhythmic tension,
“excitement” as described earlier. In this case, there is a tension or conflict in a mismatch.
The second of the duple meter (6) beats “misses” the background triple meter (4) beat—whic
gets resolved in a convergence at regular time intervals (on the 12-beat). We might say that,
on the way to the common slowest beat (or the common multiple), there was tension (2
against 3); yet, that tension is neither confusing nor chaotic because it is always quickly
resolved. In all, the rhythm was more interesting/exciting than the regular alternation (as ir
2:1). Stravinsky uses exactly this metric conflict with its regular resolution at the common
multiple (“dotted half note”) to striking effect in Petrushka, where he pits a triple meter
Viennese waltz tune against a compound duple meter accompaniment (for more, see
Bamberger, 2000).

Listening carefully to the computer version along with the graphics, the children
managed to play the 2:3 rhythm on their percussion instruments. Reflecting more generally
about representational affordances, we note that the mathematical /musical inquiry into the
relationships we heard would hardly have emerged if we had been using the conventional

representation of compound duple meter against triple meter as shown in Figure 15.
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Figure 15. Metric contflict: Triple against duple.

The usefulness of a representation, of course, depends on the purpose for which it is
intended. For example, on one hand, if the meanings of conventional notation symbols hav
been internalized—say we are dealing with conventionally conversant performers—playing
the rhythm from the notation in Figure 15 would be much easier than interpreting the
Impromptu numbers, 6:4, especially without the graphics.

Notice that in Figure 15, for example, the unit beat in duple meter (or more technically,
compound duple meter)’, is notated as a “dotted quarter note,” while in triple meter, the
unit beat is notated in a different way, as a “quarter note.” The two different unit-beats share
a common slower beat, the common multiple notated as a “dotted half note.” However, the
relation “common multiple” is obscured in the notation in part because the representation i
limited to conventional note symbols rather than their implicit arithmetic relations. Of
course, specific note names are internalized and effectively used by professionals. However,
that efficiency comes at the cost of clarity with respect to more general mathematical
structure. Moreover, in playing from a score, a professional scanning a passage such as this,
uses familiarity with the specific, local spatial pattern of the conventional notation (rather

than “a note at a time”) not at all the calculations or the potential generalizations that are

¢ The term, “compound duple meter” refers to the triple grouping of the unit beat. As indicated by the
6/8 meter, the underlying unit is an 8" note. Howeved, the grouper beat must then be notated as dotted
quarter note, which includes three 8" notes. The two dotted quarter notes in a “measure” convention
accounts for the term, “compound.” Understandably, this is very confusing for beginning students, and

almost entirely for representational reasons.
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implied. Conversely, it is exactly Impromptu’s proportional, integer notation that led to the
children’s insights concerning common multiples and proportional relations.

The children went on to use what they had discovered in these experiments as the
basis for composing percussion accompaniments for melodies. The projects involved first
listening to a melody played by an Impromptu synthesized instrument (flute, clarinet, vibes,
etc.), then finding proportional values for beats at three levels of a metric hierarchy that fit
with the melody. Using the found hierarchy as a framework, they children composed
patterns of varied durations played on percussion instruments that reinforced the hierarchy,
as well as accompaniments that created conflict (but not chaos) with the rhythm of the
melody. They agreed that making just the proportional relations “sounded good” but was

boring.

Composing Melodies: Embodied Patterns

At the beginning of a later session we introduced an idea that is powerfully shared by
structures in both mathematics and music—looking and listening for patterns. We began
with the question, “What is a pattern?” Sam answered, “Something that’s repeated more
than once.” After a moment, Katherine said, “But 1, 3, 5, is a pattern because it skips one
every time.” We left the meaning of pattern hanging for the moment, but intended to come
back to it. Their previous insights—common multiples, equivalent fractions, reciprocal
relations, proportion, ratio—are also patterns, of course, and like most patterns, these
involve noticing relationships that maintain their integrity across media and sensory
modalities.

