Formal Semantics

Jacob Andreas / MIT 6.804-6.864 / Spring 2020

Admin

Reminder: Hand in project proposals today if you want feedback in time!

Recap: syntax and question answering

Problem 1

Each of the three girls has a platypus.

Each of the three girls climbed the mountain.
How many platypuses?
How many mountains?

Problem 1

Problem 1

Problem 2

There are 128 cities in South Carolina.

name	type	coastal
Columbia	city	no
Cooper	river	yes
Charleston	city	yes

Problem 3

Barack Obama was the 44th President of the United States. Obama was born on August 4 in Honolulu, Hawaii. In late August 1961, Obama's mother moved with him to the University of Washington in Seattle for a year...

Is Barack Obama from the United States?

Compositional semantics

It's not enough to have structured representations of syntax: We also need structured representations of meaning.

Compositional semantics

It's not enough to have structured representations of syntax: We also need structured representations of meaning.

Today:

How do we get from language to meaning?

Representing meaning

Meaning in formal languages

$$
a+b=17
$$

Meaning in formal languages

Meaning in formal languages

$$
\begin{gathered}
a+b=17 \\
a=? \\
b=?
\end{gathered}
$$

Meanings are sets of valid assignments

$a+b=17$

$$
\begin{array}{ll}
\{a=0, b=0\} & \{a=17, b=0\} \\
\{a=3, b=10\} & \{a=10, b=7\} \\
\{a=5, b=12\} & \{a=5, b=5\}
\end{array}
$$

Meanings are sets of valid assignments

$$
a+b=17
$$

$$
\begin{array}{ll}
\{a=0, b=0\} \times & \{a=17, b=0\} \\
\{a=3, b=10\} \times & \{a=10, b=7\} \\
\{a=5, b=12\} & \{a=5, b=5\}
\end{array}
$$

Meanings are sets of valid assignments

$$
\begin{gathered}
a+3=20-b \\
\{a=0, b=0\} \times \\
\{a=3, b=10\} \times \\
\{a=5, b=12\}
\end{gathered} \quad\left\{\begin{array}{l}
\{a=17, b=0\} \\
\{a=10, b=7\}
\end{array} \text { \{a=5,b=5\}} \times 2\right.
$$

Meanings are functions that judge validity

$$
\begin{array}{|c|c|c|}
\qquad[a+b=17] \\
\{a=5, b=12\}
\end{array}
$$

Meanings are functions that judge validity

Lessons from math

$$
\llbracket a+b=17 \rrbracket
$$

The meaning of a statement is the set of possible worlds consistent with that statement.

Here, a "possible world" is an assignment of values to variables.

$$
\{a=3, b=10\}
$$

Meaning in natural languages

Pat likes Sal.

Representing possible worlds

Individuals
Pat whale •-

Relations
-loves \rightarrow

- contains \rightarrow

Example world

Sam

Pat

> Sal

Lou

Example world

Different example world

Representing possible worlds

Individuals

Pat Sal

Properties
whale=\{Lou\}, sad=\{Pat,Sal\}

Relations likes=\{(Pat,Sal),(Sal,Sam)\}

Interpretations of sentences

Pat likes Sal.

Interpretations of sentences

Lou is a shark.

Interpretations of sentences

Sam is inside Lou, a shark.

Key idea

The meaning of a sentence is the set of possible worlds it picks out.

Possible worlds and logical forms

Explicit representation is too hard

Pat likes Sal.

Meanings as functions

Meanings as logical statements

Expressing functions with logic

$$
\begin{aligned}
& \text { Pat likes Sal } \\
& \text { likes(Pat, Sal) }
\end{aligned}
$$

Meanings as logical statements

$$
\begin{aligned}
& \text { Lou is a shark } \\
& \text { shark(Lou) }
\end{aligned}
$$

Meanings as logical statements

Sam is inside Lou, a shark

Meanings as logical statements

Sam is inside Lou, a shark shark(Lou) ^ contains(Lou, Sam)

Meanings as logical statements

> Nobody likes Lou

Meanings as logical statements

$$
\begin{aligned}
& \text { Nobody likes Lou } \\
& \forall x . \neg l i k e s(x, \text { Lou) }
\end{aligned}
$$

Meanings as logical statements

Everyone who knows Sal is happy

Meanings as logical statements

Everyone who knows Sal is happy
$\forall x$. knows(x, Sal) \rightarrow happy (x)

Key idea

Collections of possible worlds can be compactly represented with logical forms.

