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We develop a practical framework for modeling the price-setting newsvendor problem, which includes

statistical estimation and price optimization methods for estimating the optimal solutions and associated

confidence intervals. We present a novel and exact reformulation of the problem that leads to the framework

which requires as input the estimates of only three distinct aspects of the demand distribution: the mean,

quantile and superquantile (in contrast to the full-demand distribution), and it provides asymptotically

optimal solutions under mild conditions, if these estimates are consistent. To estimate these quantities

in a data-driven, distribution-free fashion potentially with multi-dimensional observational datasets, we

investigate statistical estimators based on generalized linear regression (GLR), mixed-quantile regression

(MQR), and superquantile regression (SQR). We propose a novel and exact large-scale decomposition method

that is computationally efficient for SQR, and extend the MQR estimation method by relaxing its implicit

assumptions of homoskedasticity (these two extensions are of independent interest). Our computational

experiments, first, indicate the importance of flexible statistical estimation methods that inherently account

for heteroskedasticity, and second, suggest that quantile-based methods such as MQR and SQR provide better

solutions for a wide range of demand distributions, although for certain location-scale demand distributions

similar to the Normal distribution, GLR may be preferable.

Key words : Pricing, newsvendor, statistics: estimation, decomposition algorithm, heteroskedastic least

squares, quantile regression, conditional value-at-risk (CVaR), superquantile regression

1. Introduction

The classical price-setting newsvendor problem occupies a central and prominent role in pricing and

inventory decision theory. In its simplest form, a firm must simultaneously and jointly determine

the optimal price and optimal order quantity for a product with a known stochastic price-dependent

demand, in order to maximize the expected profit during a single inventory period. The newsvendor

profit function accounts for underage and overage costs which are respectively associated with

scenarios when the demand is higher or lower than the order quantity, as well as the revenue that

is obtained from the observed demand.
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Figure 1 Average energy consumption in kWh per household recorded every 15 mins between 7-9am from April

1, 2006 to March 31, 2007, when prices are in the [40,60] cents range, in a dynamic pricing experiment

in the Pacific Northwest GridWise Testbed Demonstration Project (Hammerstrom et al. 2007).

In many of these existing and emerging application areas, however, the relevant demand function

is a random variable, whose probability distribution and dependence on price is not explicitly

known, and must be modeled and estimated from historical sales data. Furthermore, many other

drivers besides price must be included in the demand response model for statistical accuracy, and

conditional heteroskedasticity effects in the demand distribution must also be taken into account.

The objective of this paper is to address this issue using data-driven, distribution-free, machine

learning methods to characterize the stochastic demand response, while the primary novelty is that

the statistical modeling methods are carried out in close conjunction with the requirements of the

optimization problem, here, the classical price-setting newsvendor.

One motivation for our work is the potential application of the price-setting newsvendor model

and related schemes to the emerging electricity smart grid for demand response planning. Here, the

electric utility may simultaneously decide on both the scheduled generation and certain demand-

shaping price incentives, so as to minimize the impact on the expected operational profits. In this

application, other factors besides price, such as weather and time-of-day effects, will influence the

demand response and demand variability, and must be taken into consideration in the statistical

modeling. For example, consider the energy consumption data in Fig. 1 recorded during the morn-

ing peak in a dynamic price experiment at the Olympic Peninsula. Notice the significant impact of

temperature on demand and the presence of temperature-dependent heteroskedasticity. The con-

sumption patterns can also display significant daily and weekly dependencies (not shown). One

approach here is to estimate a separate demand model from historical data for each combination

of the levels of the relevant external factors; however, this is clearly impractical when the number

of such combinations is very large. Besides, many potential combinations are rarely observed in
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Figure 2 Retail sales data for a non-seasonal product as a function of price across several stores (data anonymized

to protect confidentiality). The red lines are the quantiles at levels 0.1,0.25,0.5,0.75 and 0.9.

the historical data. Therefore, it is preferable to capture these high-dimensional relationships using

flexible, multivariate regression methods (e.g., see, Hastie et al. 2001), to obtain robust demand

response models for operational planning.

The same issues arise for applications of the price-setting newsvendor model in the retail, man-

ufacturing and services sectors. For example, the data in Fig. 2 shows a price-dependent het-

eroskedasticity in individual stores sales of a product, as well as distributional variations across the

individual store locations (perhaps due to their distinct store characteristics and shopper demo-

graphics). We also observe a monotonic price-dependent variance function with the lowest demand

variability occurring at the largest price. A non-monotonic price-dependent variance function is

also quite likely to occur in practical applications. For example, the lowest demand variability can

come in the middle range of prices where one has a good understanding of the market (Raz and

Porteus 2006). The methods described in this paper are relevant in all these settings.

1.1. Contributions

This paper focuses on the classical price-setting newsvendor problem and provides results that

address the two common variants of this problem: the lost sales setting where the excess demand

is entirely lost and the emergency order setting where the excess demand is also met but at a high

cost that is exogenous to the price. Our contributions are as follows:

1. In this paper we develop a practical prescriptive machine learning framework for the

price-setting newsvendor problem, which includes statistical estimation and price opti-

mization methods for estimating the optimal solutions and associated confidence intervals. The
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framework utilizes a novel and exact reformulation of the price-setting newsvendor problem that

we present in the paper and requires as input the estimates of only three distinct aspects of the

demand distribution, namely the mean, quantile and superquantile (also known as conditional

value-at-risk, CVaR). In contrast to the current state of the art, the proposed framework does

not require the complete price-dependent demand distribution for optimization and hence tai-

lored data-driven machine learning methods can be utilized in the proposed framework in a plug

and play fashion. Under some mild conditions, we show that if these data-driven estimates are

consistent then the proposed prescriptive framework is asymptotically optimal.

2. We investigate three different distribution-free machine learning methods, which are

based on generalized linear regression (GLR), mixed-quantile regression (MQR), and superquan-

tile regression (SQR). The choice of these methods is motivated by their ability to obtain

consistent estimators for the mean, quantile and superquantile of the corresponding unknown

demand distribution. Any combination of these techniques, or other equivalent techniques, may

be used to estimate the three distinct quantities of interest, leading to a profusion of ways

for implementing the desired optimization computations. For each method, we investigate the

inherent tradeoffs between the flexibility of modeling, the scalability to large data sets and the

ability to capture conditional heteroskedastic effects1.

3. We provide extensions to current CVaR estimation methods. We develop an efficient and

exact large-scale decomposition method to solve large instances of the SQR which currently does

not scale beyond a few hundred sample points. The proposed method is a novel cutting plane

algorithm that is shown to be empirically far more tractable than the original SQR formulation.

We also extend the MQR method by relaxing its implicit assumption of a homoskedastic data

set. These extensions have wider applicability and are of independent interest besides the price-

setting newsvendor application discussed in this paper (e.g., in financial applications).

