Towards a Low-Order Model for Transonic Flutter Prediction

Max M. J. Opgenoord, Mark Drela, and Karen E. Willcox

Massachusetts Institute of Technology, Cambridge, MA, 02139

This paper presents a physical low-order model for two-dimensional unsteady transonic airfoil flow, based on small unsteady disturbances about a known steady flow solution. This is in contrast to traditional small-disturbance theory which assumes small disturbances about the freestream. The states of the low-order model are the flowfield’s lowest moments of vorticity and volume-source density perturbations, and their evolution equation coefficients are calibrated using off-line unsteady CFD simulations. The resulting low-order unsteady flow model is coupled to a typical-section structural model, thus enabling prediction of transonic flutter onset for moderate to high aspect ratio wings. The method is fast enough to permit incorporation of transonic flutter constraints in conceptual aircraft design calculations. The accuracy of this low-order model is demonstrated for forced pitching and heaving simulations of an airfoil in compressible flow. Finally, the model is used to describe the influence of compressibility on the flutter boundary.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, E</td>
<td>State-space matrices</td>
</tr>
<tr>
<td>A_a, B_a</td>
<td>State-space matrices of aerodynamic system</td>
</tr>
<tr>
<td>A_Γ, A_Γ', A_κ</td>
<td>Coefficients of Γ evolution equation</td>
</tr>
<tr>
<td>B_Γ, B_κ, B_κ'</td>
<td>Coefficients of κ_x evolution equation</td>
</tr>
<tr>
<td>I_θ</td>
<td>Moment of inertia around elastic axis</td>
</tr>
<tr>
<td>L</td>
<td>Lift</td>
</tr>
<tr>
<td>M_∞</td>
<td>Free stream Mach number</td>
</tr>
<tr>
<td>S_θ</td>
<td>Mass unbalance</td>
</tr>
<tr>
<td>V</td>
<td>Velocity field</td>
</tr>
<tr>
<td>V_0</td>
<td>Velocity field of steady solution</td>
</tr>
<tr>
<td>V_∞</td>
<td>Free stream velocity</td>
</tr>
<tr>
<td>X, X', X''</td>
<td>Matrices containing sequences of snapshots of state vector</td>
</tr>
<tr>
<td>a</td>
<td>Local speed of sound</td>
</tr>
<tr>
<td>a_l, b</td>
<td>Discrete state-space matrices</td>
</tr>
<tr>
<td>c</td>
<td>Airfoil chord length</td>
</tr>
<tr>
<td>c_ℓ</td>
<td>Lift coefficient</td>
</tr>
<tr>
<td>d</td>
<td>Distance between quarter-chord and elastic axis</td>
</tr>
<tr>
<td>h</td>
<td>Vertical position, positive downward</td>
</tr>
<tr>
<td>k_h</td>
<td>Spring constant for vertical motion</td>
</tr>
<tr>
<td>k_θ</td>
<td>Torsional spring constant</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
</tr>
<tr>
<td>¯n</td>
<td>Normal unit vector</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>Position vector</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>u</td>
<td>State-space control vector</td>
</tr>
<tr>
<td>u_a</td>
<td>State-space control vector of aerodynamic system</td>
</tr>
<tr>
<td>w</td>
<td>Vertical velocity, positive downward</td>
</tr>
<tr>
<td>x</td>
<td>State-space vector</td>
</tr>
<tr>
<td>x_a</td>
<td>State-space vector of aerodynamic system</td>
</tr>
<tr>
<td>x_{cg}</td>
<td>Position of center of gravity relative to elastic axis</td>
</tr>
<tr>
<td>x, z</td>
<td>Physical coordinates along freestream</td>
</tr>
<tr>
<td>θ</td>
<td>Pitch angle</td>
</tr>
<tr>
<td>κ_x</td>
<td>x-doublet strength</td>
</tr>
<tr>
<td>ρ_∞</td>
<td>Free stream density</td>
</tr>
<tr>
<td>σ</td>
<td>Volume-source strength</td>
</tr>
<tr>
<td>Υ'</td>
<td>Matrix containing sequence of snapshots of control input vector</td>
</tr>
<tr>
<td>Γ</td>
<td>Circulation strength</td>
</tr>
<tr>
<td>ω</td>
<td>Vorticity</td>
</tr>
<tr>
<td>ω</td>
<td>Angular velocity</td>
</tr>
<tr>
<td>¯ω</td>
<td>Reduced frequency</td>
</tr>
</tbody>
</table>

*Graduate student, Department of Aeronautics and Astronautics, mopg@mit.edu, Student Member AIAA
†Terry J. Kohler Professor of Aeronautics and Astronautics, Department of Aeronautics and Astronautics, drela@mit.edu, Fellow AIAA
‡Professor of Aeronautics and Astronautics, kwillcox@mit.edu, Associate Fellow AIAA

Copyright © 2017 by M. Opgenoord, M. Drela, and K. Willcox. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.
I. Introduction

The push for more efficient transport aircraft leads to larger wing spans and more flexible wings, configurations for which flutter becomes a significant design consideration. This is especially true for next-generation airplane concepts, such as the Truss-Braced Wing. However, incorporating flutter prediction into early-stage design is a considerable challenge for the transonic flow regime relevant to most civil transport aircraft designs, since existing accurate models for transonic flutter prediction typically require extensive computational fluid dynamic (CFD) analyses that are too expensive to conduct at early design stages where potentially thousands of wing designs might be considered. Flutter constraints can be included in state-of-the-art multidisciplinary design optimization settings, but even if the static aeroelastic methods are high fidelity, the methods for unsteady (compressible) flow usually either linearize the unsteady response or use a Prandtl-Glauert correction, which is limited to subsonic flow. In this paper, we develop an accurate, fast, low-order model for small-amplitude transonic unsteady airloads, intended for flutter prediction in early-stage design and optimization of transport aircraft.