Compositionality of meaning

Pat likes Sal likes(Pat, Sal)

Lou is a shark shark(Lou)

Sam is inside Lou, a shark shark(Lou) ^ contains(Lou, Sam)

Nobody likes Lou
$\forall x . \neg l i k e s(x$, Lou)

Compositionality of meaning

Pat likes Sal likes(Pat, Sal)

Lou is a shark shark(Lou)

Sam is inside Lou, a shark shark(Lou) ^ contains(Lou, Sam)

Nobody likes Lou
$\forall x . \neg l i k e s(x$, Lou)

Compositionality of meaning

Pat likes Sal

Lou is a shark

Sam is inside Lou, a shark

Nobody likes Lou
likes(Pat, Sal)
shark(Lou)
shark(Lou) ^
contains(Lou, Sam)
$\forall x . \neg l i k e s(x$, Lou)

Compositionality of meaning

A Sal le gusta Pat
 likes(Pat, Sal)

Lou es un tiburón

 shark(Lou)Sam está dentro de shark(Lou) ^ Lou, un tiburón contains(Lou, Sam)

A nadie le gusta Lou $\forall x . \neg l i k e s(x$, Lou)

Compositionality of meaning

a12 b5 c67 a8
likes(Pat, Sal)
a12 b5 c0 a0 shark(Lou)
a12 b16 c12 c12 shark(Lou) ^ contains(Lou, Sam)
a53
$\forall x . \neg l i k e s(x$, Lou)

Key idea
Pieces of logical forms
correspond to pieces of language

Building a lexicon

Sam is inside Lou, a shark shark(Lou) ^ contains(Lou, Sam)
Pat: Pat
Sal: Sal
Sam: Sam
Lou: Lou

Building a lexicon

Sam is inside Lou, a shark shark(Lou) ^ contains(Lou, Sam)
Pat: Pat shark:
Sal: Sal
Sam: Sam
Lou: Lou

Building a lexicon

Sam is inside Lou, a shark shark(Lou) ^ contains(Lou, Sam)
Pat: Pat shark: λx.shark(x)
Sal: Sal
Sam: Sam
Lou: Lou

Building a lexicon

Sam is inside Lou, a shark shark(Lou) ^ contains(Lou, Sam)

Pat: Pat
Sal: Sal
Sam: Sam
Lou: Lou
shark: λx.shark(x)
likes: $\lambda y x .1 i k e s(x, y)$
nobody: $\lambda f . \forall x . \neg f(x)$
...

Learning semantic parsers

Seq-to-seq semantic parsing

ᄀ likes (Pat , Sal)

transformer

Pat doesn't like Sal

Decoder constraints

Pat doesn't like Sal
transformer

Decoder constraints

Pat doesn't like Sal

transformer

Tree-shaped decoders

Pat doesn't like Sal's brother

Tree-shaped decoders

Learning from denotations

Logical form supervision:

Pat doesn't like Lou. \quad likes(Pat, Lou)

Answer supervision:

learn from (question, world, answer) triples without LFs!

Who does Pat like?

Maximum likelihood estimation

deterministic logical evaluation

Maximum likelihood estimation

deterministic logical evaluation
 syntactic parser
compare:

$$
p(\text { sentence })=\sum_{\text {tree }} p(\text { sentence } \mid \text { tree }) p(\text { tree })
$$

Computational challenges

Can't efficiently compute this sum: no way to factor scoring
fn over pieces of LFs.
no dynamic program!

$p($ answer \mid question $)=\sum_{\mathrm{LF}}^{\downarrow} p($ answer $\mid \mathrm{LF}) p(\mathrm{LF} \mid$ question $)$

dynamic program (CKY)
$p($ sentence $)=\sum_{\text {tree }} p($ sentence \mid tree $) p($ tree $)$

Computational challenges

Hard search problem!