Focusing, now, on melodic patterns in preparation for composing melodies, we
asked the children to listen to some short melodic fragments—called “tuneblocks” in
Impromptu. We begin melodic composition with these short but structurally meaingful
elements because research has demonstrated that, in contrast to conventional music
notation where the units of description are individual “notes,” intuitive units of
perception are at the more aggregated level of whole melodic fragments (Bamberger. 1991;
1996). Indeed, “tuneblocks” represent the same level of musical structure as the very early
neumes. Figure 16 shows an abbreviated version of the Impromptu Tuneblocks screen for

composing with the set of tuneblocks called “ELL”
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Figure 16. Impromptu Tuneblocks screen.

Tuneblocks can be heard individually by clicking the icons in the Tuneblocks area. Th
designs on the icons are neutral graphics with no reference to the melodic “shapes” that the
blocks actually play. The intention is to focus students’ attention on their own musical
perception, listening to the melodies rather than looking at partial representations. To build
tunes, blocks are dragged into the “Playroom,” arranged and then played back in any chosen
order. Blocks placed in the Playroom can be seen in several kinds of representations in the
graphics area.

To make it easier to refer to the blocks, we gave them number names from 1 to 7

according to the order they happen to appear in the Tuneblocks area as shown in Table 1
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Table 1. ELI Tuneblocks.

Asking the children to listen for patterns, now, we clicked Block 1 and then Block 6 in
the Tuneblocks area. (Remember, the children were only listening with no visual cues
yet—not even Impromptu graphics.) Anna said, on hearing Blocks 1 and 6, “The rhythm is
the same,” but several other children immediately insisted, “No it isn't!” Exploring the
source and meaning of this disagreement would be a continuing concern, but in the short
term, we suggested that the children could experiment by clapping just the rhythm of each o
the tuneblocks. Listening to their own clapping, the children agreed that the rhythm of the
two blocks sounded “pretty much the same.” To test further, we listened to the two
tuneblocks again, this time dragging them into the Playroom area so we could listen and loo

at Impromptu’s rhythm roll graphics while the blocks were playing (Figure 17).
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Figure 17. Blocks 1 and 6 in the Playroom with rhythm roll graphics.

Joe agreed that the rhythm of the two blocks looked exactly the same, but then he asked,
almost petulantly, “Well then, how come they sound so different?”

Looking this time at a different representation of the same blocks—pitch contour
graphics (Figure 18), the children noticed differences: Block 1 “just goes down,” but Block 6

“goes down and then up,” and both blocks “end in the same place.”

Figure 18. Blocks 1 and 6.

While not arriving at a complete answer to Joe’s question, (which continues to tease

music theorists, as well—e.g., Hasty, 1997), just working with these two blocks and looking a
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different representations, the children were able to shift their focus between two dimensions
of the same melodic fragment—pitch and duration (rhythm). After some discussion the
children did conclude that it had to be the differences in pitch (the “ups and downs”) betwee
the two blocks that made the same rhythm sound different. Moreover, in terms of level of
detail, in first listening to and looking at the block representation, their focus of attention ha
been on the integrity of the entities as a whole. As they looked for patterns and compared
pitch contour and rhythm roll graphic representations, their focus moved down the
structural ladder (from the block level) to greater detail—to duration and pitch (the note
level). Differences in representation, and their own actions (e.g., clapping “just the rhythm”)
disaggregated the two properties, duration and pitch, which before were simply absorbed intc
the gestalt of the structurally more aggregated tuneblocks.

In more general theoretical terms, we believe it is appropriate to say that representation
and operationalization processes (e.g., representing-in-action) psychologically create the
separate aspects; they don’t just “reveal” or demonstrate them. Working in the Impromptu
environment, graphics along with other tools helps in this process of disaggregation and
with it the emergence of new aspects by making it easy both to see and to hear, as in this
instance, just the rhythm or just the pitch of a block. Perceptual influence across dimensions
without these facilities makes such a process much more difficult than might be imagined. I
fact, while listening to the unfolding of a melody, it is exactly this confluence, the perceptual
inseparability of dimensions, that gives an event in the moment its particular “meaning” or
function.