While flutter for low subsonic flows can, in general, be accurately predicted with linearized small-disturbance theories, they fail for transonic flow where the traditional small-disturbance formulation is inherently nonlinear. For example, linear theory predicts that thinner wings would be less susceptible to flutter, but wind tunnel tests have shown the opposite to be true. Another interesting phenomenon that occurs in transonic flows is the transonic dip in the flutter boundary. Linear theories cannot predict the location or shape of the transonic dip, and tend to produce optimistic estimates for the flutter boundary.

The seminal work by Theodorsen is widely used for incompressible flutter predictions for two-dimensional airfoils. Several researchers extended Theodorsen’s theory to subsonic flows with none of these methods extending to the transonic regime. Moreover, Theodorsen theory is only strictly valid for simple harmonic motion, which strictly applies only at the flutter boundary.

Possio applied the acceleration potential to a two-dimensional subsonic compressible nonstationary problem and arrived at an integral equation (Possio’s equation) for subsonic unsteady compressible flow. Closed-form solutions to an approximation of Possio’s equation were found in 1999. However, the accuracy for Possio’s method deteriorates for transonic flows and for high-frequency oscillations. Lomax et al. used piston theory to analytically find the lift response to unsteady perturbations in subsonic flow, but only for the non-circulatory part of the lift. Stahara and Spreiter, Isogai, and Dowell developed models for linearized transonic flow, applicable to thin airfoils in shock-free flows. A linearization of the Transonic Small-Disturbance (TSD) equation for unsteady transonic flow was first proposed by Nixon, which involves changing the airfoil geometry for transonic flows such that the shock location does not change during any perturbations.

These analytical/theoretical methods all suffer from a loss of accuracy in transonic flows with shocks on the airfoil surface, which are typical on jet transports. Other approaches have attempted to address this limitation by deriving models using a combination of theory and experimental data, as in the work of Leishman and Nguyen who formulated a state-space representation of unsteady airfoil behavior with some parameters estimated from experimental data, or by deriving reduced-order models from high-fidelity CFD models. A reduced-order modeling approach starts with the full state (flow field) information collected from a CFD solver and identifies a low-dimensional subspace in which the most important system dynamics evolve. Methods such as the harmonic balance, proper orthogonal decomposition, and Volterra series have all been used to derive aeroelastic reduced-order models. These methods have been applied in practice successfully, amongst others, for unsteady transonic flow around full wings, a full F-16 aircraft configuration, and many more.

In contrast to the reduced-order modeling approach, which starts with a high-order model and reduces the state by pure numerics, our work constructs a physics-based low-order model a priori, in terms of the flowfield’s volume-source and vorticity moments. Our state variables are the unsteady perturbations of these moments from some known steady transonic solution, and their time evolution is governed by postulated equations whose coefficients are treated as parameters. These parameters are calibrated using high-fidelity CFD results. Our underlying assumption is that the baseline steady flow is statically nonlinear, but sufficiently small disturbances around the baseline solution can be assumed to produce a linear response in the overall volume-source and vorticity moments. The resulting model produces unsteady perturbation lift and moment outputs, which can be combined with a conventional typical-section structural elastic model.
to obtain an overall aeroelastic state-space model suitable for flutter prediction.

We develop the present aerodynamic model as an extension of the one used in ASWING,33,34 which employs Theodorsen theory9 for calibration. In contrast, the present model is calibrated using data from high-fidelity Euler CFD simulations of the transonic unsteady flow around airfoils. Section II of this paper develops the physics-based low-order model. Section III describes the state-space system identification methods used to fit the model coefficients using CFD data. Section IV demonstrates the model’s ability to predict transonic flutter, and Section V concludes the paper.

II. Physics-Based State-Space Model Formulation

This section develops the physics-based low-order model. We start with the aerodynamic low-order model, of which some coefficients will have to be calibrated—the calibration is discussed in Section III—and then move on to the structural model. The aerodynamic and structural models are combined in an aeroelastic state-space system. Analysis of the coupled state-space system indicates whether flutter occurs.

II.A. Aerodynamic Low-Order Model

The physics-based low-order aerodynamic model begins with the Helmholtz decomposition, which expresses any instantaneous velocity field V as integrals over the velocity’s divergence and curl fields, commonly known as the volume-source density σ and the vorticity ω:

$$\sigma \equiv \nabla \cdot V$$

$$\omega \equiv \nabla \times V$$

$$V(r,t) = \frac{1}{2\pi} \int \int \sigma(r',t) \frac{r-r'}{|r-r'|^2} dA' + \frac{1}{2\pi} \int \int \omega(r',t) \times \frac{r-r'}{|r-r'|^2} dA' + V_\infty,$$

where r is a position vector, t is time, and V_∞ is the free-stream velocity field. For low-speed flow we have $\sigma = 0$ by mass continuity, and for potential flow the ω field is restricted to the body boundary layers and wakes where it can be approximated via vortex filaments or the equivalent normal-doublet panels. This is the basis of vortex-lattice or doublet-lattice methods. For compressible flows the volume-source field σ becomes significant due to density gradients, but for small-disturbance subsonic flows it can be linearized and removed via the Prandtl-Glauert transformation.35 Although this linearization approach fails for transonic flows, the velocity decomposition (3) is a mathematical identity and always remains valid, provided the volume-source field σ is defined and computed appropriately. One example is given by Oskam,36 who obtained 2D transonic airfoil solutions using this approach. Specifically, the volume-source field was represented by panels covering space around the airfoil, whose σ strengths were computed via the full-potential equation, together with the usual normal-doublet panels on the surface computed via flow tangency.

We define the unsteady volume-source and vorticity fields to have the form

$$\sigma(r,t) = \sigma_0(r) + \Delta \sigma(r,t)$$

$$\omega(r,t) = \omega_0(r) + \Delta \omega(r,t),$$

where σ_0 and ω_0 correspond to some known steady transonic flow, and $\Delta \sigma$ and $\Delta \omega$ are small perturbations defining the unsteady flow we are seeking. Since the Helmholtz decomposition (3) is linear in σ and ω, the corresponding velocity field will have the same baseline plus perturbation form:

$$V(r,t) = V_0(r) + \Delta V(r,t).$$

We stress that “small disturbance” here refers to small disturbances from the steady solution, and not small perturbations from the freestream (which is the more common usage).

