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Admin

2

Reminder: Hand in project proposals today if you want 
feedback in time!



Recap: syntax and question answering



Problem 1
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Each of the three girls has a platypus.

Each of the three girls climbed the mountain.

How many platypuses?

How many mountains?



Problem 1
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Each  of  the  three  girls  has         a     platypus.



Problem 1
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Each  of  the  three  girls  climbed  the  mountain.



Problem 2
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name type coastal

Columbia city no

Cooper river yes

Charleston city yes

There are 128 cities  
in South Carolina.



Problem 3
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Is Barack Obama from the United States?

Barack Obama was the 44th President of the United 
States. Obama was born on August 4 in Honolulu, 
Hawaii. In late August 1961, Obama's mother moved with 
him to the University of Washington in Seattle for a year…



Compositional semantics
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It’s not enough to have structured representations of syntax: 
We also need structured representations of meaning.



Compositional semantics
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It’s not enough to have structured representations of syntax: 
We also need structured representations of meaning.

Today: 
How do we get from language to meaning?



Representing meaning



Meaning in formal languages
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a + b = 17



Meaning in formal languages
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a + b = 17



Meaning in formal languages
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a + b = 17

a = ? 
b = ?



Meanings are sets of valid assignments
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{a=0, b=0}

{a=3, b=10}

{a=5, b=12}

{a=17, b=0}

{a=10, b=7}

{a=5, b=5}

a + b = 17



{a=0, b=0}

{a=5, b=12}

Meanings are sets of valid assignments
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✘

✔

{a=3, b=10}

{a=17, b=0}

{a=10, b=7}

{a=5, b=5}

✔

✔✘

✘

a + b = 17



{a=0, b=0}

{a=5, b=12}

Meanings are sets of valid assignments
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✘

✔

{a=3, b=10}

{a=17, b=0}

{a=10, b=7}

{a=5, b=5}

✔

✔✘

✘

a + 3 = 20 - b



{a=5, b=12}

Meanings are functions that judge validity
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✔

⟦a + b = 17⟧



Meanings are functions that judge validity
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⟦a + b = 17⟧

{a=3, b=10} ✘



Lessons from math
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The meaning of a statement is the set of possible 
worlds consistent with that statement. 

Here, a “possible world” is an assignment  
of values to variables.

⟦a + b = 17⟧

{a=3, b=10}



Meaning in natural languages
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Pat  likes  Sal.



Representing possible worlds

22

Individuals

Properties

Relations

Pat Sal

whale

loves

sad

contains



Example world
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Pat

Sal

Sam

Lou



worried

Example world
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Pat

Sal

Sam

Lou

likes

likes

contains

loves

likes

happy

scared

shark



Different example world
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Pat

Sal

Sam

Lou
loves

loves

loves
sad

sad

sad

sad



Representing possible worlds
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Individuals

Properties

Relations

Pat Sal

whale={Lou},	sad={Pat,Sal}

likes={(Pat,Sal),(Sal,Sam)}



Interpretations of sentences
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Pat likes Sal.

worried Pat

Sal

Sam

Lou

likes

loves

likes

happy

scared

shark

worried Pat

Sal

Sam

Lou

loves contains

loves

likes scared

shark

worried Pat

Sal

Sam

Lou

likes

likes

contains

likes

happy

scared

human

worried Pat

Sal

Sam

Lou

likes

likes

contains

loves

likes

happy

scared

dog



Interpretations of sentences
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Lou is a shark.

worried Pat

Sal

Sam

Lou

likes

loves

likes

happy

scared

shark

worried Pat

Sal

Sam

Lou

loves contains

loves

likes scared

shark

worried Pat

Sal

Sam

Lou

likes

likes

contains

likes

happy

scared

human

worried Pat

Sal

Sam

Lou

likes

likes

contains

loves

likes

happy

scared

dog



Interpretations of sentences
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Sam is inside Lou, a shark.

worried Pat

Sal

Sam

Lou

likes

likes

loves

likes

happy

scared

shark

worried Pat

Sal

Sam

Lou

loves contains

loves

likes scared

shark

worried Pat

Sal

Sam

Lou

likes

likes

contains

likes

happy

scared

human

worried Pat

Sal

Sam

Lou

likes

likes

contains

loves

likes

happy

scared

dog



KEY IDEA 
The meaning of a sentence is the set 

of possible worlds it picks out.