4. We carry out computational analysis and comparisons and derive insights across dif-

ferent regression methods for stochastic demand models with different functional and noise

characteristics as applied to the price-setting newsvendor problem by varying the sample size

and the number of covariates. The regression methods that model heteroskedasticity implicitly

or explicitly are observed to be more effective in the presence of heteroskedasticity, over meth-

ods that ignore it, and are competitive in the absence of heteroskedasticity. Our computational

experiments also suggest that quantile based methods such as MQR and SQR provide better

solutions for a wider range of demand models, except for the case when the noise terms have a

location-scale form that is similar to the Normal distribution (e.g., symmetric, unimodal, and

1 Conditional heteroskedasticity occurs when any chosen subset of the covariates may affect the conditional (on
covariates) variance of the corresponding linear regression error.
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not heavy-tailed) when GLR methods may be preferred. Not surprisingly, regularization tech-

niques within the framework are particularly useful for big-data settings for stable out-of-sample

performance of the overall decision problem. Finally, we present results of the proposed methods

for estimating the optimal solutions and associated confidence intervals (using bootstrapping)

for a practical data environment using the energy consumption data (see Fig. 1).

1.2. Background and Relevant work

The evolving literature on the coordination of pricing and inventory decisions has been reviewed by

Elmaghraby and Keskinocak (2003), Chan et al. (2004), Yano and Gilbert (2005), and more recently

by Chen and Simchi-Levi (2010), while Özer and Phillips (2012) have discussed the importance of

empirical and statistical studies of pricing.

A synthesis of the literature on the price-setting newsvendor problem related to the existence

and uniqueness conditions for the lost sales formulation is provided in Petruzzi and Dada (1999).

They cover the case when the stochastic price-demand relationship is specified in a certain form,

e.g., the additive model with a linear demand function (Mills 1959), the multiplicative model

with a iso-elastic demand function (Karlin and Carr 1962), and the mixed additive-multiplicative

model (Young 1978). In all these cases, the mean demand is specified as a monotonic decreasing

function of the price, and the variance is specified as a non-increasing function of price (further,

typically, a constant variance is assumed in the additive case, and monotonic decreasing variance

is assumed in the multiplicative and mixed additive-multiplicative case). Yao et al. (2006) have

extended these results to a more general class of price-demand functions for the additive and multi-

plicative models. Kocabıyıkoğlu and Popescu (2011) provide further generalizations, in particular,

including the case when the demand variance may be a non-monotonic function of the price for

mixed additive-multiplicative models. Such a non-monotonic variance function is quite likely in

practice (see references and discussion below).

Arikan and Jammernegg (2009) have reviewed a number of approaches for modeling the stochas-

tic price-demand relationship in the literature, and they characterize the following two approaches

as being distinctive. The first, due to Lau and Lau (1988), models the first four lower-order moments

of the demand distribution as a function of price. The second, due to Raz and Porteus (2006), mod-

els the individual quantiles of the demand distribution as piecewise-linear functions of the price.

In these two “distinctive” yet complementary approaches of specifying the price-dependent het-

eroskedasticity effects in the demand model, the model parameters are specified based on subjective

assessment of experts, rather than directly estimated from historical sales data. For instance, in Lau

and Lau (1988), the first four moments are subjectively matched to the corresponding moments of

a four-parameter beta distribution. Raz and Porteus (2006) recommend obtaining the subjective
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estimates for the demand variability at a few selected price points, which are then interpolated

and extended throughout the price range of interest using piecewise-linear functions.

A fully distribution-free statistical estimation approach, by contrast, is not constrained by the

need to obtain the subjective estimates in some convenient manner. So, for example, multiple

demand drivers can be directly incorporated and estimated in the demand model, whereas the

subjective assessment of these multivariate effects would be difficult at best. While the subjective

approach is not the focus of this paper, it is nevertheless a useful alternative approach, particularly

when there is no historical data available (e.g., for new products that have little or no sales history).

For the standard newsvendor problem, the only decision variable is the order quantity (and price

is not a decision variable). Beutel and Minner (2012) describe an approach where the demand model

can comprise of multiple drivers that include the effects of price, price changes and weather. They

observe that the inclusion of these additional drivers in the demand modeling substantially improves

the accuracy of the demand forecasts, leading to a corresponding reduction in the safety stock

requirements. They describe two multiple-covariate dependent modeling approaches for estimating

the optimal order quantity for the standard newsvendor problem: a linear regression method with

a first-order heteroskedasticity correction; a linear programming formulation equivalent to quantile

regression. Ban and Rudin (2018) additionally have proposed using regularization and kernel-based

methods for high-dimensional problems. The extension of these approaches to the price-setting

newsvendor problem is not straightforward, since this also requires the estimation of the CVAR.

Other related distribution-free perspectives on the standard newsvendor problem include, for

example, the use of bootstrap confidence intervals for newsvendor quantile estimates (Bookbinder

and Lordahl 1989), robust optimization (Scarf et al. 1958, Gallego and Moon 1993, Perakis and

Roels 2008), non-parametric approaches in censored data environments (Godfrey and Powell 2001,

Huh et al. 2011, Huh and Rusmevichientong 2009, Besbes and Muharremoglu 2013), operational

statistics (Liyanage and Shanthikumar 2005, Chu et al. 2008) and sampling-based bounds (Levi

et al. 2007, 2015, Ban and Rudin 2018). However, none of these papers, have considered price as a

decision variable, and barring Ban and Rudin (2018), neither have they considered the case where

multiple demand drivers are present.

Some of the other variants of the price-setting newsvendor problem in the literature include:

(a) the coordination of pricing and inventory for an assortment of products where the demand of

any item depends on the prices of all the items (Aydin and Porteus 2008); (b) use of an alternate

objective such as a risk-averse profit objective as opposed to a traditional risk-neutral one (Agrawal

and Seshadri 2000, Chen et al. 2009); (c) multi-period models with backordered inventory (e.g.,

Federgruen and Heching 1999). The focus in these papers is on the existence and uniqueness of the

optimal decisions and related structural results (in similar spirit to Petruzzi and Dada 1999).
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Our work is related to the data-driven pricing literature where prices are optimized using fore-

casted demand obtained from historical observations and its drivers, and inventory is not a decision

variable (Caro and Gallien 2012, Ferreira et al. 2016, Harsha et al. 2019, Ettl et al. 2019). Recent

variants include adaptive learning with (1) distribution-free perspectives (Bertsimas and Vayanos

2017) and (2) regret minimization (Qiang and Bayati 2016, Cohen et al. 2016).

Our framework requires a statistical estimated CVaR of the demand distribution, for which we

have considered the following two recent approaches to CVaR or superquantile regression. The

mixed quantile regression method proposed by Chun et al. (2012) estimates the CVaR using a

linear programming formulation similar to quantile regression. Their method is however restricted

to homoskedastic or constant variance distributions only. The superquantile regression method

proposed by Rockafellar et al. (2014) also estimates CVaR using a linear programming (LP) formu-

lation, which is however derived based on the risk quadrangle (see Rockafellar and Uryasev 2013).

Although this method makes no assumptions about homoskedasticity, as indicated by the authors

in their paper, it does not scale beyond a few hundred sample points because of size explosion in

the LP (both in the number of constraints and variables).

2. Price-Setting Newsvendor Problem

Consider a single-product, profit-maximizing firm, which at the beginning of an inventory period

has to set a unit product price p ∈ P, where P is a closed and continuous set of feasible prices.

Simultaneously, the firm also has to set the order quantity x for stocking the product at the unit

procurement cost c. The stochastic price-dependent demand is assumed to be fully observed, and

denoted by D(p,z), where z denotes the external drivers that influence demand, as elucidated

further below. Any unsold stock units at the end of the inventory period are redeemed at the

unit salvage price s. Note that p > c > s is required in order to have a meaningful and non-trivial

newsvendor problem.