To construct the low-order model for the overall airfoil lift and pitching moment, we first assume that the effects of the σ and ω fields, diagrammed in Figure 1, can be captured by only their leading spatial moments. The zeroth moment of the vorticity, or equivalently its overall lumped strength, is the airfoil circulation

$$\Gamma \equiv \iint \omega \cdot \mathbf{y} \, dA,$$
which for steady flow captures the lift exactly via the Kutta-Joukowsky theorem. As sketched in Figure 1, the volume-source field σ is mostly positive over the upper front of the airfoil where the flow accelerates, and mostly negative over the shock and the upper rear where the flow decelerates. Its zeroth moment is comparable to the wave drag, which typically is very small and negligible compared to the lift force:

$$D_{\text{wave}} \approx \int \sigma \, dA \approx 0.$$

Consequently, we must consider the first x-moment of the volume-source field, which is its overall lumped x-doublet strength,

$$\kappa_x(t) \equiv \int \sigma \, dA.$$

In the single-element Weissinger vortex-lattice method,37,38 all the vorticity is lumped into a point vortex placed at the airfoil quarter-chord point, and its strength Γ is implicitly determined by requiring the flow-tangency condition $V_{c.p.} \cdot \hat{n}_{c.p.} = 0$ at the control point at the airfoil three-quarter chord point. For unsteady flow there will be additional contributions from the shed vorticity that modify $V_{c.p.}$ and hence $\Gamma(t)$ and the lift, and also from the airfoil motion. This is the approach used in the ASWING formulation,33,34 which for low-speed flow closely matches the results of the more exact Theodorsen theory.9

For the transonic flows considered here, this model is extended by the addition of the lumped x-doublet placed at some location (x_κ, z_κ). As diagrammed in Figure 1, the doublet adds to the overall velocity at the control point, and thus will affect Γ and the lift. This is the mechanism which is here postulated to capture the compressibility effects on the circulation and the resulting lift and moment.

![Figure 1. Vorticity and field sources representing velocity field are approximated by overall circulation Γ and doublet κ_x. Only their small unsteady perturbations from a transonic flowfield, $\Delta \Gamma$ and $\Delta \kappa_x$, are sought in the present analysis.](image)

Corresponding to decompositions (4) and (5), we will here actually seek the small perturbations

$$\Delta \Gamma(t) \equiv \Gamma(t) - \Gamma_0$$
$$\Delta \kappa_x(t) \equiv \kappa_x(t) - \kappa_{x,0}$$

from the steady-solution values Γ_0, $\kappa_{x,0}$. The steady circulation Γ_0 is directly proportional to the steady lift coefficient c_{ℓ_0} or the corresponding angle of attack α_0, while $\kappa_{x,0}$ is also a strong function of the freestream Mach number M_∞ and to some extent of the airfoil shape. Typical $\kappa_{x,0}$ variation for a transonic airfoil is shown in Figure 2. Note that the dependence on c_{ℓ_0} is almost linear.

For the imposition of flow tangency at the control point, we define the instantaneous airfoil-surface normal velocity at the control point as

$$U_n(t) \equiv U_{c.p.} \cdot \hat{n}_{c.p.},$$

while the instantaneous fluid normal velocity at the control point is defined as

$$V_n(t) \equiv V_{c.p.} \cdot \hat{n}_{c.p.}.$$
Next, we approximate the normal fluid velocity perturbation at the three-quarter control point as

$$\Delta V_n(t) = A_{\Gamma} \Delta \Gamma + A_{\dot{\Gamma}} \Delta \dot{\Gamma} + A_{\kappa} \Delta \kappa_x,$$

which can be considered to be a lumped form of the velocity decomposition (3), with the $\Delta \dot{\Gamma}$ term capturing the contribution of the shed vorticity. Following the single-element Weissinger vortex lattice method37,38 we set

$$A_{\Gamma} = -\frac{1}{\pi c},$$

and following the ASWING shed-vorticity model33,34 we set

$$A_{\dot{\Gamma}} = \frac{-b}{V_{\infty}}.$$(16)

The calibrated lag constant value $b = 2/\pi$ gives results that closely approximate those of Theodorsen.9 If we place the x-doublet at $(x_\kappa, z_\kappa) = (c/2, c/4)$, then the doublet’s influence on the three quarter-chord control point gives

$$A_{\kappa} = \frac{1}{4\pi c^2}.$$(17)

In general, however, the effective doublet position is not known, and is expected to depend on the baseline steady solution. Hence, the A_{κ} coefficient will be a calibrated function of the baseline steady flow solution. Regardless, we obtain the evolution equation for the circulation by requiring flow tangency at the control point,

$$\Delta V_n = U_n$$

$$\Rightarrow A_{\dot{\Gamma}} \Delta \dot{\Gamma} = U_n - A_{\Gamma} \Delta \Gamma - A_{\kappa} \Delta \kappa_x.$$(19)

