Formal Semantics

Jacob Andreas / MIT 6.804-6.864 / Spring 2020

Reminder: Hand in project proposals today if you want feedback in time!

Recap: syntax and question answering

Problem 1

- Each of the three girls has a platypus.
- Each of the three girls climbed the mountain.
 - How many platypuses?
 - How many mountains?

Problem 1

Each of the three girls has

Problem 1

There are 128 cities in South Carolina.

Problem 2

name	type	coastal
Columbia	city	no
Cooper	river	yes
Charleston	city	yes

Barack Obama was the 44th President of the United States. Obama was born on August 4 in Honolulu, Hawaii. In late August 1961, Obama's mother moved with him to the University of Washington in Seattle for a year...

Is Barack Obama from the United States?

It's not enough to have structured representations of syntax: We also need structured representations of meaning.

Compositional semantics

It's not enough to have structured representations of syntax: We also need structured representations of **meaning**.

To How do we get from

- Today:
- How do we get from language to meaning?

Representing meaning

Meaning in formal languages

a + b = 17

Meaning in formal languages

Meaning in formal languages

a + b = 17

- a = ? b = ?

Meanings are sets of valid assignments

$\{a=0, b=0\}$ $\{a=3, b=10\}$ $\{a=5, b=12\}$

a + b = 17

{a=17, b=0} {a=10, b=7} {a=5, b=5}

Meanings are sets of valid assignments

$\{a=0, b=0\}$ **X** $\{a=3, b=10\}$ X {a=5, b=12} ✓

a + b = 17

{a=17, b=0} ✓ {a=10, b=7} ✓ {a=5, b=5} ★

Meanings are sets of valid assignments

$\{a=0, b=0\}$ **X** $\{a=3, b=10\}$ X {a=5, b=12} ✓

a + 3 = 20 - b

{a=17, b=0} ✓ {a=10, b=7} ✓ {a=5, b=5} ★

Meanings are functions that judge validity

$\{a=5, b=12\}$

Meanings are functions that judge validity

$\{a=3, b=10\}$

worlds consistent with that statement.

Here, a "possible world" is an assignment of values to variables.

Lessons from math

[a + b = 17]

- The meaning of a statement is the set of possible

 $\{a=3, b=10\}$

Meaning in natural languages

Pat likes Sal.

Representing possible worlds

Individuals

Properties

Relations

$-loves \rightarrow -contains \rightarrow$

Example world

Pat

Sal

Example world

Different example world

Representing possible worlds

Properties whale={Lou}, sad={Pat,Sal}

Relations

likes={(Pat,Sal),(Sal,Sam)}

Sal

Interpretations of sentences

Pat likes Sal.

Interpretations of sentences

Lou is a shark.

Interpretations of sentences

Sam is inside Lou, a shark.

KEY IDEA The meaning of a sentence is the set of possible worlds it picks out.

Possible worlds and logical forms

Explicit representation is too hard

Pat likes Sal.

Meanings as functions

→ [Pat likes Sal] –

Meanings as logical statements

Expressing functions with logic

Pat likes Sal likes(Pat, Sal)

Meanings as logical statements

Lou is a shark shark(Lou)

Sam is inside Lou, a shark

Sam is inside Lou, a shark shark(Lou) ^ contains(Lou, Sam)

Nobody likes Lou

Nobody likes Lou ∀x. ¬likes(x, Lou)

Everyone who knows Sal is happy

Everyone who knows Sal is happy ∀x. knows(x, Sal) → happy(x)

KEY IDEA Collections of possible worlds can be compactly represented with logical forms.

Pat likes Sal

Lou is a shark

Sam is inside Lou, a shark

Nobody likes Lou

likes(Pat, Sal)

shark(Lou)

shark(Lou) ∧ contains(Lou, Sam)

Pat likes Sal

Lou is a shark

Sam is inside Lou, a shark

Nobody likes Lou

likes(Pat, Sal)

shark(Lou)

shark(Lou) ∧ contains(Lou, Sam)

Pat likes Sal

Lou is a shark

Sam is inside Lou, a shark

Nobody likes Lou

likes(Pat, Sal)

shark(Lou)

shark(Lou) ∧
contains(Lou, Sam)

A Sal le gusta Pat

Lou es un tiburón

Sam está dentro de Lou, un tiburón

A nadie le gusta Lou

likes(Pat, Sal)

shark(Lou)

shark(Lou) ∧ contains(Lou, Sam)

∀x.¬<mark>likes(x, Lou)</mark>

a12 b5 c67 a8

a12 b5 c0 a0

a12 b16 c12 c12

a53

likes(Pat, Sal)

shark(Lou)

shark(Lou) ∧ contains(Lou, Sam)

KEY IDEA Pieces of logical forms correspond to pieces of language

Building a lexicon

Sam is inside Lou, a shark

Pat: Pat Sal: Sal Sam: Sam Lou: Lou

shark(Lou) \Lambda contains(Lou, Sam)

Building a lexicon

Pat: Pat Sal: Sal Sam: Sam Lou: Lou

shark:

Sam is inside Lou, a shark $shark(Lou) \wedge contains(Lou, Sam)$

Sam is inside Lou, a shark shark(Lou) ^ contains(Lou, Sam)

Pat: Pat Sal: Sal Sam: Sam Lou: Lou

shark: λx . shark(x)

Sam is inside Lou, a shark Pat: Pat Sal: Sal Sam: Sam Lou: Lou

shark(Lou) ^ contains(Lou, Sam)

shark: λx . shark(x) likes: λyx .likes(x, y) nobody: $\lambda f \cdot \forall x \cdot \neg f(x)$

Learning semantic parsers

Seq-to-seq semantic parsing

transformer

Pat doesn't like Sal

Pat doesn't like Sal

Decoder constraints

transformer

transformer

Pat doesn't like Sal

Decoder constraints

Tree-shaped decoders

Tree-shaped decoders

Pat doesn't like Sal's brother

RNN states are updated based on parents and siblings, not arbitrary neighbors.