The external drivers z in the stochastic demand D(p,z) may include the effects of time-of-

day, day-of-week, season, weather, holidays, special events, promotional incentives, and so on.

Furthermore, when dynamic time-series effects are considered, z may also include the lagged effects

of demand, price and other relevant drivers. We assume that all the influences on demand, besides

price p, which are included in z have their values precisely known at the beginning of the inventory

period. Therefore, any demand drivers that are unknown, unmeasured or uncertain are not included

in z, and their effects may be considered to be part of the stochastic component of D(p,z). Finally,

in order to focus the discussion, we assume that the observational data for estimating the demand
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function D(p,z) is collected in an uncensored setting, where the price and other relevant drivers

could be varied independently.2

We consider two common variants of the price-setting newsvendor problem that arise in different

applications.

Lost Sales Formulation: For a product retailer, we are primarily concerned with this variant

of the price-setting newsvendor problem. Here, if the observed demand D(p,z) exceeds the order

quantity x, then the resulting underage is associated with a unit cost p− c+ v where v may be

the monetary equivalent of the loss of consumer goodwill that is incurred due to the out-of-stock

situation. On the other hand, if the observed demand D(p,z) is lower than the order quantity

x, then the resulting overage is associated with a unit cost c− s. The product retailer aims to

maximize the expected profit by jointly optimizing the two decision variables, viz., the unit price

p and the order quantity x. As is well known, this optimization problem can be formulated as:

Πls(z) : max
p∈P,x

(p− c)E[D(p,z)]− (p− c+ v)E [D(p,z)−x]
+− (c− s)E [x−D(p,z)]

+
. (2.1)

Emergency Order Formulation: For the electricity provider, by contrast, we are primarily con-

cerned with this variant of the formulation. Here, the order quantity x represents the pre-scheduled

electricity generation. If the observed demand D(p,z) exceeds x, then the resulting shortfall is

immediately procured from the spot market or from spinning reserve, but at the premium fixed

unit procurement cost m> c. The resulting underage unit cost m−c is also often referred to as the

unanticipated stock-replenishment costs. The unit salvage price s < c is associated with the excess

in the pre-scheduled generation; for example, s may represent the contracted per unit sell price

with a bulk storage farm. The electricity provider also aims to maximize the expected profitability

by jointly optimizing the two decision variables, viz., the unit price p and the order quantity x.

Similarly, this optimization problem can be formulated as:

Πeo(z) : max
p∈P,x

(p− c)E[D(p,z)]− (m− c)E [D(p,z)−x]
+− (c− s)E [x−D(p,z)]

+
. (2.2)

We now describe a reformulation of (2.1) and (2.2) that is suitable for the implementation of

the required optimization procedures.

2.1. Optimization Formulation

The properties of the newsvendor objective function have been widely studied (Zipkin 2000).

For the lost sales (2.1) and emergency order (2.2) formulations, the objective function is concave

in x for given p. Therefore, in both cases, there is a unique optimal solution for x given p, denoted

VaRα[D(p,z)], and given by

2 These assumptions are made to be able to focus on the key contributions of the paper. There is vast literature on
statistical modeling techniques that can be adapted to relax these assumptions (for the censored setting, see e.g. Huh
et al. (2011), and for the price-endogenous setting, see e.g. Phillips et al. (2012), Bertsimas and Kallus (2016)). These
can be used in our framework to obtain consistent estimators of the quantities of interest.
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VaRα[D(p,z)] = inf
{
x≥ 0 : FD(p,z)(x)≥ α

}
, (2.3)

where FD(p,z)(.) is the cumulative distribution function (c.d.f.) of the random variable D(p,z). The

critical quantile or the newsvendor quantile α∈ [0,1] is denoted by αls for the lost sales formulation,

and by αeo for the emergency order formulation respectively, with

αls =
p− c+ v

p− s+ v
, αeo =

m− c
m− s

. (2.4)

The quantity VaRα[D(p,z)] in Eq. (2.3) is the α-level value-at-risk of D(p,z), or equivalently, the

α-level quantile function of D(p,z).

In Eq. (2.4), the value αeo depends only on the known problem parameters m, c and s. The value

αls, however, depends on the decision variable p, in addition to the specified parameters c, s and v.

While this distinction between αeo and αls is important for the respective optimization procedures,

as described later below, for notational brevity, and to emphasize the common aspects of the

optimization formulation, we suppress the dependence of αls on p, and also omit the subscripts on

αls and αeo below (except where this distinction is explicitly required).

Then, substituting the conditional optimal value for x from Eq. (2.3) into either (2.1) or (2.2)

results in the following reduced objective function which only involves the decision variable p:

Πls(z) or Πeo(z) : max
p∈P

(p− s)E[D(p,z)]− (c− s)CVaRα[D(p,z)]. (2.5)

Here CVaRα[D(p,z)] denotes the α-level conditional value-at-risk of D(p,z), which is defined

in Rockafellar and Uryasev (2000) as

CVaRα[D(p,z)] = min
x

[
x+

1

(1−α)
E [D(p,z)−x]

+

]
. (2.6)

For a continuous random variable D(p,z), this is identical to the conditional expected value in the

upper α tail, given by

CVaRα[D(p,z)] = E[D(p,z)|D(p,z)≥VaRα[D(p,z)]]

≡ 1

1−α

∫ 1

α

VaRτ [D(p,z)]dτ. (2.7)

For discrete or mixed discrete-continuous D(p,z), there is an equivalent definition to Eq. (2.7)

which is given later below.

The conditional value-at-risk CVaRα[D(p,z)] in Eq. (2.6) arises in diverse disciplines, although

the terminology may vary depending on the interpretation of the random variable D(p,z). For

example, in the electricity distribution industry, ifD(p,z) denotes the stochastic electricity demand,

and if α denotes the quantile level of D(p,z) corresponding to the pre-scheduled electricity genera-

tion, then CVaRα[D(p,z)] is essentially equivalent to the well-known reliability metric LOLE - Loss

of Load in Expectation (Billinton and Allan 1996, Harsha et al. 2013). In more recent literature,

the conditional value-at-risk is also referred to as the superquantile (Rockafellar et al. 2014).
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2.1.1. Discussion and Perspective The optimization formulation in Eq. (2.5) involves a

specific linear combination of the two quantities E[D(p,z)] and CVaRα[D(p,z)]. To our knowl-

edge, the price-setting newsvendor problem has not previously been posed in this form, which

is reminiscent of the mean-CVaR objective function used in certain risk optimization settings,

e.g., Rockafellar and Uryasev (2000). A third quantity VaRα[D(p,z)] is required to obtain the

optimal order quantity in Eq. (2.3).

In summary, the specification of the three quantities E[D(p,z)], CVaRα[D(p,z)] and

VaRα[D(p,z)] is sufficient to obtain the desired optimal solutions to the price-setting newsvendor

problem from Eq. (2.3) and Eq. (2.5). If the stochastic demand function D(p,z) is available in

some standard, explicit form, these three quantities can be directly evaluated (e.g., using closed-

form expressions available for many standard distributions; see, Andreev et al. 2005, Nadarajah

et al. 2014). From the perspective of this paper, however, the optimization formulation in Eq. (2.3)

and Eq. (2.5) suggests that it may be fruitful to directly estimate these quantities from the his-

torical sales data, without the intermediate step of explicitly ascertaining D(p,z). A variety of

statistical estimation techniques can be used for this purpose, which are capable of flexibly mod-

eling the respective functional dependencies on the demand drivers, with minimal assumptions on

the form and distribution of D(p,z), as described further below.