The evolution equation for the x–doublet is postulated to be second-order. This follows from the full potential equation,42

$$\nabla^2 \phi - \frac{1}{a^2} \left[\frac{\partial^2 \phi}{\partial t^2} + \frac{\partial}{\partial H} \left(\frac{\|V\|^2}{2} \right) + V \cdot \nabla \left(\frac{\|V\|^2}{2} \right) \right] = 0.$$(20)
Note that $\nabla^2 \phi = \sigma$, so that taking the Laplacian of Eq. (20) would give a wave equation for σ, involving second time derivatives. Hence, κ_x—the first moment of σ—must have a second time derivative in its evolution equation. Therefore, we postulate the evolution equation for κ_x to be

$$\Delta \ddot{\kappa}_x = B_T \Delta \dot{\Gamma} + B_{\kappa} \Delta \kappa_x + B_{\kappa} \Delta \dot{\kappa}_x,$$ \hspace{1cm} (21a)

where

$$B_T = B_T (M_{\infty}, c_{\ell_0})$$ \hspace{1cm} (21b)

$$B_{\kappa} = B_{\kappa} (M_{\infty}, c_{\ell_0})$$ \hspace{1cm} (21c)

$$B_{\dot{\kappa}} = B_{\dot{\kappa}} (M_{\infty}, c_{\ell_0})$$ \hspace{1cm} (21d)

are calibrated functions for the airfoil (or airfoil family) being analyzed, and

$$c_{\ell_0} = \frac{2T_0}{cV_{\infty}}$$ \hspace{1cm} (22)

is the lift coefficient of the baseline solution. The lift and the moment around the quarter-chord point, per unit span, are

$$\Delta L(t) = \rho_{\infty} V_{\infty} \Delta \Gamma + \rho_{\infty} \epsilon \Delta \dot{\Gamma} + \Delta L_{nc}(t)$$ \hspace{1cm} (23)

$$\Delta M(t) = \Delta M_{c/4}(t) + \Delta M_{nc}(t),$$ \hspace{1cm} (24)

where $\Delta M_{c/4}(t) \equiv \frac{1}{2} \rho_{\infty} V_{\infty}^2 c^2 \Delta c_m$. Here, Δc_m is a calibrated function of $\Delta \Gamma/cV_{\infty}$, $\Delta \dot{\Gamma}/V_{\infty}^2$, $\Delta \kappa_x/c^2 V_{\infty}$, and $\Delta \kappa_x/c^2 V_{\infty}^2$, using a least-squares fit to a number of unsteady Euler or RANS calculations. Following Theodorsen, the non-circulatory lift $\Delta L_{nc}(t)$ and moment $\Delta M_{nc}(t)$ are added-mass terms defined as

$$\Delta L_{nc}(t) = \frac{1}{4} \rho_{\infty} \pi c^2 \left[\Delta \dot{h} - \left(x_{ea} - \frac{c}{2} \right) \Delta \dot{\theta} \right] + \frac{1}{4} \rho_{\infty} \pi c^2 V_{\infty} \Delta \dot{\theta}$$ \hspace{1cm} (25a)

$$\Delta M_{nc}(t) = \frac{1}{4} \rho_{\infty} \pi c^2 \left(x_{ea} - \frac{c}{2} \right) \left[\Delta \dot{h} - \left(x_{ea} - \frac{c}{2} \right) \Delta \dot{\theta} \right] - \frac{\rho_{\infty} \pi c^4}{128} \Delta \dot{\theta} - \frac{1}{4} \rho_{\infty} \pi c^2 V_{\infty} \left(\frac{3}{4} c - x_{ea} \right) \Delta \dot{\theta}.$$ \hspace{1cm} (25b)

II.B. Typical-Section Structural Model

We focus here on the typical section (Fig. 3), as used frequently in the aeroelasticity community. Using Hamilton’s equation and Lagrangian mechanics, the equations of motion of an airfoil in heave and pitch motion are found to be

$$m \Delta \ddot{h} + k_h \Delta h + S_\theta \Delta \ddot{\theta} = -\Delta L$$ \hspace{1cm} (26a)

$$S_\theta \Delta \ddot{h} + k_\theta \Delta \theta + I_\theta \Delta \ddot{\theta} = \Delta M + \Delta L d$$ \hspace{1cm} (26b)

where here we define Δh to be the heave perturbation, defined positive downward, and $\Delta \theta$ to be the pitch angle perturbation, defined positive clockwise. m is the total mass/span of the section, $S_\theta \equiv x_{cg} m$ is the mass unbalance/span, where x_{cg} is the distance between the elastic center and the center of gravity. I_θ is the moment of inertia/span around the elastic axis. Finally, k_h is the heave displacement spring constant/span, and k_θ is the torsional spring constant/span. The pitching moment equation (26b) is constructed about the elastic axis (or shear center) location, defined to be a distance d behind the quarter chord point.

II.C. Overall State Space Model

The aeroelastic model couples the aerodynamic and structural models, using the following overall state vector:

$$x(t) = [\Delta h(t), \Delta \theta(t), \Delta w(t), \Delta \omega(t), \Delta \Gamma(t), \Delta \kappa_x(t), \Delta \dot{\kappa}_x(t)]^T,$$ \hspace{1cm} (27)

where $\Delta \omega(t) \equiv \Delta \dot{\theta}(t)$ is the pitch rate perturbation and $\Delta w(t) \equiv \Delta \dot{h}(t)$ is the vertical (downward) velocity perturbation. The vertical velocity and pitch rate force the aerodynamic system through the normal velocity at the control point,

$$U_n = -\Delta w - V_{\infty} \Delta \theta - \frac{c}{4} \Delta \omega.$$ \hspace{1cm} (28)
The unknown coefficients of the system in Eq. (31) are calibrated using CFD simulations of forced pitching and heaving airfoil motions, as described in the next section.

Figure 3. Typical section.