Possible worlds and logical forms



Explicit representation is too hard

32

Pat likes Sal.

worried Pat

Sal

Sam

Lou

likes

loves

likes

happy

scared

shark

worried Pat

Sal

Sam

Lou

loves contains

loves

likes scared

shark

worried Pat

Sal

Sam

Lou

likes

likes

contains

likes

happy

scared

human

worried Pat

Sal

Sam

Lou

likes

likes

contains

loves

likes

happy

scared

dog



Meanings as functions
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⟦Pat likes Sal⟧

worried Pat

Sal

Sam

Lou

likes

loves

likes

happy

scared

whale

✔



Meanings as logical statements

34

⟦Pat likes Sal⟧

worried Pat

Sal

Sam

Lou

likes

loves

likes

happy

scared

whale

✔

likes(Pat,	Sal)



Expressing functions with logic
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Pat likes Sal
likes(Pat,	Sal)



Meanings as logical statements
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Lou is a shark
shark(Lou)



Meanings as logical statements
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Sam is inside Lou, a shark



Meanings as logical statements
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Sam is inside Lou, a shark
shark(Lou)	∧	contains(Lou,	Sam)



Meanings as logical statements
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Nobody likes Lou



Meanings as logical statements
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Nobody likes Lou
∀x.	¬likes(x,	Lou)



Meanings as logical statements
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Everyone who knows Sal is happy



Meanings as logical statements
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Everyone who knows Sal is happy

∀x.	knows(x,	Sal)	"	happy(x)



KEY IDEA 
Collections of possible worlds can be 

compactly represented with logical forms.



likes(Pat,	Sal)	

shark(Lou)	

shark(Lou)	∧		
contains(Lou,	Sam)	

∀x.¬likes(x,	Lou)

Compositionality of meaning
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Pat likes Sal 

Lou is a shark 

Sam is inside Lou, 
a shark 

Nobody likes Lou



likes(Pat,	Sal)	

shark(Lou)	

shark(Lou)	∧		
contains(Lou,	Sam)	

∀x.¬likes(x,	Lou)

Compositionality of meaning
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Pat likes Sal 

Lou is a shark 

Sam is inside Lou, 
a shark 

Nobody likes Lou



likes(Pat,	Sal)	

shark(Lou)	

shark(Lou)	∧		
contains(Lou,	Sam)	

∀x.¬likes(x,	Lou)

Compositionality of meaning
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Pat likes Sal 

Lou is a shark 

Sam is inside Lou, 
a shark 

Nobody likes Lou



likes(Pat,	Sal)	

shark(Lou)	

shark(Lou)	∧		
contains(Lou,	Sam)	

∀x.¬likes(x,	Lou)

Compositionality of meaning
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A Sal le gusta Pat 

Lou es un tiburón 

Sam está dentro de 
Lou, un tiburón 

A nadie le gusta Lou



likes(Pat,	Sal)	

shark(Lou)	

shark(Lou)	∧		
contains(Lou,	Sam)	

∀x.¬likes(x,	Lou)

Compositionality of meaning

48

a12 b5 c67 a8 

a12 b5 c0 a0 

a12 b16 c12 c12 

a53



KEY IDEA 
Pieces of logical forms 

correspond to pieces of language



Building a lexicon
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Pat: Pat 
Sal: Sal 
Sam: Sam 
Lou: Lou

shark(Lou)	∧	contains(Lou,	Sam)Sam is inside Lou, a shark



Building a lexicon
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Pat: Pat 
Sal: Sal 
Sam: Sam 
Lou: Lou

shark: λx.whale(x) 
Sal: Sal 
Sam: Sam 
Lou: Lou

shark(Lou)	∧	contains(Lou,	Sam)Sam is inside Lou, a shark



Building a lexicon
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Pat: Pat 
Sal: Sal 
Sam: Sam 
Lou: Lou

shark: λx.shark(x) 
Sal: Sal 
Sam: Sam 
Lou: Lou

shark(Lou)	∧	contains(Lou,	Sam)Sam is inside Lou, a shark



Building a lexicon
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Pat: Pat 
Sal: Sal 
Sam: Sam 
Lou: Lou

shark: λx.shark(x) 
likes: λyx.likes(x,	y) 
nobody: λf.∀x.¬f(x) 
Lou: Lou...