2.2. Optimization Approaches

We outline one possible approach for obtaining the optimal price and optimal order quantity for

the optimization formulation described in Section 2.1.

Procedure 1 Optimization Procedure for Price-Setting Newsvendor Problem (Emergency Order)

Input: Given m,c, s and z̃.

1: Estimate E[D(p,z)] as a function of (p,z).

2: Obtain α from Eq. (2.4).

3: Estimate CVaRα[D(p,z)] as a function of (p,z).

4: Solve for the optimal price p∗(z̃)∈P from Eq. (2.5) using the estimates E[D(p,z)] and CVaRα[D(p,z)]

obtained in steps 1 and 3 above at the given z̃.

5: Estimate optimal order quantity x∗ = VaRα[D(p,z)]|p∗,z̃ from Eq. (2.3).

Output: optimal price p∗, and optimal order quantity x∗.

Procedure 1 is given for the emergency order setting. The corresponding procedure for the lost

sales setting implements Steps 2 and 3 as sub-routines of Steps 4 to obtain the optimal price

estimate, p∗. Finally, the corresponding optimal order quantity estimate is obtained from Step 5. A

pictorial representation of our distribution-free prescriptive machine learning framework is provided
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in Fig. 3, which captures the high-level implementation details of the procedures for the emergency

order and lost sales settings. We make some remarks about Procedure 1.

Superquantile
Estimation

Mean
Estimation

Price
Optimization

Quantile
Estimation

Cost parameters: c, s, and m (or v for lost sales model)
Final covariate values except price: z̃

E[D(p, z)] CVaRα[D(p, z)]

Data: Demand D and
covariates p, z

p∗

= VaRα[D(p, z)]|p∗,z̃x∗p∗,Π∗

(in lost sales model)

Eq(2.5)

Figure 3 A distribution-free prescriptive machine learning framework to the price-setting newsvendor problem.

First, this procedure can not only be used when the explicit form of the stochastic demand

function D(p,z) is known, but also when the three quantities E[D(p,z)], CVaRα[D(p,z)] and

VaRα[D(p,z)] are directly estimated from the data. In fact, under some mild conditions, if the

data-driven estimates are consistent then the proposed method is also asymptotically optimal.

Claim 1. We assume that the data-driven estimators E[D(p,z)], CVaRα[D(p,z)] and

VaRα[D(p,z)] are (pointwise) consistent estimators that are also continuous in p ∈ P We also

assume that the true objective of (2.5) has a unique global maximum. Then the proposed data-driven

method for the emergency order setting is asymptotically optimal (consistent).

Additionally, if we assume that the estimator for CVaRα[D(p,z)] uniformly converges in proba-

bility in α ∈ [αmin, αmax] where αmin = pmin−c+v
pmin−s+v

and αmax = pmax−c+v
pmin−s+v

and that the estimator is also

jointly continuous in (p,α) then the proposed method for the lost-sales setting is also asymptotically

optimal (consistent).

Second, the objective of problem (2.5), which is a univariate function of price p, need not be

concave in general.3 Sufficient conditions for concavity of the emergency order setting are easy

to deduce, for example (p− c)E[D(p,z)] and CVaRα[D(p,z)] should be concave and convex in p

3 Note that Claim 1 only requires a unique global optimal and therefore true even if there are multiple local maxima.
The claim does not comment about the ease of solving the optimization problem (2.5), which we address here.
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respectively. In this setting, the choice of the price dependence can help induce such a relationship,

for example if both E[D(p,z)] and CVaRα[D(p,z)] are linear in p, then (2.5) is a quadratic func-

tion. For the lost sales setting, the concavity conditions depend more intricately on the demand

distribution, and in particular, the increasing elasticity of lost-sales rate, defined as probability that

the demand is greater than the order quantity. We refer the reader to Petruzzi and Dada (1999),

Yao et al. (2006), Kocabıyıkoğlu and Popescu (2011) whose primary focus has been to derive the

exact conditions for this setting. As our paper focuses on data-driven procedures without any dis-

tributional assumptions about the data generating process, in general it is not possible to ensure

that these concavity conditions are satisfied by the observational data (except in artificial settings,

e.g., with simulated data sets). Also, imposing any restrictions on the price dependence may also

reduce the efficacy of capturing the true demand-price relationship in the data. Consequently, even

though the corresponding optimal price always exists (i.e., for a continuous objective function (2.5)

in a closed set P), there may be multiple local maxima if the concavity conditions are violated in

either of these optimization settings. Therefore, a standard univariate, derivative-free, non-linear

optimization procedure (Brent 1973) can be used to directly obtain a solution for (2.5). When

there is a unique maximum, this solution is the global optimum. Otherwise, solutions from multi-

ple initial starting points using grid-search over the domain, can be used to examine and improve

solution quality.

3. Some Relevant Statistical Estimation Methods

As noted in Section 2.1, the optimization formulation in Eq. (2.3) and Eq. (2.5) is completely

specified in terms of the three quantities E[D(p,z)], VaRα[D(p,z)], and CVaRα[D(p,z)]. Each of

these quantities can be directly estimated by a variety of different techniques and any appropriate

combination of these techniques can be used in the optimization formulation, leading to a profusion

of ways for implementing the computations. In practice, there is no prior knowledge of the corre-

sponding demand distribution and it has to be estimated from historical sales data. Moreover, the

estimations often involve large-scale data sets (either in the number of observations or covariates or

both) that may exhibit a heteroskedastic relationship4 between demand and multiple other covari-

ates (also referred to as features/attributes/ explanatory variables) like the examples discussed in

Section 1. This motivates us to consider (ideally) flexible, scalable data-driven, distribution-free,

consistent statistical estimation approaches that can capture heteroskedasticity in the data.

4 In a heteroskedastic data set, the variance of the linear regression error (or residual, in practice), conditional on the
covariates, is not constant; it is sensitive to the covariates.
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We consider three specific distribution-free approaches, which are based on generalized linear

regression (GLR), mixed quantile regression (MQR), and superquantile regression (SQR) respec-

tively. GLR is a popular and well-studied consistent mean estimation method where heteroskedas-

ticity is explicitly modeled, using a location-scale model. The by-product of GLR are residuals

which provide an estimate of the quantiles and superquantiles at specified α−levels. To focus on

the main contributions of the paper and for completeness, we defer the description of the GLR

methodology adopted to estimate the three quantities of interest to Appendix 3.2 and refer the

readers to this section for details. Similar to GLR, quantile regression (QR) is a popular and

well-studied consistent quantile estimation method, where heteroskedasticity is implicitly modeled.

With foundations built up on QR, SQR and MQR are two recent and different methods described

in Rockafellar et al. (2014) and Chun et al. (2012) respectively that estimate the superquantiles

directly from the data. The MQR method is restricted to homoskedastic distributions only, while

the SQR method implicitly models heteroskedasticity in a similar spirit to QR but not scalable

to large data sets. We provide appropriate extensions for adaptation to these techniques to the

price-setting newsvendor problem in the following sections especially around scalability and het-

eroskedastic modeling for SQR and MQR respectively, when they fall short along these dimensions.