The aeroelastic system equations now become

\[
\begin{align*}
\Delta h &= \Delta w \\
\Delta \dot{\theta} &= \Delta \dot{\omega} \\
m \Delta \dot{w} + S_\theta \Delta \dot{\omega} &= -k_h \Delta h - \Delta L \\
&= -k_h \Delta h - \rho_{\infty} V_{\infty} \Delta \Gamma - \rho_{\infty} c \Delta \dot{\Gamma} \\
&= -k_h \Delta h - \rho_{\infty} V_{\infty} \Delta \Gamma \\
&\quad - \frac{\rho_{\infty} c}{A_{\Gamma}} \left(-\Delta w - V_{\infty} \Delta \theta - \frac{c}{4} \Delta \dot{\omega} - A_{\Gamma} \Delta \Gamma - A_{\kappa} \Delta \kappa_x \right) - \Delta \dot{I}_{nc}(t) \\
S_\theta \Delta \dot{w} + I_\theta \Delta \dot{\omega} &= -k_\theta \Delta \theta + \Delta \dot{L}d + \Delta M \\
&= -k_\theta \Delta \theta + \rho_{\infty} V_{\infty} \Delta \dot{\Gamma} d + \frac{\rho_{\infty} c}{A_{\Gamma}} \left(-\Delta w - V_{\infty} \Delta \theta - \frac{c}{4} \Delta \dot{\omega} - A_{\Gamma} \Delta \Gamma - A_{\kappa} \Delta \kappa_x \right) d \\
&\quad + \Delta M_{c/4} + \Delta M_{nc}(t) \\
\Delta \dot{\Gamma} &= \frac{1}{A_{\Gamma}} \left[-\Delta w - V_{\infty} \Delta \theta - \frac{c}{4} \Delta \dot{\omega} - A_{\Gamma} \Delta \Gamma - A_{\kappa} \Delta \kappa_x \right] \\
\Delta \dot{\kappa}_x &= B_{\Gamma} \Delta \Gamma + B_{\kappa} \Delta \kappa_x + B_{\kappa} \Delta \dot{\kappa}_x.
\end{align*}
\]

Eq. (29) has the form of a standard descriptor state-space model

\[
E \tilde{x} = A \tilde{x}.
\]

Flutter is indicated if any eigenvalue of the matrix \((E^{-1}A)\) has a positive real part.

The structural dynamics of the typical-section airfoil are the same for subsonic and transonic flows, and it is only the aerodynamic model that needs calibration for transonic flows. Therefore, we decompose the state-space system in Eq. (30), to extract the aerodynamic state-space system with state \(x_a\), input \(u_a\), and state-space matrices \(A_a\) and \(B_a\), defined as follows:

\[
\begin{align*}
\frac{d}{dt} \begin{bmatrix}
\Delta \Gamma(t) \\
\Delta \kappa_x(t) \\
\Delta \dot{\kappa}_x(t)
\end{bmatrix} &= \begin{bmatrix}
-A_{\Gamma} & -A_{\kappa} & 0 \\
0 & 0 & 1 \\
B_{\Gamma} & B_{\kappa} & B_{\kappa}
\end{bmatrix} \begin{bmatrix}
\Delta \Gamma(t) \\
\Delta \kappa_x(t) \\
\Delta \dot{\kappa}_x(t)
\end{bmatrix} + \begin{bmatrix}
-\frac{V_{\infty}}{A_{\Gamma}} & -\frac{c}{4} & -\frac{1}{A_{\Gamma}} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
\Delta \theta(t) \\
\Delta \dot{\omega}(t) \\
\Delta \dot{w}(t)
\end{bmatrix} \\
&\quad \begin{bmatrix}
A_a \\
x_a \\
B_a \\
u_a
\end{bmatrix}
\end{align*}
\]

The unknown coefficients of the system in Eq. (31) are calibrated using CFD simulations of forced pitching and heaving airfoil motions, as described in the next section.
III. Model Fitting from CFD Data

This section describes our approach to fit the unknown coefficients of the low-order flutter model using data generated with unsteady CFD simulations.

III.A. State-space System Identification

The unknown coefficients in the low-order flutter model developed in Section II are \(A_F, A_k, B_F, B_k \). To determine these coefficients from data, we employ the state-space system identification method of Dynamic Mode Decomposition (DMD).\(^{45}\) Specifically, we use dynamic mode decomposition with control (DMDc),\(^{46}\) which requires us to collect snapshots of the states and control inputs at each time step. Therefore, we first run unsteady compressible flow simulations for forced pitching/heaving oscillations to obtain \(\{\Delta \Gamma(t_i), \Delta \kappa_x(t_i), \Delta \theta(t_i), \Delta \omega(t_i), \Delta w(t_i)\} \) with \(t_i = (i-1)\Delta t, \ i = 1, \ldots, (N+2) \).

These snapshots are collected in the matrices \(X \in \mathbb{R}^{1 \times N} \), \(X' \in \mathbb{R}^{2 \times N} \), \(X'' \in \mathbb{R}^{2 \times N} \), and \(\Upsilon' \in \mathbb{R}^{3 \times N} \) as follows:

\[
X = \begin{bmatrix}
\Delta \kappa_x(t_1) & \Delta \kappa_x(t_2) & \ldots & \Delta \kappa_x(t_N) \\
\end{bmatrix}, \quad (32a)
\]

\[
X' = \begin{bmatrix}
\Delta \Gamma(t_2) & \Delta \Gamma(t_3) & \ldots & \Delta \Gamma(t_{N+1}) \\
\Delta \kappa_x(t_2) & \Delta \kappa_x(t_3) & \ldots & \Delta \kappa_x(t_{N+1}) \\
\end{bmatrix}, \quad (32b)
\]

\[
X'' = \begin{bmatrix}
\Delta \Gamma(t_3) & \Delta \Gamma(t_4) & \ldots & \Delta \Gamma(t_{N+2}) \\
\Delta \kappa_x(t_3) & \Delta \kappa_x(t_4) & \ldots & \Delta \kappa_x(t_{N+2}) \\
\end{bmatrix}, \quad (32c)
\]

\[
\Upsilon' = \begin{bmatrix}
\Delta \theta(t_2) & \Delta \theta(t_3) & \ldots & \Delta \theta(t_{N+1}) \\
\Delta \omega(t_2) & \Delta \omega(t_3) & \ldots & \Delta \omega(t_{N+1}) \\
\Delta w(t_2) & \Delta w(t_3) & \ldots & \Delta w(t_{N+1}) \\
\end{bmatrix}, \quad (32d)
\]

Note that we need the matrix \(X'' \) because we postulated the evolution equation for \(\kappa_x \) to be second-order in Eq. (21a).