shark(Lou)	∧	contains(Lou,	Sam)Sam is inside Lou, a shark



Learning semantic parsers



Seq-to-seq semantic parsing
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Pat   doesn’t   like   Sal   .

transformer

¬			likes			(			Pat			,			Sal			)



Decoder constraints
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Pat   doesn’t   like   Sal   .

transformer

¬			likes			(			Pat			,			Lou
Sal
∀

)



Decoder constraints
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Pat   doesn’t   like   Sal   .

transformer

¬			likes			(			Pat			,			Lou
Sal
∀

)syntactically malformed

doesn’t type check



Tree-shaped decoders
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Pat   doesn’t   like   Sal’s   brother
¬

likes

Pat brother

Sal



Tree-shaped decoders
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¬

likes

Pat brother

[e.g. Dong and Lapata 2016]

RNN states are updated based  
on parents and siblings, not  
arbitrary neighbors.

Sal

Pat   doesn’t   like   Sal’s   brother



Learning from denotations
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Pat doesn’t like Lou. ¬likes(Pat,	Lou)

Logical form supervision:

Answer supervision:  
learn from (question, world, answer) triples without LFs!

Who does Pat like? Salworried Pat

Sal

Sam

Lou

loves contains

loves

likes scared

shark



Maximum likelihood estimation
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p(answer ∣ question) = ∑
𝖫𝖥

p(answer ∣ LF) p(LF ∣ question)

deterministic logical evaluation

semantic parser



Maximum likelihood estimation
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p(answer ∣ question) = ∑
𝖫𝖥

p(answer ∣ LF) p(LF ∣ question)

deterministic logical evaluation

semantic parser

compare:

p(sentence) = ∑
𝗍𝗋𝖾𝖾

p(sentence ∣ tree) p(tree)

syntactic parser



Computational challenges
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p(answer ∣ question) = ∑
𝖫𝖥

p(answer ∣ LF) p(LF ∣ question)

p(sentence) = ∑
𝗍𝗋𝖾𝖾

p(sentence ∣ tree) p(tree)

dynamic program (CKY)

no dynamic program!

Can’t efficiently compute this sum: no way to factor scoring  
                                                           fn over pieces of LFs.



Computational challenges
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p(answer ∣ question) = ∑
𝖫𝖥

p(answer ∣ LF) p(LF ∣ question)

Hard search problem!  

This is 0 for almost all LFs



Margin losses
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L(s, y) = [max(s−y) − sy + c]+

Idea: try to make the score of the right label sy 
at least at least c greater than the score of every 
wrong label.

[x]+ := max(x, 0)s-y: scores other than y 



Structured margin
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L(s, y) = [max𝖫𝖥−,𝖫𝖥+ s(LF−) − s(LF+) + c]+

highest-scoring LF 
with the right answer

highest-scoring LF with 
the wrong answer 

Each loss computation involves two search problems: solve  
with whatever heuristic you want!



“Hard EM”
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Alternate between:

LF* = argmax𝖫𝖥 p(answer ∣ LF) p(LF ∣ question; θ)

θ* = argmaxθ p(answer ∣ LF) p(LF ∣ question; θ)

(pick a “pseudo-gold”, treat it as gold, update params)



Lexicon-based semantic parsing
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who                does                Pat                like
λxy.	likes(x,	y)Pat∅∅

λy.	likes(Pat,	y)

[Zettlemoyer & Collins 05, Artzi & Zettlemoyer 2013]

p(λy.	likes(Pat,	y) | who does Pat like?)

 exp { f(like, λxy.	likes(x,	y)) + f(Pat, Pat) + … }∝



Neural semantic parsing from denotations 

69

Some combination of hard EM and reinforcement learning. 

Way less computation / sample efficient than lexicon-based  
approaches, but better scoring function. 