[e.g. Dong and Lapata 2016]

Learning from denotations

Logical form supervision:

Pat doesn't like Lou. -likes

Answer supervision: learn from (question, world, answer) triples without LFs!

Who does Pat like?

-likes(Pat, Lou)

Sal

Maximum likelihood estimation

ΙF

deterministic logical evaluation

semantic parser $p(answer | question) = \sum p(answer | LF) p(LF | question)$

Maximum likelihood estimation

$p(answer | question) = \sum p(answer | LF) p(LF | question)$

compare:

tree

deterministic logical evaluation

syntactic parser $p(\text{sentence}) = \sum p(\text{sentence} \mid \text{tree}) p(\text{tree})$

semantic parser

Computational challenges

no dynamic program!

$p(answer | question) = \sum p(answer | LF) p(LF | question)$ ΙF

dynamic program (CKY)

tree

Can't efficiently compute this sum: no way to factor scoring fn over pieces of LFs.

 $p(\text{sentence}) = \sum_{i} p(\text{sentence} \mid \text{tree}) p(\text{tree})$

63

Computational challenges

Hard search problem!

This is 0 for almost all LFs $p(answer \mid question) = \sum_{LF} p(answer \mid LF) p(LF \mid question)$

$L(s, y) = [\max(s_{-y}) - s_y + c]_+$ f s_{-y} : scores other than y $[x]_+ := max(x, 0)$

Idea: try to make the score of the right label s_y wrong label.

Margin losses

at least at least c greater than the score of every

Structured margin

$L(s, y) = [\max_{LF^{-}, LF^{+}} s(LF^{-}) - s(LF^{+}) + c]_{+}$ highest-scoring LF with highest-scoring LF with the right answer the wrong answer

Each loss computation involves two search problems: solve with whatever heuristic you want!

Alternate between:

$LF^* = argmax_{IF} p(answer | LF) p(LF | question; \theta)$ $\theta^* = \operatorname{argmax}_{\theta} p(\operatorname{answer} | LF) p(LF | question; \theta)$

"Hard EM"

(pick a "pseudo-gold", treat it as gold, update params)

 $p(\lambda y. likes(Pat, y) \mid who does Pat like?)$

[Zettlemoyer & Collins 05, Artzi & Zettlemoyer 2013]

Lexicon-based semantic parsing

$\propto \exp \{ f(like, \lambda xy. likes(x, y)) + f(Pat, Pat) + ... \}$

Neural semantic parsing from denotations

approaches, but better scoring function.

- Some combination of hard EM and reinforcement learning.
- Way less computation / sample efficient than lexicon-based

 $\theta^* = \operatorname{argmax}_{\theta} p(\operatorname{answer} | LF) p(LF | question; \theta)$

Semantic parsing via paraphrasing

- 1. Write a rule-based procedure for turning logical forms into sentences
- 2. Score LF based on similarity between the input sentence and fake one $p(LF | question) \propto \begin{cases} f(who is it that likes Sal's brother, \\ what likes brother of Sal) \end{cases}$

use paraphrase features

[Berant and Liang 2014]

 $\lambda y. likes(y, brother(Sal)) \longrightarrow what likes brother of Sal$

Aside: program synthesis

$\max_{\text{LF: } p(\text{answer}|\text{LF}) > 0} f(\text{LF} | \text{question})$ Huge amount of work on solving this problem in the programming languages literature!

(not widely used in NLP)

Why not just predict answers directly?

What color is the necktie?

name	type	coastal		
Columbia	city	no		
Cooper	river	yes		
Charleston	city	yes		

Still hard for "unstructured" neural models!

Structured attention mechanisms

Key-value attention tailored for tabular world representations

[Yin et al. 2016]

What city is on the coast?

Module networks

Does the blue cylinder have the same material as the big block on the right side of the red metallic thing?

[e.g. Andreas et al. 2016, Mao et al. 2019]

λw ∃xyz. eq(w, eq(material(x), material(y)) blue_cylinder(x) big_block(y) red_metallic(z) right_side(y, z)

Module networks

Does the blue cylinder have the same material as the big block on the right side of the red metallic thing?

[e.g. Andreas et al. 2016, Mao et al. 2019]

No need to hand-write "logical" primitives!

Question answering

Year	City	Country	Nations
1896	Athens	Greece	14
1900	Paris	France	24
1904	St. Louis	USA	12
2004	Athens	Greece	201
2008	Beijing	China	204
2012	London	UK	204

Greece last hosted the summer Olympics in which year?

[Pasupat & Liang 2015]

Instruction following

move forward twice to the chair $\lambda a.move(a) \wedge dir(a, forward) \wedge len(a, 2) \wedge$ $to(a, \iota x.chair(x))$ at the corner turn left to face the blue hall $\lambda a.pre(a, \iota x.corner(x)) \land turn(a) \land dir(a, left) \land$ $post(a, front(you, \iota x.blue(x) \land hall(x)))$

[Artzi & Zettlemoyer 2015]

Other aspects of meaning: pragmatics

l ate some of the cookies.

Do you know what time it is?

Next class: dialogue