DMD fits a discrete state-space system, relating \(X'' \) to \(X' \), \(X \) and \(\Upsilon' \) as

\[
X'' \approx aX' + a_1X + b\Upsilon', \quad (33)
\]

where \(a \in \mathbb{R}^{2 \times 2}, \ a_1 \in \mathbb{R}^{2 \times 1}, \ b \in \mathbb{R}^{2 \times 3} \) are matrices containing the unknown coefficients to be fit. Eq. (33) can be rewritten in the form

\[
X'' \approx G\Omega, \quad (34)
\]

with \(G = \begin{bmatrix} a & a_1 & b \end{bmatrix} \in \mathbb{R}^{2 \times 6} \) and \(\Omega = \begin{bmatrix} X' \\
X \\
\Upsilon' \end{bmatrix} \in \mathbb{R}^{6 \times N} \).

In (34), \(X'' \) and \(\Omega \) are obtained from the CFD simulations, and \(G \) is then found by solving the least-squares optimization problem

\[
G = \arg \min_G \|X'' - G\Omega\|_F. \quad (35)
\]

To solve this minimization problem, one computes a singular value decomposition (SVD) of \(\Omega = U\Sigma V^T \), where \(U \in \mathbb{R}^{6 \times 6}, \ V \in \mathbb{R}^{N \times 6}, \) and the diagonal matrix \(\Sigma \in \mathbb{R}^{6 \times 6} \). The least-squares fit \(G \) is then found to be

\[
G = X''V\Sigma^{-1}U^T. \quad (36)
\]

In contrast to the reduced-order modeling approach where DMD is typically used, we do not truncate the singular values in \(\Sigma \) when computing \(G \). In reduced-order modeling, the row dimension of the snapshot matrices is the total number of states in the CFD model (typically \(10^4 \) or higher), and DMD is used to identify a model of much lower order. In contrast, in this system identification setting, we construct the data matrices \(X, X', X'', \) and \(\Upsilon' \) with our six physical low-order quantities, such that the state dimension of the DMD representation is already at the desired number.
The matrices a, a_l, and b are found by decomposing the linear operator U as

$$
\begin{bmatrix}
a, & a_l, & b
\end{bmatrix} \approx \begin{bmatrix}
X'V\Sigma^{-1}U_1^\top, & X'V\Sigma^{-1}U_2^\top, & X'V\Sigma^{-1}U_3^\top
\end{bmatrix},
$$

(37)

where $U_1 \in \mathbb{R}^{6\times2}$, $U_2 \in \mathbb{R}^{6\times1}$, $U_3 \in \mathbb{R}^{6\times3}$ are the first two columns of U, the third column of U, and the last three columns of U.

Finally, we relate the discrete state-space matrices a, a_l, b to the continuous state-space matrices A_a and B_a in Eq. (31) using Tustin’s method.\(^{37}\)

III.B. CFD Data Generation

We fit the aerodynamic part of the state-space system using data from CFD solutions. Throughout this work, we use the Stanford University Unstructured (SU2)\(^{48}\) tool suite. SU2 is a multi-purpose PDE solver, and specifically developed with aerospace applications in mind, such as unsteady compressible flow over an airfoil. For CFD applications, SU2 employs a finite volume method with standard edge-based structure on a dual grid. For unsteady simulations it uses a dual time-stepping strategy for high-order accuracy in time.\(^{49}\)

Two changes to SU2 were necessary for this work. First, the parameters of our problem (κ_x, Γ) are computed by post-processing SU2 solutions. The circulation $\Gamma(t)$ is defined as

$$
\Gamma(t) = \oint \mathbf{\omega}(t) \cdot \hat{y} \, dA = \oint \mathbf{V}(t) \cdot dl.
$$

(38)

If this line integral is computed sufficiently close to the airfoil, it is more accurate than integrating the vorticity, because this is less susceptible to round-off errors and noise in the gradient computation. Note that we need to choose the contour for the line integral to exclude the wake, such that we compute the circulation without including shedding vorticity. This is illustrated in Fig. 4(c).

Computing the x-doublet through integration of the divergence of the velocity field is even more problematic, because the extrema in the volume-source field are highly localized. As an example, the volume-source field around the RAE2822 airfoil in subsonic and transonic flow is shown in Fig. 5 for different lift coefficients, as computed with MSES.\(^{39–41}\) Using the contour shown in Fig. 4(b), the x-doublet is computed by evaluating

$$
\kappa_x(t) = -\oint x \nabla \cdot \mathbf{V}(t) \, dA = -\oint x \mathbf{V}(t) \cdot \mathbf{\hat{n}} \, ds + \oint \mathbf{U}(t) \, dA
$$

$$
= -\oint x [\mathbf{V}(t) - \mathbf{V}_\infty] \cdot \mathbf{\hat{n}} \, ds + \oint [\mathbf{U}(t) - \mathbf{U}_\infty] \, dA,
$$

(39)

where \mathbf{U} is the velocity in the freestream x-direction. The final expression for $\kappa_x(t)$ subtracts off \mathbf{V}_∞ to minimize cancellation errors.

When using a structured grid (e.g., an O-grid or a C-grid for airfoils), computing these quantities using line integrals is straightforward. One can just track the grid lines at a certain distance around the airfoil. However, throughout this work we mostly used unstructured grids, complicating the computation of the line integrals. In this case, we find a set of edges in the mesh at a certain distance from the airfoil that form a closed loop around that airfoil. First, the set of edges that intersect a circle centered around the airfoil is identified, by finding the edges for which one edge point is inside the circle and one is outside on the circle (see Fig. 4(a)). An arbitrary precision method by Shewchuk\(^{50}\) is employed for this. Subsequently any hanging nodes are removed from this set. The result of such an approach is shown in Fig. 4(b). For the doublet computation, we must also integrate the U velocity within this circle, which is done by summing over all cells of the primal grid (instead of the dual grid, which SU2 uses).