θ* = argmaxθ p(answer ∣ LF) p(LF ∣ question; θ)



Semantic parsing via paraphrasing

70[Berant and Liang 2014]

λy.	likes(y,	brother(Sal)) what likes brother of Sal

1. Write a rule-based procedure for turning logical forms into sentences

2. Score LF based on similarity between the input sentence and fake one 

p(LF ∣ question) ∝ f(who is it that likes Sal’s brother, 
     what likes brother of Sal)

use paraphrase features



Aside: program synthesis
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max𝖫𝖥: p(𝖺𝗇𝗌𝗐𝖾𝗋∣𝖫𝖥)>0 f(LF ∣ question)

Huge amount of work on solving this problem 
in the programming languages literature! 

(not widely used in NLP)



Why not just predict answers directly?
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What color is 
the necktie?

yellow

name type coastal

Columbia city no

Cooper river yes

Charleston city yes

Still hard for “unstructured” 
                    neural models!



Structured attention mechanisms

73[Yin et al. 2016]

name type coastal

Columbia city no

Cooper river yes

Charleston city yes

What city is on the coast?

attention

attention

Key-value attention tailored  
for tabular world representations

Charleston



Module networks
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Does the blue cylinder have the same 
material as the big block on the right side 
of the red metallic thing?

blue	cylinder

right	side

same	material

red	metallic

big	block

yes λw	∃xyz. 
		eq(w,		
					eq(material(x),		
								material(y))	
		blue_cylinder(x)	
		big_block(y)	
		red_metallic(z)	
		right_side(y,	z)

[e.g. Andreas et al. 2016, Mao et al. 2019]



Module networks
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Does the blue cylinder have the same 
material as the big block on the right side 
of the red metallic thing?

blue	cylinder

right	side

same	material

red	metallic

big	block

yes

[e.g. Andreas et al. 2016, Mao et al. 2019]

No need to  
hand-write  
“logical”  
primitives!



Question answering
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Compositional Semantic Parsing on Semi-Structured Tables

Panupong Pasupat

Computer Science Department
Stanford University

ppasupat@cs.stanford.edu

Percy Liang

Computer Science Department
Stanford University

pliang@cs.stanford.edu

Abstract

Two important aspects of semantic pars-
ing for question answering are the breadth
of the knowledge source and the depth of
logical compositionality. While existing
work trades off one aspect for another, this
paper simultaneously makes progress on
both fronts through a new task: answering
complex questions on semi-structured ta-
bles using question-answer pairs as super-
vision. The central challenge arises from
two compounding factors: the broader do-
main results in an open-ended set of re-
lations, and the deeper compositionality
results in a combinatorial explosion in
the space of logical forms. We propose
a logical-form driven parsing algorithm
guided by strong typing constraints and
show that it obtains significant improve-
ments over natural baselines. For evalua-
tion, we created a new dataset of 22,033
complex questions on Wikipedia tables,
which is made publicly available.

1 Introduction

In semantic parsing for question answering, nat-
ural language questions are converted into logi-
cal forms, which can be executed on a knowl-
edge source to obtain answer denotations. Early
semantic parsing systems were trained to answer
highly compositional questions, but the knowl-
edge sources were limited to small closed-domain
databases (Zelle and Mooney, 1996; Wong and
Mooney, 2007; Zettlemoyer and Collins, 2007;
Kwiatkowski et al., 2011). More recent work
sacrifices compositionality in favor of using more
open-ended knowledge bases such as Freebase
(Cai and Yates, 2013; Berant et al., 2013; Fader
et al., 2014; Reddy et al., 2014). However, even
these broader knowledge sources still define a

Year City Country Nations
1896 Athens Greece 14
1900 Paris France 24
1904 St. Louis USA 12
. . . . . . . . . . . .
2004 Athens Greece 201
2008 Beijing China 204
2012 London UK 204

x1: “Greece held its last Summer Olympics in which year?”
y1: {2004}
x2: “In which city’s the first time with at least 20 nations?”
y2: {Paris}
x3: “Which years have the most participating countries?”
y3: {2008, 2012}
x4: “How many events were in Athens, Greece?”
y4: {2}
x5: “How many more participants were there in 1900 than

in the first year?”
y5: {10}

Figure 1: Our task is to answer a highly composi-
tional question from an HTML table. We learn
a semantic parser from question-table-answer
triples {(xi, ti, yi)}.

rigid schema over entities and relation types, thus
restricting the scope of answerable questions.