In technical terms, we would describe this as a perceptual influence across parameters or
across aspects. That is, patterns heard in one parameter (e.g., pitch) influence or disguise
patterns perceived in another parameter (e.g., thythm) as compared to when one or the othe
aspect is somehow isolated so as to become the single focus of attention. For some specific
examples, see Bamberger, 1996. This basic phenomenon undoubtedly reflects, at least in som
instances, why experts cleanly see “the structure” of two instances of some phenomenon as
identical, and yet novices do not. Identity, similarity, and the disguising effect of context (anc
how to sort these out) will continue to play a role in later discussion about tunes and the

relation of fragments composing them.
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Functions, Fragments, and Transformations: What Makes an Ending?

Once pitch and duration were differentiated, the children had a basis for noticing new,
rather subtle patterns of similarity and difference in other pairs of blocks. For instance,
listening to Blocks 2 and 5 while watching the pitch contour graphics (Figure 19), Max, who
was a very shy child, quietly said of this pair, “The second one [5] sounds ended but the first

one [2] doesn’t.”

il
E

Block 2 Block 5

Figure 19. Blocks 2 and 5.

Playing the pair again, the children agreed with Max, but then Kathy made a surprising
discovery: “But all the notes are the same in both of them except for just the last two!” This
prompted the same question as before: “Well, then, how come they sound so different?” Buf
added to that question was, “And what makes something sound ended, anyhow?”

As the children listened to these two blocks, comparing them with a focus on patterns,
their attention had shifted to differences in structural functions (e.g., tension, moving
onward, in contrast with resolution, arrival), along with a very basic and critical question:
what makes a certain pitch sound stable, resolved, “ended”? Once again the children had
encountered a situation that raised questions central to our perception of musical structure.
We did not pursue this path very far with these children. From our experience with college
students confronting the same questions we have learned that it takes a lot of inquiry and
experimenting before they can arrive at even a tentative answer. Indeed, while music
theorists give names to this focal pitch (a “tonal center”), the question of why, in much
Western music, only one pitch in a given pitch context is heard as generating an ending, is

one to which theorists continue to seek more consistent and causal answers (e.g., Dahlhaus,
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1990). And yet, to hear an ending or resolution function in the familiar music of our culture
is something even very young children can do.

One way we have tried to explicate this seemingly intuitive but culturally-specific,
learned phenomenon, is with the following experiment: Impromptu makes it easy to use ar
entirely different set of pitches to play a sequence of notes that keeps the internal pitch and
time relations the same as in the original tune. Now the tune maintains its identity (it is
heard as the same tune), but listeners hear a different pitch as the most stable—i.e., a new
pitch has acquired the “ending” function, “tonal center.” In music theoretic terms, changing
a pitch collection but keeping internal relations (pitch and time intervals) the same is called
transposing the melody. It was easy to program the Impromptu software to transpose, exactly
because transposing is an example of a rule-driven transformation.

Going on with the children’s focus on patterns, we listened to Block 4 from the ELI set.
Surprisingly, Kathy noticed that Block 4 was, “...a piece of block 2—the end piece—with the
rhythm changed” (Figure 20).

|
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Block 2 Block 4

Figure 20. “...a piece of block 2.”

Music theory refers to this kind of modification as fragmentation. Fragmentation is one
of a group of transformation techniques whereby composers preserve some aspect and thus «
sense of cohesiveness, while generating (and allowing further) variation, often generating a
new structural function. In the case of fragmentation, the fragmenting of a melodic entity
also increases the rate of events—that is, boundaries of entities occur more quickly as we
shall see later in Kathy's composition.

The focus on patterns had led to hearing both similarities and differences in comparing

blocks. Patterns did include repetition, but also patterns of change—like Kathy’s 1, 3, 5
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pattern. For instance, listening to Blocks 3 and 7, the children said that Block 7 was just Block
3 “shoved down” (Figure 21).

Block 3 Block 7

Figure 21. “...shoved down.”