The second change to SU2 was to alter the dynamic mesh rotations in order to allow for different prescribed motions (which include multiple frequencies with a ramp-up to maximum amplitude) and to allow for restarting the solution from a steady result without any discontinuities in the grid velocities. An example of such a prescribed motion is shown in Fig. 6.

IV. Results

The low-order model is calibrated using Euler simulations of pitching and heaving airfoils at different Mach numbers and reduced frequencies. The results in this section use simulations of an RAE2822 transonic
First, we show the results of just the SU2 forced-heaving simulations for different Mach numbers in Figures 7 and 8. Both the phase and the magnitude variation of both the circulation and the x-doublet are seen to significantly depend on the forcing reduced frequency $\bar{\omega}$, and its effect varies with the baseline Mach number M_∞. At the higher transonic Mach number, the dependence of the x-doublet phase on frequency is especially strong. A physical explanation of this behavior is that the delays in propagation of the shock and acoustic waves which comprise the σ field variation will be strongly affected by the size of the supersonic zone, and hence by M_∞.

These CFD results for different Mach numbers and different reduced frequencies are then used to calibrate a low-order model. In this work, we focus on fitting one low-order model per Mach number for reduced frequencies in the range of $\bar{\omega} = 0.05$ to $\bar{\omega} = 0.40$. In the DMD formulation of Section III, we require that all CFD simulations use the same fixed time step Δt. Therefore, the low frequency simulations use more time
steps than the high frequency simulations. Throughout this work, we set the time step such that for the highest reduced frequency 40 time steps per period are used.

For the calibration we combine the forced pitching and heaving simulations to yield one fit per Mach number and airfoil. Applying the DMD method of Section III to these CFD results yields the fits shown in Figures 9 and 10 for pitching motion, and Fig. 11 for heaving motion. The low-order model captures the circulation response quite accurately. Capture of the x-doublet response is quite reasonable as well, except for the final part after we stop forcing the airfoil. This is likely due to the numerical noise in the SU2 computation, which then also throws off the fit.

Figure 5. Volume-source fields around RAE2822 airfoil in subsonic and transonic flow as computed by MSES.39–41
Figure 6. Example of forced pitching oscillation.

![Diagram](image)

Figure 7. Phase diagram of Γ for forced heaving at different reduced frequencies for subsonic and transonic flow.

(a) Subsonic ($\alpha_0 = 1.5^\circ$, $M_\infty = 0.5$)

(b) Transonic ($\alpha_0 = 1.5^\circ$, $M_\infty = 0.75$)

Figure 8. Phase diagram of κ_x for forced heaving at different reduced frequencies for subsonic and transonic flow.

(a) Subsonic ($\alpha_0 = 1.5^\circ$, $M_\infty = 0.5$)

(b) Transonic ($\alpha_0 = 1.5^\circ$, $M_\infty = 0.75$)
We also show the errors in the fit for different Mach numbers in Tables 1 and 2. The error in each state is computed as

$$
\epsilon_i = \frac{\|x_{i,DMD} - x_{i,SU2}\|^2}{\|x_{i,SU2}\|^2}.
$$

The results in Tables 1 and 2 confirm that the fit for circulation is significantly better than the fit for the \(x\)-doublet.

Figure 9. Comparison of phase diagrams between SU2 results and low-order model for forced pitching oscillations at \(\bar{\omega} = 0.35\) for \(M_\infty = 0.6\) for the RAE2822 airfoil with \(\alpha_0 = 1.5^\circ\).

![Phase diagrams for circulation and \(x\)-doublet](image)

Figure 10. Comparison of time series between SU2 results and low-order model for forced pitching oscillations at \(\bar{\omega} = 0.35\) for \(M_\infty = 0.6\) for the RAE2822 airfoil with \(\alpha_0 = 1.5^\circ\).

![Time series for circulation and \(x\)-doublet](image)

The goal of a calibrated low-order model is to be predictive at different frequencies. We calibrate one low-order model for \(M_\infty = 0.30\) and one low-order model for \(M_\infty = 0.60\), and test these low-order models at frequencies that were not part of the frequencies used for calibration. Tables 3 and 4 show the accuracy of the DMD fits for these Mach numbers. We see that the accuracy for these frequencies is quite similar to the accuracy for frequencies that were part of the calibration (Tables 1 and 2).

We fit low-order models for different freestream Mach numbers to investigate the effect of compressibility on the aerodynamic response of the airfoil. The effect of Mach number is shown by the magnitude and phase of the transfer function between circulation and the pitching angle \(\theta\) in Fig. 12. We see that the magnitude of the transfer function is strongly dependent on Mach number, as expected, but that the Mach number
Figure 11. Comparison of phase diagrams between SU2 results and low-order model for forced heaving oscillations at $\bar{\omega} = 0.25$ for $M_\infty = 0.6$ for the RAE2822 airfoil with $\alpha_0 = 1.5^\circ$.

Table 1. Accuracy of DMD fit for forced pitching oscillations at $M_\infty = 0.30$ for RAE2822 airfoil with $\alpha_0 = 1.5^\circ$.

<table>
<thead>
<tr>
<th>$\bar{\omega}$</th>
<th>Error Γ</th>
<th>Error κ_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>2.8%</td>
<td>7.7%</td>
</tr>
<tr>
<td>0.10</td>
<td>2.5%</td>
<td>5.7%</td>
</tr>
<tr>
<td>0.15</td>
<td>2.9%</td>
<td>11.5%</td>
</tr>
<tr>
<td>0.20</td>
<td>2.7%</td>
<td>16.6%</td>
</tr>
<tr>
<td>0.25</td>
<td>2.3%</td>
<td>16.2%</td>
</tr>
<tr>
<td>0.30</td>
<td>1.5%</td>
<td>12.1%</td>
</tr>
<tr>
<td>0.35</td>
<td>1.3%</td>
<td>13.0%</td>
</tr>
<tr>
<td>0.40</td>
<td>3.9%</td>
<td>19.5%</td>
</tr>
</tbody>
</table>

Table 2. Accuracy of DMD fit for forced pitching oscillations at $M_\infty = 0.60$ for RAE2822 airfoil with $\alpha_0 = 1.5^\circ$.