This is o for almost all LFs
$p($ answer \mid question $)=\sum_{\mathrm{LF}} p($ answer $\mid \mathrm{LF}) p(\mathrm{LF} \mid$ question $)$

Margin losses

$$
\begin{aligned}
& \left.L(s, y)=\left[\max _{\substack{ \\
\left(s_{-y}\right.}}\right)-s_{y}+c\right]_{+} \\
& \text {s-y: scores other than } y \quad[x]_{+}:=\max (x, 0)
\end{aligned}
$$

Idea: try to make the score of the right label s_{y} at least at least c greater than the score of every wrong label.

Structured margin

$$
L(s, y)=\left[\max _{\mathrm{LF}^{-}, \mathrm{LF}^{+}} s\left(\mathrm{LF}^{-}\right)-s\left(\mathrm{LF}^{+}\right)+c\right]_{+}
$$

highest-scoring LF with the wrong answer
highest-scoring LF with the right answer

Each loss computation involves two search problems: solve with whatever heuristic you want!

"Hard EM"

Alternate between:

$$
\begin{aligned}
\mathrm{LF}^{*} & =\operatorname{argmax}_{\mathrm{LF}} p(\text { answer } \mid \mathrm{LF}) p(\mathrm{LF} \mid \text { question } ; \theta) \\
\theta^{*} & =\operatorname{argmax}_{\theta} p(\text { answer } \mid \mathrm{LF}) p(\mathrm{LF} \mid \text { question } ; \theta)
\end{aligned}
$$

(pick a "pseudo-gold", treat it as gold, update params)

Lexicon-based semantic parsing

$\mathrm{p}(\lambda y$. likes(Pat, y) | who does Pat like?)
$\propto \exp \{f($ like,$\lambda x y . \operatorname{likes}(x, y))+f($ Pat, Pat $)+\ldots\}$

Neural semantic parsing from denotations

Some combination of hard EM and reinforcement learning.

Way less computation / sample efficient than lexicon-based approaches, but better scoring function.

$$
\theta^{*}=\operatorname{argmax}_{\theta} p(\text { answer } \mid \mathrm{LF}) p(\mathrm{LF} \mid \text { question } ; \theta)
$$

Semantic parsing via paraphrasing

1. Write a rule-based procedure for turning logical forms into sentences

λy. likes $(y$, brother (Sal)) \longrightarrow what likes brother of Sal

2. Score LF based on similarity between the input sentence and fake one
$p(\mathrm{LF} \mid$ question $) \propto f($ who is it that likes Sal's brother, ^ what likes brother of Sal)
use paraphrase features

Aside: program synthesis

$\max _{\text {LF: } p(\text { answer } \mid \mathrm{LF})>0} f(\mathrm{LF} \mid$ question)
 1

Huge amount of work on solving this problem in the programming languages literature!
(not widely used in NLP)

Why not just predict answers directly?

Still hard for "unstructured" neural models!

Structured attention mechanisms

What city is on the coast?

Key-value attention tailored for tabular world representations

Charleston

Module networks

Does the blue cylinder have the same material as the big block on the right side of the red metallic thing?
[e.g. Andreas et al. 2016, Mao et al. 2019]

Module networks

No need to hand-write "logical" primitives!

Does the blue cylinder have the same material as the big block on the right side of the red metallic thing?

Question answering

Year	City	Country	Nations
1896	Athens	Greece	14
1900	Paris	France	24
1904	St. Louis	USA	12
\ldots	\ldots	\ldots	\ldots
2004	Athens	Greece	201
2008	Beijing	China	204
2012	London	UK	204

Greece last hosted the summer Olympics in which year?

Instruction following

move forward twice to the chair

$$
\begin{aligned}
& \lambda a . \operatorname{move}(a) \wedge \operatorname{dir}(a, \text { forward }) \wedge \operatorname{len}(a, 2) \wedge \\
& \quad \text { to }(a, \iota x . \operatorname{chair}(x))
\end{aligned}
$$

at the corner turn left to face the blue hall

$$
\begin{aligned}
& \text { גa.pre }(a, \iota x . \operatorname{corner}(x)) \wedge \operatorname{turn}(a) \wedge \operatorname{dir}(a, l e f t) \wedge \\
& \operatorname{post}(a, \operatorname{front}(\operatorname{you}, \iota x . \operatorname{blue}(x) \wedge \operatorname{hall}(x)))
\end{aligned}
$$

Other aspects of meaning: pragmatics

I ate some of the cookies.

Do you know what time it is?

Next class: dialogue