This is another kind of very common transformation of a given entity where the
pattern of pitch and time relations remains intact, but the whole pattern starts one step lowe
(or higher) along the scale—it is literally “shoved down” in conventional or pitch contour
representations. Once again, the Impromptu pitch contour graphics helps to make this
relationship quite vivid for students. Called a “sequential relationship,” Baroque composers,
particularly Vivaldi, often used it as the basis for extending whole compositions. (Sequential
relationships are not necessarily transpositions, since pitch intervals are not preserved in

“moving a note sequence” up or down the notational staff.)

Abstracting a core mathematical structure

This section is different than the previous and next in that it seeks to draw out
some mathematics that the students (and possibly some readers) do not see in the
music. It is provocative (we hope) in setting a future agenda of further exploring
what mathematics is implicit and might be learned in the context of music, and in
terms of what mathematics might be productively used in thinking about music. It
is clearly speculative in that we have not tried to “draw out” this mathematics, and
we do not know exactly what aspects of a computationally supported context might
facilitate it, in the way Impromptu notations seemed to support student
appreciation of the inverse proportional relationship of “how much” and “how
many.” This provides an “experiment in waiting.” If we can succeed in drawing out
and making this mathematics functional, will that work in the same way as the
above (and below) instances; if we can’t, what is different about this mathematics?

The mathematical structure at issue underlies two of the central phenomena

encountered above. In particular, it underlies the easy and natural ability of children
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(and adults) to perceive rhythmic invariance under a change in the tempo—that is,
the rate of the underlying beat (or the duration of the temporal unit). For example,
the children had little difficulty producing multiple examples where the
proportional relations between beats (2:1) stayed the same but the absolute durations
of beats, and thus the tempo, varied (e.g., 6:3 or 10:5). Similarly, the children had no
difficulty hearing invariance when pitch contour is maintained but shifted along
the pitches of a given scale, as in the commonalties between the two blocks depicted
in Figure 21. More dramatically, it accounts for transposition—the perceived
invariance when a tune is played “in a different key.” Even though one uses a
different set of absolute pitches, as long as the internal relations of pitch and time
are kept invariant, listeners hear both versions as the same tune. Indeed, if the two
hearings are sufficiently separated in time, listeners may not notice the difference at
all!

A simple model of the mathematical structure we seek to explicate is to
imagine a “thing” that contains “pieces” and “relations among pieces.” For example,
the thing might be a melody, or it might be a drum piece—such as a drum “riff” in a
marching band or a jazz improvisation. In the case of a melody, the natural “pieces”
are pitch/duration events (notes) and possible relations are the pitch/time intervals

ars

between notes. In the case of a drum piece, one might call the “pieces” “sound
onsets” since that is actually the perceptually most relevant element. The relations,
then, would be “durations,” that is, the time between onsets. Some relations might
be regarded as pieces in their own right (e.g., durations), and hence relations of
relations (see below) might be considered.

In school and professional mathematics, a typical “thing” might be a geometric
shape or construction, the pieces might be points or lines, and the relations among
pieces could be distances between points or angles between line segments.

To make our mathematics, we need one more kind of thing: We need
“transformations” that map one thing onto another. Thus, we might consider the
transformation that maps one instance of a given melody onto another, one
instance of a given drum piece onto another, or one instance of a given geometric
figure onto another. We presume that the mapping “induces” submappings among
the pieces, that is, we can identify the notes in the transformed melody that

correspond to (map from) the notes in the original melody, or which points in the
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transformed shape correspond to which points in the original one.” If we do have
the mapping between pieces, then we can ask whether corresponding relations are
the same, before and after the transformation. When corresponding relations are

the same, this is called invariance.