To simultaneously increase both the breadth of
the knowledge source and the depth of logical
compositionality, we propose a new task (with an
associated dataset): answering a question using an
HTML table as the knowledge source. Figure 1
shows several question-answer pairs and an ac-
companying table, which are typical of those in
our dataset. Note that the questions are logically
quite complex, involving a variety of operations
such as comparison (x2), superlatives (x3), aggre-
gation (x4), and arithmetic (x5).

The HTML tables are semi-structured and not
normalized. For example, a cell might contain
multiple parts (e.g., “Beijing, China” or “200
km”). Additionally, we mandate that the train-
ing and test tables are disjoint, so at test time,
we will see relations (column headers; e.g., “Na-
tions”) and entities (table cells; e.g., “St. Louis”)
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Greece last hosted the summer Olympics in which year?

[Pasupat & Liang 2015]



Instruction following

77
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Weakly Supervised Learning of Semantic Parsers

for Mapping Instructions to Actions

Yoav Artzi and Luke Zettlemoyer

Computer Science & Engineering
University of Washington

Seattle, WA 98195
{yoav,lsz}@cs.washington.edu

Abstract

The context in which language is used pro-
vides a strong signal for learning to recover
its meaning. In this paper, we show it can be
used within a grounded CCG semantic parsing
approach that learns a joint model of mean-
ing and context for interpreting and executing
natural language instructions, using various
types of weak supervision. The joint nature
provides crucial benefits by allowing situated
cues, such as the set of visible objects, to di-
rectly influence learning. It also enables algo-
rithms that learn while executing instructions,
for example by trying to replicate human ac-
tions. Experiments on a benchmark naviga-
tional dataset demonstrate strong performance
under differing forms of supervision, includ-
ing correctly executing 60% more instruction
sets relative to the previous state of the art.

1 Introduction

The context in which natural language is used pro-
vides a strong signal to reason about its meaning.
However, using such a signal to automatically learn
to understand unrestricted natural language remains
a challenging, unsolved problem.

For example, consider the instructions in Figure 1.
Correct interpretation requires us to solve many sub-
problems, such as resolving all referring expres-
sions to specific objects in the environment (includ-
ing, “the corner” or “the third intersection”), disam-
biguating word sense based on context (e.g., “the
chair” could refer to a chair or sofa), and finding
executable action sequences that satisfy stated con-
straints (such as “twice” or “to face the blue hall”).

move forward twice to the chair
�a.move(a) ^ dir(a, forward) ^ len(a, 2) ^
to(a, ◆x.chair(x))

at the corner turn left to face the blue hall
�a.pre(a, ◆x.corner(x)) ^ turn(a) ^ dir(a, left) ^
post(a, front(you, ◆x.blue(x) ^ hall(x)))

move to the chair in the third intersection
�a.move(a) ^ to(a, ◆x.sofa(x)) ^
intersect(order(�y.junction(y), frontdist, 3), x)

Figure 1: A sample navigation instruction set, paired
with lambda-calculus meaning representations.

We must also understand implicit requests, for ex-
ample from the phrase “at the corner,” that describe
goals to be achieved without specifying the specific
steps. Finally, to do all of this robustly without pro-
hibitive engineering effort, we need grounded learn-
ing approaches that jointly reason about meaning
and context to learn directly from their interplay,
with as little human intervention as possible.

Although many of these challenges have been
studied separately, as we will review in Section 3,
this paper represents, to the best of our knowledge,
the first attempt at a comprehensive model that ad-
dresses them all. Our approach induces a weighted
Combinatory Categorial Grammar (CCG), includ-
ing both the parameters of the linear model and a
CCG lexicon. To model complex instructional lan-
guage, we introduce a new semantic modeling ap-
proach that can represent a number of key linguistic
constructs that are common in spatial and instruc-
tional language. To learn from indirect supervision,
we define the notion of a validation function, for
example that tests the state of the agent after in-
terpreting an instruction. We then show how this
function can be used to drive online learning. For

49

our framework through experiments with human instruction
followers.