<table>
<thead>
<tr>
<th>$\bar{\omega}$</th>
<th>Error Γ</th>
<th>Error κ_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>2.0%</td>
<td>8.8%</td>
</tr>
<tr>
<td>0.10</td>
<td>0.9%</td>
<td>7.0%</td>
</tr>
<tr>
<td>0.15</td>
<td>2.7%</td>
<td>14.7%</td>
</tr>
<tr>
<td>0.20</td>
<td>1.7%</td>
<td>12.0%</td>
</tr>
<tr>
<td>0.25</td>
<td>0.7%</td>
<td>7.9%</td>
</tr>
<tr>
<td>0.30</td>
<td>2.4%</td>
<td>11.5%</td>
</tr>
<tr>
<td>0.35</td>
<td>1.5%</td>
<td>7.9%</td>
</tr>
<tr>
<td>0.40</td>
<td>3.3%</td>
<td>15.9%</td>
</tr>
</tbody>
</table>

Table 3. Accuracy of DMD fit for forced pitching oscillations at frequencies that were not part of the DMD calibration ($M_\infty = 0.30$ for RAE2822 airfoil with $\alpha_0 = 1.5^\circ$).

<table>
<thead>
<tr>
<th>$\bar{\omega}$</th>
<th>Error Γ</th>
<th>Error κ_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.125</td>
<td>2.7%</td>
<td>8.5%</td>
</tr>
<tr>
<td>0.175</td>
<td>2.9%</td>
<td>14.4%</td>
</tr>
<tr>
<td>0.225</td>
<td>2.5%</td>
<td>17.1%</td>
</tr>
<tr>
<td>0.275</td>
<td>1.9%</td>
<td>14.5%</td>
</tr>
<tr>
<td>0.325</td>
<td>1.1%</td>
<td>10.9%</td>
</tr>
<tr>
<td>0.375</td>
<td>2.4%</td>
<td>16.7%</td>
</tr>
</tbody>
</table>

Table 4. Accuracy of DMD fit for forced pitching oscillations at frequencies that were not part of the DMD calibration ($M_\infty = 0.60$ for RAE2822 airfoil with $\alpha_0 = 1.5^\circ$).

<table>
<thead>
<tr>
<th>$\bar{\omega}$</th>
<th>Error Γ</th>
<th>Error κ_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.125</td>
<td>2.4%</td>
<td>14.3%</td>
</tr>
<tr>
<td>0.175</td>
<td>2.9%</td>
<td>13.5%</td>
</tr>
<tr>
<td>0.225</td>
<td>2.8%</td>
<td>6.8%</td>
</tr>
<tr>
<td>0.275</td>
<td>4.6%</td>
<td>9.7%</td>
</tr>
<tr>
<td>0.325</td>
<td>2.3%</td>
<td>9.1%</td>
</tr>
<tr>
<td>0.375</td>
<td>3.8%</td>
<td>9.9%</td>
</tr>
</tbody>
</table>
influence becomes smaller as the reduced frequency increases. Furthermore, the phase lag increases with Mach number and the Mach number dependence becomes stronger as the reduced frequency increases.

Finally, we investigate the effect of Mach number on the flutter boundary of the RAE2822 airfoil. Low-order models of the form Eq. (31) are fit using DMD at different freestream Mach numbers. For a given Mach number, the aerodynamic low-order model is coupled to the structural model – with airfoil parameters as listed in Table 5 – to obtain the full aeroelastic state space model in Eq. (31). Here, we focus on the flutter speed as a function of the center of gravity position. The eigenvalues of \((E^{-1}A)\) for a given \(x_{cg}\) are a function of \(V_\infty\). A bisection method is used to find that \(V_\infty\) for which the aeroelastic system becomes unstable, the results are shown in Fig. 13. We see that for \(x_{cg}\) far forward – or low reduced frequency – a higher Mach number lowers the flutter speed. However, as the center of gravity moves aft – at high reduced frequencies – a higher Mach number increases the flutter speed.

![Bode plot of transfer function between circulation \(\Gamma\) and pitch angle \(\theta\) for different Mach numbers for the RAE2822 airfoil with \(\alpha_0 = 1.5^\circ\).](image)

<table>
<thead>
<tr>
<th>Airfoil parameter</th>
<th>(\pi \rho_\infty c^2/4m)</th>
<th>(4I_\theta/mc^2)</th>
<th>(x_{cg}/c)</th>
<th>(\sqrt{k_{h}/m})</th>
<th>(\sqrt{k_\theta/I_\theta})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparent-mass ratio</td>
<td>0.2405</td>
<td>1.60</td>
<td>0.50</td>
<td>50.0</td>
<td>400.0</td>
</tr>
<tr>
<td>Inertia/mass ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elastic axis position</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-vacuo heave natural frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-vacuo pitch natural frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Airfoil parameters used for flutter calculations in Fig. 13, from Ref. 51.

![Flutter speed versus \(x_{cg}/c\) positions for different freestream Mach numbers.](image)

V. Conclusion

This paper highlighted the construction of a physics-based low-order model for unsteady transonic two-dimensional flow over airfoils. The unknown parameters in the model’s aerodynamic state-space formulation are calibrated using Dynamic Mode Decomposition. The approach has been demonstrated by fitting the model to unsteady CFD simulations for a pitching and heaving RAE2822 in subsonic and transonic flow. The calibrated model is then evaluated for its ability to predict the unsteady response over a relatively wider
range of flows than was used in the calibration set. The calibrated model is also used to investigate the effect of compressibility on the flutter boundary of an RAE2822 airfoil.

Acknowledgements

This work was supported in part by the NASA LEARN program grant number NNX14AC73A and the SUTD-MIT International Design Center.

References