Mathematicians might be happier with some further specification and
notation. But again we wish to emphasize that we are now moving into a
notational realm that may refer to different kinds of entities and relations, and
certainly operates at a different level of generalization. In particular, we will denote
pieces in the original thing by X, y, and z, and corresponding pieces in the
transformed thing by x’, y’, and z’. Obviously, we are assuming x “maps onto” x’, and
so on. Relations may be represented in terms of units of measure, that is, relations
map a pair of objects into numbers (or into similar “measure spaces,” such as
conventional ways of measuring intervals, which includes terms such as “major
third,” “diminished fifth,” etc.).® If we denote a relation by R and a transformation
by T, then the most important question we can ask is whether T preserves R, that is,
whether R(x, y) = R(X’, y'). [The latter is by definition R(T(x), T(y)).] In alternative
language R is an invariant of transformation T when, in general, R(x, y) = R(X’, y’).

Now, the set of all possible transformations is huge, and many of them will be
functionally irrelevant. That is, we won’t be able to see or hear the relationship

between the original thing and its transformed version.” At the other extreme, a

7 In many cases, it might be more natural to think of the mapping as defined on the pieces, e.g., points
get transformed into new points, notes get transformed to new notes, which induces a map from all
aspects of the original melody to corresponding aspects of the transformed melody. Further, a
transformation on a single dimension—for example, pitch—can induce a transformation on compound
entities (a note includes both pitch and duration), and thus, on the whole “thing.” Incidentally, such
mappings would not be possible with the medieval neumes notation given the total lack of specificity
with respect to properties—neither pitch nor duration. The fact that properties are not explicit
prevents the mapping invariants across instances.

® Typical of mathematicians, “relations” might be more exotic things like “binary predicates,” that
map a pair of entities into “true” or “false.” A familiar binary predicate would be “intersects.”
Intersect(l,, 1,) = true expresses the fact that the two lines, 1, and 1,, intersect. A mathematician would
not be uncomfortable with “relations of arity one,” that map a single entity into a measure space, for
example, we consider a “relation” to be merely the “size of a geometric element.”

° This applies to some of the transformations that were particularly attractive to composers in the

Renaissance period and currently composers with a more purely formal bent along with those doing
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transformation that preserves everything can be utterly boring; it is a literal
repetition. In between, we can classify transformations by what relations (or
properties) they preserve and what relations (or properties) they don’t preserve.
That is, we can name invariants (and non-invariants) of the transformation. In
music, we can further ask about the function of the non-invariants: what does the
variation do?

Let us illustrate. In a short percussion solo, an element might be duration, the
length of time between onsets, that is, between “hits” of the drum. This can be seen
as an analog to the length of a segment or the distance between two points in
geometry. An obvious relation is the ratio between durations. In simple cases, this is
just the count of the number of shorter durations one can perceive in the longer
one, which is precisely Leibnitz’s implicit counting. If these relations, ratios of
durations, are preserved, we perceive the rhythm as being “the same,” only with a
different tempo. We could say “the proportional structure of durations is invariant
under the transformation of ‘playing the same percussion piece” at a different
tempo.”

With respect to melodies, a transposition in the strictest sense preserves the
relation, “pitch interval,” between events (as well as retaining the relative
durations), in which case we hear it as “the same tune.” But music allows more
subtle invariants that stretch our ability to hear “the same,” while allowing
variations that increase interest or serve more particular function for a composer.
So, for example, a composer might chose to write “the same melodic pattern”
(contour or shape), but shifted up or down along a given scale—as Vivaldi and
others did and as in the two tuneblocks shown in Figure 21. Since the pitch intervals
within a scale are not equal, in shifting a pattern up or down the scale, the general
contour of the melodic segment remains invariant and the segment continues to be

recognizable, even though the intervals between events are not exactly the same.

algorithmic composition. These include, for instance, pitch transformations such as retrograde, where
the succession of pitches is played backwards, and inversion where the succession of intervals in a
melody are tipped upside down. It is usually quite difficult if not impossible actually to hear these
transformations despite their attractiveness as apparent means of generating structural coherence.
Haydn (1773), Bach (1781), and Schoenberg (1921) all used such transformations. We wish to
distinguish these transformations from ones that are perceptually salient, such as those the children