1) Data Augmentation: The SAIL dataset is significantly
smaller than those typically used to train neural sequence-
to-sequence models. In order to overcome this scarcity, we
augmented the original dataset using a set of rules. In
particular, for each command-instruction (c(i),⇤(i)) pair in
the original dataset we generate a number of new demon-
strations iterating over the set of possible values for each
attribute in the command and updating the relative in-
struction accordingly. For example, given the original pair
(Turn(direction=Left), “turn left”), we augment the dataset
with 2 new pairs, namely (Turn(direction=Right), “turn
right”) and (Turn(direction=Back), “turn back”). Our aug-
mented dataset consists of about 750k and 190k demonstra-
tions for training and validation, respectively.

B. Implementation Details

We implemented and tested the proposed model using
the following values for the system parameters: kc = 100,
Pt = 0.99, ke = 128, and Lt = 95.0. The encoder-aligner-
decoder consisted of 2 layers for the encoder and decoder
with 128 LSTM units per layer. The language model similarly
included a 2-layer recurrent neural network with 128 LSTM
units per layer. The size of the CAS and natural (English)
language vocabularies was 88 and 435, respectively, based
upon the SAIL dataset. All parameters were chosen based on
the performance on the validation set. We train our model
using Adam [30] for optimization. At test time, we perform
approximate inference using a beam width of two. Our method
requires an average of 33 s (16 s without beam search) to
generate instructions for a path consisting of 9 movements
when run on a laptop with a 2.0GHz CPU and 8GB of RAM.
As with other neural models, performance would improve
significantly using a GPU.

C. Automatic Evaluation

To the best of our knowledge, we are the first to use the
SAIL dataset for the purposes of generating route instructions.
Consequently, we evaluate our method by comparing our
generated instructions with a reference set of human-generated
commands from the SAIL dataset using the BLEU score (a
4-gram matching-based precision) [45]. For this purpose, for
each command-instruction pair (c(i),⇤(i)) in the validation
set, we first feed the command c(i), into our model to obtain
the generated instruction ⇤⇤, and secondly use ⇤(i), and ⇤⇤

respectively as the reference and hypothesis for computing
the 4-gram BLEU score. We consider both the average of the
BLEU scores at the individual sentence level (macro-average
precision) as well as at the full-corpus level (micro-average
precision).

D. Human Evaluation

The use of BLEU score indicates the similarity between
instructions generated via our method and those produced
by humans, but it does not provide a complete measure

Fig. 4. Participants’ field of view in the virtual world used for the human
navigation experiments.

of the quality of the instructions (e.g., instructions that are
correct but different in prose will receive a low BLEU score).
In an effort to further evaluate the accuracy and usability
of our method, we conducted a set of human evaluation
experiments in which we asked 42 novice participants on
Amazon Mechanical Turk (21 females and 21 males, ages
18–64, all native English speakers) to follow natural language
route instructions, randomly chosen from two equal-sized sets
of instructions generated by our method and by humans for 50
distinct paths of various lengths. The paths and corresponding
human-generated instructions were randomly sampled from
the SAIL test set. Given a route instruction, human participants
were asked to navigate to the best of their ability using their
keyboard within a first-person, three-dimensional virtual world
representative of the three environments from the SAIL corpus.
Fig. 4 provides an example of the participants’ field of view
while following route instructions. After attempting to follow
each instruction, each participant was given a survey composed
of eight questions, three requesting demographic information
and five requesting feedback on their experience and the
quality of the instructions that they followed. We collected data
for a total of 441 experiments (227 using human annotated
instructions and 214 using machine generated instructions).
The system randomly assigned the experiments to discourage
the participants from learning the environments or becoming
familiar with the style of a particular instructor. No participants
experienced the same scenario with both human annotated and
machine generated instructions. Appendix B provides further
details regarding the experimental procedure.

VI. RESULTS

We evaluate the performance of our architecture by scoring
the generated instructions using the 4-gram BLEU score com-
monly used as an automatic evaluation mechanism for machine
translation. Comparing to the human-generated instructions,
our method achieves sentence- and corpus-level BLEU scores
of 74.67% and 60.10%, respectively, on the validation set.
On the test set, the method achieves sentence- and corpus
level BLEU scores of 72.18% and 45.39%, respectively. Fig. 1

[Artzi & Zettlemoyer 2015]



Other aspects of meaning: pragmatics
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I ate some of the cookies.

Do you know what time it is?



Next class: dialogue