The possible combinations for implementing the computations for the price-setting newsvendor

problem, just based on the different approaches discussed here, are shown in Table 1. The subscripts

0 or α represent the input quantile levels associated with the estimation procedures. Because

E[D(p,z)] = CVaR0[D(p,z)], a module that computes CVaR can also be used to compute the

mean.

E[D(p,z)] VaRα[D(p,z)] CVaRα[D(p,z)]

GLR
GLR+Residualsα

GLR + Residualsα

MQR0
QRα

MQRα

SQR0 SQRα

Table 1 Possible statistical estimation methods to estimate the different quantities of interest.

We now describe the uniform notation we use across the different estimation methods. The

response variable is denoted by Y , which is typically the demand D(p,z) itself.5 The set of regres-

sion covariates are denoted by X. This set includes the constant or intercept term (except where

explicitly indicated), along with other terms that involve linear and/or non-linear functional trans-

formations of (p,z), possibly with interactions terms. We assume that X and Y are random variables

5 Quantile estimates are invariant under monotonic transformations (i.e., Y can be monotonic transformation of
D(p,z)). On the other hand, mean and the superquantile estimates are not invariant (e.g., E[logY ] 6= logE[Y ]) and
therefore, here we fix Y =D(p,z).
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(denoting them by capitals) and that the decision maker has N independent and identically dis-

tributed (i.i.d) observations of 〈X, Y 〉 (from their underlying stochastic models), which we denote

(in lower cases) by 〈xi, yi〉 for i= 1, · · · ,N .6 All expectations in the paper are conditional expec-

tations (in the covariates), and this includes VaR and CVaR. This means, for example, expected

value of Y is E[Y |X].

The regression models typically involve the estimation of E[Y |X], VaRα[Y |X] or CVaRα[Y |X].

We assume that the regression functions involve linear combinations of the regression covariates

with the coefficients being the parameters to be estimated from historical data, based on the

appropriate regression formulation. We note that the regression functions are typically linear in

the parameters, the ability to include nonlinear and interaction terms in the covariate effects, as

well as nonlinear response transformations, provides sufficient generality for modeling a wide range

of functional forms required in practical applications (Hastie et al. 2001).

3.1. Motivation for quantile-based methods

The fundamental building block of quantile-based methods is quantile regression, which is a method

to estimate VaRα[Y |X] given α. One motivating reason for these methods is that it enables a

broader class of stochastic demand functions to be modeled as it implicitly models heteroskedas-

ticity. For instance, the specific example below describes a response variable for which different

covariates are significant at different quantile levels. This characteristic cannot be modeled using

the parameterization that is used for location-scale GLR models described in Appendix B.

EXAMPLE 1. This example describes a stochastic demand function with different demand

drivers at different quantile levels. Consider the random variable ε, and let

Y =βTX +γT1 Z1 min{ε,λ}+γT2 Z2 max{λ, ε}, (3.1)

where the constant λ = VaRζ [ε] for some value ζ ∈ (0,1) and Z1,Z2 are select non-intersecting

covariates from X. Note that

VaRα[min{ε,λ}] =

{
λ, α≥ ζ,
VaRα[ε], α < ζ.

VaRα[max{ε,λ}] =

{
VaRα[ε], α≥ ζ,
λ, α < ζ,

and similarly since
CVaRα[min{ε,λ}] =

{
λ, α≥ ζ,
CVaRα[ε] + (λ− τ) 1−ζ

1−α , α < ζ.

CVaRα[max{ε,λ}] =

{
CVaRα[ε], α≥ ζ,
ζ−α
1−αλ+ 1−ζ

1−ατ, α < ζ.

where τ = CVaRζ [ε], we have

6 The approach can be extended to the non i.i.d settings using specialized methods in the regression literature for
addressing serial and spatial correlation effects to improve the efficiency of the statistical estimators.
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VaRα[Y |X,Z1,Z2] =βTX + VaRα[min{ε,λ}]γT1 Z1 + VaRα[max{ε,λ}]γT2 Z2.

along with a similar expression for CVaRα[Y |X,Z1,Z2].

A situation highlighted in this specific example arises frequently in practice. For example, the

uppermost quantiles of the stochastic electricity demand are likely to be quite sensitive to price

and weather covariates, whereas the lowermost quantiles are quite insensitive to these covariates.

The estimate for VaRα[Y ] is obtained using quantile regression (Koenker and Bassett 1978),

given a response Y , covariates X and quantile level α, in the form:

VaRα[Y |X] =βTv X. (3.2)

Quantile regression involves solving the following optimization problem to estimate βv:

QR : β̂v = arg min
β

1

N

N∑
i=1

ψα(yi−βTxi) (3.3)

where ψθ(t) = θ[t]+ + (1− θ)[−t]+ and θ = [0,1]. QR results in a consistent estimator as long as

the true quantile is linear in the covariate space(Koenker and Bassett Jr 1982), as in a (linear)

location- (linear) scale model for example (or the above example). In particular, for a fixed data

sample, the estimates of these quantile regression coefficients will depend on α, and one can use

significance tests to ascertain if the differences in these coefficients across the different α values

are indicative of heteroskedasticity. QR can be re-written as a simple linear program and standard

efficient subroutines are available in most commercial statistical software packages.

3.2. Superquantile Regression (SQR)

Recently, Rockafellar et al. (2014) proposed superquantile regression for estimating CVaRα[Y |X]

conditional on a set of covariates X. In this method, the authors provide a suitable modification of

the error measure used in quantile regression leading to the superquantile regression estimates for

CVaRα[Y |X]. This modified error measure is based on an auxiliary response variable whose quan-

tiles, by construction, are equivalent to the desired superquantiles CVaRα[Y |X]. This approach has

strong theoretical foundations in the fundamental theory of risk measure and the risk quadran-

gle (Rockafellar and Uryasev 2013). While we are not aware of a theoretical proof of the consistency

of this estimation method, we believe it has properties similar to quantile regression because it

applies the essential idea of quantile regression to the above stated auxiliary response variable. This

method is more appealing than GLR and MQR, as it inherently models heteroskedasticity with no

additional specifications (e.g., model or covariates to model heteroskedasticity). Also, unlike MQR

that we discuss in the following section, there are no numerical discretizations required. Below we

describe the method, its drawbacks and our extensions.

The estimate for CVaRα[Y ] is obtained using superquantile regression (Rockafellar et al. 2014),

given a response Y , covariates X and quantile level α, in the form:
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CVaRα[Y |X] = βc,0 +βTc X (3.4)

where the constant term is explicit and X consists of columns for all the covariates except the

column of ones unlike the standard notation we use in the rest of the paper. Then the corresponding

minimization of the error measure in superquantile regression is formulated as

βc = arg min
β

1

1−α

∫ 1

α

CVaRτ [Y −βTX]dτ −E[Y −βTX], (3.5)

βc,0 = CVaRα[Y −βTc X]. (3.6)

With data samples {xi, yi}, the residual random variable, Y − βTc X, has a discrete support,

thereby leading to a cumulative distribution function which has a piecewise constant structure.