noticed.
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More radically, a composer might write “the same melody” but using a pitch
collection or scale that includes different internal intervals. For instance, she might
shift from the seven pitches of a major scale collection, which underlies many
popular and simple tunes in Western cultures, to the seven pitches of a minor scale
collection, which have a slightly different set of internal interval relations. This
gives the tune a different quality; a “happy” tune might become “sad.” The
invariant, here, is no longer pitch interval in a strict sense, since minor scales
involve different basic intervals; instead, the invariant is a looser one, scale step or
scale degree number in the ordered series of whatever scale is used. For instance,
Figure 22 shows the tune, Twinkle Twinkle Little Star , first using the Major scale
pitch collection and associated scale degrees, and then, using the minor scale pitch
collection where the pitches are not exactly the same but the scale degrees remain
invariant. Schubert often uses this ploy in songs to reflect a change of mood in a

corresponding text.

5cale degrees: 11 55 6 6 5 4 4 3 3 2 1

Minor !

5
a
L
|

—

5cale degrees: 1 1 5 3 6 6 5 4+ 4 3 3 2 2 1

Figure 22. Star: Major and Minor.

Musically, we see one salient possible aesthetic game. How far can we press the
transformation, and how little can remain invariant, before the relation is
perceptually lost? Bach certainly played this game in the famously intractable
“Goldberg Variations.” Further, composers who invent new ways to change things
that still preserve a sense of coherence (like Vivaldi’'s trademark sequences or John
Coletrane’s riffs), or who find new uses for the non-invariants, get credit for their

invention.
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Figure 23. Left, an ornamental relief from the Alhambra palace

involves multiple elements and variations. Right, a geometric
pattern inspired by Islamic art involves a single element repeated
in multiple orientations. The base element is difficult to find
because it is, in fact, ambiguous, and because perceived
continuations from one instance to the next suggest larger
units. See Abelson & diSessa (1981), p. 103.

More of the aesthetic and mathematical games involved in transformations
and invariants can be seen in Figure 23. Both images rely on transformations and
invariants. Both produce global effects that transcend literal repetition, where
elements are transformed in their effect by the local context. The design on the right
is particularly clear in this regard because it is difficult even to see the repeated
element; the eye combines it with its neighbors. The design on the left also uses
literal repetition, or very simple transformations (mirror image), to good effect:
There is a left-right symmetry in the picture. But there are more subtle
transformations and invariants that are not easily captured in geometry. A trefoil of
leaves appears here; a hextet of leaves (or is it a flower?) appears elsewhere. Is the
image about organic forms; can we say “organic nature” is the invariant of many or
most elements? Are the inscribed elements that background the trefoil “stylized
leaves” or organic at all? Are they deliberately ambiguous?

The musical analog of many of these phenomena will play a role in the next
section. For now, we position these observations with respect to the core issues of
this paper. (1) Students manifestly hear certain kinds of invariance and can even
appreciate the mathematical formulations of some of them (ratios of durations).
How far can the mathematics of invariance be drawn out of musical experience?
Does it take pre-instruction of the mathematics, or can it literally be drawn out of

music (and/or visual art)? (2) Can that mathematics become a “language for design,”

36



January 15, 2003

that permits students to compose more effectively? In this regard, one would like to
extend Impromptu with a language of motivic transformation and composition (as
in, literally, putting together), so that students can explore transformation and
invariance instrumentally, in creating music. What are the appropriate
representational forms to make this possible, and to optimize mathematical
relevance without usurping musical sense?'’

In the final main section of this paper, we return to structure that we have
evidence is inherent in students’ perception of music, and to the strategy of telling
the story from the musical (as opposed to mathematical) end. We now pick up
chronologically from where we left off in recounting our experiences with a sixth
grade group of children. We will continue to explore transformations and
invariants, and their perceptual consequences, although we will not realize the
thought experiment, above, to see whether the children can actually articulate the
mathematics. In addition, we will look at the overall structure of a tune produced by

transformations and variations, and how that structure is perceived.

THE STRUCTURE OF MELODIES

Searching for patterns had been very productive, but would the children use
what they had heard and seen in composing their own tunes? To find out, the goal
of the next project was: “Make a tune that makes sense and that you like using the
ELI blocks.”