This structure, along with the formulation of the CVaR estimation as a minimization problem

in Rockafellar and Uryasev (2000), allows Problem (3.5) to be expressed as the following nonlinear

mathematical program,

β̂c = arg min
β,U

1

1−α

N−1∑
k=Nα

(κk−κk−1)Uk +
1

N(1−α)

N−1∑
k=Nα

N∑
i=1

ak max{yi−βTxi−Uk,0} (3.7)

+
1

N(1−α)
max
i=1...N

(yi−βTxi)−
1

N

N∑
i=1

(yi−βTxi)

In the above model, Nα = dNαe, and the decision variables include βc ∈Rn, U ∈RN−Nα where n

is the number of coefficients to be estimated except the intercept term. Further κNα−1 = α, and

κk = k
N

, which capture the various piecewise constant levels within the limits of the integration

in Eq. (3.5), and ak = ln(1−κk−1)− ln(1−κk).

Linearization using additional decision variables, V ∈RN(N−Nα), and W ∈R yields the following

linear program as developed in Rockafellar et al. (2014).

SQR : β̂c =arg min
β,U,V,W

1

1−α

N−1∑
k=Nα

(κk−κk−1)Uk +
1

N(1−α)

N−1∑
k=Nα

N∑
i=1

akVki (3.8)

+
1

N(1−α)
W − 1

N

N∑
i=1

(yi−βTxi),

s.t., Vki ≥ yi−βTxi−Uk, ∀ k=Nα, . . . ,N − 1, i= 1, . . . ,N, (3.9)

Vki ≥ 0, ∀ k=Nα, . . . ,N − 1, i= 1, . . . ,N, (3.10)

W ≥ yi−βTxi, ∀ i= 1, . . . ,N. (3.11)

The estimation approach can then be summarized as Procedure 2. The methodology for the price

optimization is then similar to that described in Section 3.3, except that the CVaR terms can now

estimated using superquantile regression.
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Procedure 2 Superquantile regression for CVaR estimation

Input: Data {xi, yi} for i= 1, ...,N , and the level α. Note that xi does not include the constant 1 covariate

corresponding to the intercept term.

1: Set up and solve the linear program SQR. The solution produces an estimate for β̂c.

2: Obtain constant term, using Eq. (3.6), by computing the empirical CVaR of the residual corresponding

to β̂c. This is computable as,

β̂c,0 =
1

Nα

bNαc∑
i=1

R(i) +
(Nα−bNαc

Nα

)
R(dNαe),

where R= (Y − β̂Tc X), and R(i) represent the decreasing order statistics of R over the empirical sample

{xi, yi}, i= 1, . . . ,N , i.e. R(1) ≥ · · · ≥R(N).

Output: Estimates [β̂c,0; β̂c] for superquantile regression, i.e., CVaRα[Y |X] = β̂c,0 + β̂Tc X.

3.2.1. An Efficient Algorithm For Superquantile Regression

Although the above method makes no assumptions about homoskedasticity, which has also been

noted by the authors in their paper, it does not scale beyond a few hundred sample points. This

is because the above formulation SQR involves O(N 2) number of variables as well as constraints.

When N is large, this quadratic complexity makes the above formulation impractical in terms

of the computational time needed to solve the linear program. We instead present an alternative

linearization of Eq. (3.7), RSQR (reformulated SQR), which enables the derivation of an efficient

cutting plane algorithm. We begin with a technical observation which is then used to arrive at the

alternative linear reformulation.

Claim 2. Let N = {1 . . .N}. Then, for any fixed index k, the following equality holds, where

P(N ) denotes the power set, i.e. the set of all subsets of N .

N∑
i=1

max{yi−βTxi−Uk,0}= max
Jk∈P(N )

∑
i∈Jk

(yi−βTxi−Uk) (3.12)

Expressing the expectation in Eq. (3.7) as a finite summation and applying Eq. (3.12) leads to

the following formulation.

β̂c = arg min
β,U,W

1

1−α

N−1∑
k=Nα

(κk−κk−1)Uk +
1

N(1−α)

N−1∑
k=Nα

ak max
Jk∈P(N )

∑
i∈Jk

(yi−βTxi−Uk) (3.13)

+
1

N(1−α)
W − 1

N

N∑
i=1

(yi−βTxi),

s.t., W ≥ yi−βTxi, ∀ i= 1, . . . ,N. (3.14)

We may then linearize the above formulation using an exponential number of constraints, with

only O(N) additional variables, Tk, as follows.
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RSQR : β̂c =arg min
β,U,W,T

1

1−α

N−1∑
k=Nα

(κk−κk−1)Uk +
1

N(1−α)

N−1∑
k=Nα

akTk (3.15)

+
1

N(1−α)
W − 1

N

N∑
i=1

(yi−βTxi),

s.t., Tk ≥
∑
i∈Jk

yi−βTxi−Uk, ∀ Jk ∈P(N ), k=Nα, . . . ,N − 1, (3.16)

Tk ≥ 0, ∀ k=Nα, . . . ,N − 1, (3.17)

W ≥ yi−βTxi, ∀ i= 1, . . . ,N. (3.18)

The proposed reformulation allows us to derive an efficient decomposition algorithm. We first

present the following claim that lets us successfully seed the following algorithm in its very first

iteration. Let RSQR−RELAX denote a relaxation of RSQR, where we replace P(N ) in con-

straint Eq. (3.15) with respective subsets Jk ⊆P(N ), for each index k.

Claim 3. Let Jk = {N},∀ k. Then, the corresponding relaxation, RSQR−RELAX is a

bounded linear program.

The decomposition algorithm may then be presented as in Procedure 3.

Theorem 1. Procedure 3 converges in finite time and solves problem RSQR, equivalently SQR,

upon convergence.

In practice, convergence is realized in far fewer iterations than the cardinality of the power

set. The above decomposition code written in MATLAB using CPLEX as the MIP solver is pub-

licly available with sample synthetic datasets 7 for downloading. We present below an empirical

investigation of the computational performance of the algorithm.

3.2.2. Computational Results We consider the heteroskedastic generating model G1

described in Section 4.1 below with a unit Normal error distribution. Fig. 4 shows the average

computational time needed to solve formulation SQR using Procedure 2, as well as the proposed

reformulation using Procedure 3, as a function of N , namely, the number of sample points at

two quantile levels α = 0.7,0.85. For each value of N and α, the plot shows the mean value and

error bars estimated over 200 independently generated data sets, each of size N . All computations

were carried out using Matlab/CPLEX on 64-bit Macbook Pro, Intel R©CoreTM i7 @ 2.5 GHz, 16

GB RAM. While Procedure 2 fails to acceptably scale beyond a five hundred sample points, the

proposed decomposition algorithm performs well even for really large sets. In our experiments,

we observe that it is often more stable to implement RSQR−RELAX in terms of the scaled

covariate X̂ = (X−µX)/σX without any loss of generality.

7 http://researcher.watson.ibm.com/researcher/files/us-dharmash/SuperquantileDecomposition.zip

http://researcher.watson.ibm.com/researcher/files/us-dharmash/SuperquantileDecomposition.zip
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Procedure 3 Decomposition Algorithm for Superquantile regression used for CVaR estimation

Input: Data {xi, yi} for i= 1, ...,N , and the level α. Note that xi does not include the constant covariate

corresponding to the intercept term.

1: Initialize Jk = {N}, ∀ k=Nα, . . . ,N − 1.

2: Solve the relaxed linear program RSQR−RELAX implied by the current value of Jk. Let β̂ and Ûk

be the optimal solution values for these variables.

3: For each k, identify the most violated constraint, relative to the full set of constraints in Eq. (3.15). This

is computable in O(N) effort for each k as

J∗k = {i∈N | yi− β̂Txi− Ûk > 0},

and do Jk =Jk ∪ J∗k . This results in adding a constraint for each k.