To compose a tune, each of the children at his/her computer, listened to the
ELI blocks, then dragging tuneblocks icons into the playroom area, they
experimented with arranging and rearranging them as they listened for the results
of their orderings.

After about 20 minutes of concentrated work, most of the children had
completed a tune. Kathy’s tune is shown as Figure 24. The blocked numbers are the
numbers of the tuneblocks as shown in Table 1. The smaller numbers above the

staff are measure numbers for reference in discussing the tune.

' The predecessor of Impromptu, MusicLogo, had many of these properties and facilitated some of the

explorations suggested here.
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Figure 24. Kathy’s tune.

Kathy used the patterns we had discussed in interesting ways. For instance,
after a brief introduction using Block 3, in measures 2-5 she uses Tuneblocks 2 and 5
to form an antecedent/consequent pair—that is, two phrases that begin the same but
end differently. Recall that Kathy heard blocks 2 and 5 as the same except for the last
two notes. In her tune, Block 5 which sounded like an “ending,” brings the previous
Block 2 to rest.

Blocks 3 and 7 were described by the children as a “shoved down” version of
one another—a sequential relationship (Figure 21)."" Kathy uses the two blocks as a
sequential pair in measures 8 and 9. The sequence is one of our examples of
transformation and invariance—in this case a pattern of change analogous to the
pattern of change, 1-3-5, that Kathy mentioned earlier.

Bars 10-11 includes Block 2, which is followed in bars 12-13 by repetitions of
Block 4. Block 4 was described by the children as “a piece of Block 2”—this is an
example of fragmentation. The fragment, Block 4, is repeated resulting in a kind of

stretching of Block 2 while at the same time quickening the event-time because of

"' Tt is interesting that embedded in this context Block 3 is hardly recognizable as the same block with
which her whole melody began. We hear it here, as a kind of continuation and variation of the

preceding Block 2, and, in retrospect, also the beginning of the upcoming sequence.
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the shortening of the initial Block 4 (Figure 25). “Quickening” is often a useful

function, to add tension, drama, contrast, etc.

i — e A - -
ESeSSESseC = =
2 | 4

Figure 25. Fragmenting, stretching, quickening.

To finish off her melody, Kathy makes a “coda”—an extended “tail” (coda
means "tail" in Italian). Juxtaposing Blocks 1 and 5, in bars 14-16, the melody arrives
three times at the most stable sounding pitch—the tonic (the tonal “home base,” C).
Then, prolonging that stability, in the final two measures Kathy repeats Block 6,
which keeps returning to this same tonic pitch (Figure 26). Following the two
previous blocks, each of which ends solidly on the tonic in C minor, Block 6 brings

the tune to a close with a kind of poignant sigh."”

A

- E | 1 | E | 1 -:H

LRSS ES S RIS S
Block 6 Block &

Figure 26. A Coda.

¥ How do we abstract “a sigh” to see this last Block as one (playing a subtler version of the game we
did earlier, with “faster”)? A sigh might be described as a weakened after-comment. Notice that Block
6 ends on a weak beat after the strong beat ending of Block 5. Block 6 is “after” in the sense that it is
later, but also, strictly speaking, it is unnecessary. The piece has already been brought home to the
tonic. The “weakened” part of this sketch might be emphasized in performance by reduced volume
and/or slowed tempo, possibly deliberately separated somewhat rhythmically from the preceding

segment.
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Musical know-how

From the view of the children’s intuitive musical know-how, there is no doubt
that Kathy, as well as the other children, in composing their tunes are actually
making use of structural relations that we have pointed to in our previous
comments. These include, rule-driven transformations such as sequence,
fragmentation, and extension by repetition. In addition there is no doubt that the
children are able to hear the pitch that sounds most stable—that is, the tonic
function. All of the children ended their tunes with either Block 1, 5 or 6, each of
which ends on the tonic. Moreover, like Kathy, several other children ended their
tunes with a tonic prolongation, most often the repeated Block 6. Later on, three
children from a new group, edited Block 6 by removing the last note (C), thus
reinforcing the stability of the tonic by ending their tune on a more stable strong
beat, as well. All of which seems evidence that the children have available in-action
what Meyer calls musical “archetypes”:

[A]rchetypes may play a significant role in shaping aesthetic experience and

fostering cultural continuity in the absence of any conscious conceptualization

about their existence, nature, or kinds. Rather, they may be and usually are

internalized as habits of perception and cognition operating within a set of

cultural constraints. (Rosner & Meyer, 1982: 318)

CONCLUSION
Implications for Music Learning and Technology

As anticipated, the children’s work provides provocative initial evidence for
affinities between musical and mathematical structures. In addition, it provides an
initial roadmap of particular important connections that might be made, and even
fragments of interchange and inquiry where children seem to be building or at least
capitalizing on the connections. The children seemed to gain insights and to move
toward evocative generalizations through discoveries that rhythmic structures
embody and also inform mathematical structures such as ratio, proportion,
fractions, and common multiples. Similarly, the more general theme of
transformations and invariants seems emergent and ready to be capitalized on.
However, while we may see that affinity, it clearly remains as yet unrealized in the
students” work.

The theoretical theme underlying this work is the complex set of relations

among ontology, perceived experience, representations, dimensions, and formalized
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versions of structures “evident” in how children perceive and operate in a musical
context. We emphasized the limited capability of “professional” representations to
connect to experience, but also (in music) their limited capability to connect to
generalization, beyond music. We’ve seen multiple representations and modalities
exposing and helping to resolve paradoxes of perception and representation.
Various representations and modalities arguably also help stabilize and make
accessible dimensions for further consideration elements (e.g., pitch, duration;
formal similarity like transposition and fragmentation) that are manifestly part of,
but not the entirety of musical experience.

Perhaps the most general aspect of the affinity between mathematics and music
might be the perception and articulate study of patterns. Pursuing this agenda
within music might encourage children to become intrigued with looking for
patterns in other domains as well. And it might lend a “sense” to mathematics as a
tool for understanding more about what we intuitively have some grasp of and care
about. Some of the simplest patterns become intriguing and paradoxical in a musical
context. Consider repetition, which we unflatteringly characterized as “boring”
above. Yet, even repetition is functional and can be an event full of subtlety. As one
child said, on being asked to find repetition in a melody, “But it can never be the
same because it’s later.” Indeed, a repeated melodic or even rhythm segment often
sounds different and may function differently when embedded in a different context
(as in Kathy's tune). With his focus specifically on rhythm, Christopher Hasty puts it
this way:

As something experienced, rhythm shares the irreducibility and the
unrepeatability of experience... when it is past, the rhythmic event cannot be
again made present... Rhythm is in this way evanescent: it can be “grasped”
but not held fast. [Hasty, 1997: p. 12]
Perhaps in this sense, mathematics and music diverge—mathematics seeks to
“hold fast” ideas that may be fleeting, while in actually perceiving music, we can
say as Aristotle says of time:
One part of it has been and is not, while the other is going to be and is not
yet.... The “now” which seems to be bound to the past and the future—does it
always remain one and the same or is it always other and other? It is hard to
say. [Aristotle, Physics, p. 297-8]

It is worth underscoring what led to the productive emergence of

affinities—and also to interest-spurring paradoxes and “contradictory”

interpretations—in the experience of these students. Certainly it is rich intuitive
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knowledge, to begin. Unless students are sensitive to certain structures and patterns,
there seems little basis on which to build. But students became more sensitive, and
articulately so, to these patterns. So, they could, for example, make rhythmic
accompaniment boring, or chaotic in a systematic way. Much was clearly gained by
providing the possibility for children to move easily across media and sensory
modalities, to have access to multiple kinds and levels of representations, and
actually to make music building on their advancing ways of perceiving and
conceiving it.

While the empirical work explored here involved only a small group of 6th
grade children over a relatively brief period of time, the results suggest not only
significant intersections between musical and mathematical conceptual structures,
but also more general directions for the development of effective computer

environments for learning.
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