4: Repeat steps 2-3, until convergence of the LP solution in step 2. Let the converged solution for variable

β be denoted as β̂c.

5: Obtain constant term, using Eq. (3.6), by computing the empirical CVaR of the residual corresponding

to β̂c. This is computable as,

β̂c,0 =
1

Nα

bNαc∑
i=1

R(i) +
(Nα−bNαc

Nα

)
R(dNαe),

where R= (Y − β̂Tc X), and R(i) represent the decreasing order statistics of R over the empirical sample

{xi, yi}, i= 1, . . . ,N , i.e. R(1) ≥ · · · ≥R(N).

Output: Estimates [β̂c,0; β̂c] for superquantile regression, i.e., CVaRα[Y |X] = β̂c,0 + β̂Tc X.
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Figure 4 Computational run times for Procedure 2 and Procedure 3 as a function of N for α = 0.7,0.85. The

left plot is zoomed version of the right plot for the range [0, 1500].

3.3. Mixed Quantile Regression (MQR)

An alternative method for the evaluation of CVaRα[Y |X] is motivated from the module for

estimating VaRα[Y |X] given α exploiting Eq. (2.7). More specifically, it is based on the numerical

quadrature of the integral in Eq. (2.7). Hence CVaRα[Y |X] will be a linear combination, with

appropriate quadrature weights, of VaRα′ [Y |X] evaluated at certain quadrature nodes α′, where
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α < α′ < 1 (we typically use quadrature rules that only involve nodes that are in the interior

of the interval to avoid the estimation of the extremal quantiles α′ = 0,1). From Eq. (3.2), the

corresponding estimate for CVaRα[Y |X] also has the form (Peracchi and Tanase 2008, Leorato

et al. 2012):

CVaRα[Y |X] =βTc X. (3.19)

A related method was first described in Rockafellar et al. (2008), and further explored by Chun

et al. (2012) where it is aptly referred to as a mixed quantile regression (MQR). However, as

presented there, MQR is restricted (by design as explained below) to homoskedastic data sets, where

the variance of the linear regression error (or residual, in practice), conditional on the covariates,

is constant. The authors show that the estimator is consistent under a homoskedastic setting with

(additive) i.i.d errors. Below we extend this method to incorporate heteroskedasticity, i.e. where

the variance of the linear regression error is sensitive to covariates. After we describe our extension,

we show how we recover the formulation by Chun et al. (2012) as a special case.

In order to describe our formulation, we let
∑M

j=1wjVaRαj [Y |X] be the discretization of Eq. (2.7),

where αj and wj denote the quadrature nodes and weights respectively. Then, we have

MQR : β̂c = arg min
β,τj

1

N

N∑
i=1

M∑
j=1

wjψαj
(
yi− (τj +β)Txi

)
, (3.20)

s.t.,
M∑
j=1

wjτj = 0, (3.21)

ē.τj = 0 ∀ j = 1, . . . ,M. (3.22)

where ψθ(t) is the loss function for quantile regression with
∑M

j=1wj = 1 and ē is a vector such that

ēp = 1 if the pth covariate (besides intercept) does not affect the variance of the linear regression

error and 0 otherwise. For example, if a simple mid-point quadrature rule is used for the discretiza-

tion of Eq. (2.7), then with ∆ :=M−1(1−α), we have wj = (1−α)−1∆ and αj := α+(j−0.5)∆, j =

1, ..,M . Similarly, if a Gauss-Legendre quadrature rule is used, then wj = 0.5(1− α)δj and αj =

0.5 [(1−α)ξj + (1 +α)] where δj and ξj ∈ (−1,1) respectively denote the weights and nodes of the

corresponding M -point quadrature rule.

The objective function in MQR is a weighted sum of individual loss functions for each quantile

level αj, with the corresponding regression function (β + τj)
TX. Constraint (3.21) ensures that

β̂Tc X is the desired estimate of CVaRα[Y |X]. Constraint (3.22) imposes the condition that τj is

set to zero for any covariate (besides intercept) that does not affect the variance of the linear

regression error. To understand the impact of this constraint, let us notionally partition the space

of covariates into two sets, namely, those that show heteroskedasticity in their relationship with

demand, i.e. those that affect the variance of the corresponding linear regression error (say, set A),
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and those that do not (say set B). For covariates in set B, constraint (3.22) restricts all quantiles

to have an identical coefficient (the elements of the τj are set to zero) and thus ensuring parallelism

in that covariate dimension. On the other hand, for covariates in set A, without constraint (3.22),

the elements in τj have a degree of freedom, that they can vary across quantiles, and thus the

estimation method can choose to have quantiles that are not parallel to obtain a better fit, similar

to Fig. 2. Thus the above MQR formulation by design allows for conditional homoskedasticity

and conditional heteroskedasticity over the space of covariates.

In the case of a fully homoskedastic data set, i.e. where all covariates are notionally in set B

above, all τj’s are set to zero except for the intercept term, we recover the MQR formulation

in Chun et al. (2012) as a special case. In the fully heteroskedastic case, where all τj’s can be non-

zero, the problem can be decoupled (with a change of variables βj := β + τj) and evaluated with

independent and individual quantile regressions for each αj, which can be then aggregated to obtain

β (=
∑M

j=1wjβj). This can be implemented with the widely-available quantile regression modules.

On the other hand, the extended MQR method described here is more general, i.e. it can limit

the subset of covariates over which heteroskedasticity is manifested and requires implementing a

specialized linear program. It requires this partition of covariates as an input, and some preliminary

analysis using t-tests, should be used to ascertain if the differences in the coefficients obtained

from quantile regression across the different αj values are significant, and therefore indicative of

heteroskedasticity, and to accordingly partition the covariates.

In summary, given X and the homoskedastic covariates, the three quantities needed to solve the

price-setting newsvendor problem (see Fig. 3 and Section 2.2) are as follows:

Ê[Y |X] =
ˆ̃
βTc X, (3.23)

V̂aRα[Y |X] = β̂Tv X, (3.24)

ĈVaRα[Y |X] = β̂Tc X, (3.25)

where
ˆ̃
βc, β̂v and β̂c are outputs of subroutines that solve optimization formulations MQR, QR,

and MQR with input quantiles 0, α and α respectively.

4. Monte-Carlo Simulation Study

In this section, the proposed statistical estimation methodologies for the price-setting newsven-

dor problem described in Section 3, are evaluated through a Monte Carlo simulation study. To fix

ideas, we focus on the lost-sales formulation of the price-setting newsvendor problem, although the

general conclusions carry over to the emergency order formulation as well.

In the Monte Carlo simulation, we use an explicitly known stochastic price-demand function

and obtain the exact optimal solutions to the price-setting newsvendor problem using the methods



Harsha, Natarajan and Subramanian: A prescriptive machine learning framework for the price-setting newsvendor problem
22

in Section 2.2. We also generate simulated data sets from these known stochastic price-demand

functions, and estimate the optimal solutions for each simulated data set using the methods in Sec-

tion 3. These results are used to evaluate the statistical properties of the estimated optimal solutions

with respect to the true solution, as well as the coverage and length of their estimated bootstrap

confidence intervals, described further below.

For a pricing problem, in general, in the experiments with real-data, the true demand response

for a price unobserved in the history is unknown. This makes the evaluation of even a method,

let alone across multiple methods (such as the alternatives considered in Table 1), difficult or

subjective at best and dependent of the quality of fit of a predictive model. Therefore, we focus on

Monte Carlo simulation results in this section of the paper.

4.1. Simulated Data Sets

Denoting the stochastic price-demand functions by Y , we consider two such explicit functions which

are motivated from Eqs. (B.1) and (3.1) respectively (for simplicity of exposition, price is the only

demand driver that is included; extension are discussed in Section 4.5):

G1. Y = β0 +β1p+
(
γ0 + γ1p+ γ2p

2
)
ε, (4.1)

where ε is a random variable with mean 0 that is specified further below, and β0 = 200.0, β1 =−35.0,

γ0 = 36.0, γ1 =−12.0, γ2 = 2.1.

G2. Y = β0 +β1p+β2p
2 + (γ0 + γ1p) ε

−+ γ2p
2 ε+, (4.2)

where ε− = min{ε,0}, ε+ = max{0, ε} and ε is N(0,1) i.e., a Normal distribution with mean 0

and standard deviation 1. Here, β0 = 215.0, β1 = −37.0, β2 = −1.5 CVaRε(0.5) = −1.1968, γ0 =

36.0, γ1 =−4.0, γ2 = 3.

The demand functions in the generating models G1 and G2 have means that are decreasing

linear functions of price, and variances that are non-monotonic quadratic functions of price as

motivated by Raz and Porteus (2006). Note that the mean for the generating model G2 is obtained

by evaluating CVaR0[Y |p]. As discussed in Section 1.2, price-demand functions with these charac-

teristics are of practical importance.

The parameters for the price-setting newsvendor problem are taken to be c= 1.0, s= 0.5, and

v = 1.0. The unit price p, which is the decision variable, is constrained to the interval (1.5,4.0).

These parameter values are inspired by an example in Lau and Lau (1988), although that paper

only considered a homoskedastic demand models with normal errors.

For the random variable ε in the generating model G1, we consider the following distributions:

1. Normal(0,1): Normal distribution with mean 0 and standard deviation 1.
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Generating Distribution Optimal Solutions

Model for ε Price, p∗ Order Quantity, x∗ Profit Π∗

G1

Normal 3.32 105.57 178.74

Gamma 3.28 114.77 167.76

Lognormal 3.22 113.60 155.85

Student T 3.28 111.5 169.58

Mixture 3.34 134.18 184.41

G2 Normal 3.16 119.05 169.04

Table 2 True optima for the lost sales price-setting newsvendor problem with the stochastic demand model.

2. Gamma(2,1): Gamma distribution with shape 2 and rate 1 (equivalently with mean 2 and

standard deviation
√

2), recentered to have mean 0.

3. Log-normal(0,1): Log-normal distribution with mean 0 and standard deviation 1 on the vari-

able’s log-scale, recentered to have mean 0.

4. Student’s t(3): Student’s t-distribution with 3 degrees of freedom, with mean 0 and standard

deviation
√

3.

5. Mixture(-2,2): Mixture of two normal distributions, N(2,1) and N(−2,1), with equal weight

and standard deviations 1 each.

The Gamma(2) and Log-normal(0,1) distributions which are re-centered to have mean 0, are

asymmetric distributions. The Student’s t(3) distribution is symmetric but is heavy-tailed. The

Mixture(2,-2) distribution is also symmetric but is bi-modal unlike the rest.

The exact optimal solutions to the price-setting newsvendor problem for the price-demand func-

tions in generating model G1 and G2 are given in Table 2. The corresponding sample estimators

for the quantities in Table 2, are respectively denoted by p̂∗ for optimal price, x̂∗ for optimal order

quantity, and Π̂∗ for optimal profit.

The number of data points in each simulated data set is denoted byN and our results are obtained

for values ranging from N = 50 to N = 1500. The covariate values for p for the individual cases in

each simulated data set are obtained by independent uniform sampling from the allowed range in

the interval (1.5,4.0). The number of simulated data sets used in the Monte Carlo evaluation is

denoted by Nmc and is chosen to be 200.

4.2. Estimation methods used in experiments

Table 1 described the profusion of ways for implementing the computations to solve the price-

setting newsvendor problem. To fix ideas, we implement and compare the following techniques:

• For the generating model, G1, we use the GLR method to evaluate E[D(p,z)] and compare three

methods that differ in the way they compute CVaRα[D(p,z)] and VaRα[D(p,z)] respectively.

The first method uses the residuals of the GLR for the superquantile and quantile estimations,
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the second method uses MQR and QR and the last method uses SQR and QR respectively. We

refer to these three methods as GLR, MQR and SQR respectively.

The reason we choose the same mean estimator across the three different methods is to do with

many reasons: (1) Eq. (4.1) has the same form as Eq. (B.1) and Eq. (B.2) (i.e., set µ= β0 +β1p,
√
φ= γ0 + γ1p+ γ2p

2, V (µ) = 1, with g(µ) being the identity link function, and h(φ) being the

square-root link function). (2) The mean coefficient retrieval is expected to be good if the weights

are a good approximation in the weighted least squares subroutine (step 2 when V (µ) = 1) in

GLR (3) A common mean estimator across methods also enables one to focus on the quality of

the superquantile and the quantile estimation methods.

• For the generating model, G2, we use two different mean estimation methods: GLR and MQR0

(referred to as GLR mean and MQR mean respectively) and compare these against the three dif-

ferent ways described above to estimate the superquantile and quantile, i.e., with GLR residuals,

MQR-QR and SQR-QR (referred to as GLR, MQR and SQR respectively).

For both the generating models, G1 and G2, we additionally include as a baseline the standard

ordinary least squares (OLS) approach that (incorrectly) assumes homoskedasticity, with the goal

of highlighting the importance of modeling heteroskedasticity.

The GLR estimation was based on Procedure 4 and the corresponding residuals, as also the

case with OLS, are computed using Eqs. (B.3–B.4). In our implementations, we define the GLR

procedure to have successful convergence if the number of iterations in Procedure 4 is less than 50.

The QR and MQR methods refer to the solutions of QR and MQR respectively while SQR refers

to the decomposition algorithm presented in Procedure 3. For the MQR method we use a simple

uniform discretization where ∆ = 0.01.

4.3. Performance Metrics - Perfect Hindsight

In this simulation study, our goal is to understand the statistical performance of the estimation

techniques in retrieving the true optimal price and the true optimal order quantity. To avoid

information overload we only focus on the effect of the estimated price and order quantity on

the true realized objective that we denote by ‘Realized Profiti,m’ for an finite sample instance i

using the method m. We compare this realized objective against the maximum realizable objective,

denoted by ‘Profit∗’ had we offered the true optimal price, p∗ and stocked the true optimal order

quantity, x∗. We use (absolute) error as a measure of performance between the two objectives i.e.,

AEi,m =
Profit∗−Realized Profiti,m

Profit∗
(4.3)

We estimate this measure of error for every finite sample Monte Carlo data set i using a variety

of methods m described in Section 4.2. We present the mean and standard error of the AEi,m
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over all the instances i for each method m. We increase the number of observations to study the

statistical unbiasedness (mean decreasing to 0), consistency (standard error going to zero) and

rate-of-convergence across methods.

4.4. Results and discussion

We summarize our results about the mean and standard error of AEi,m in Tables 3 and 4. Table 3

focuses on generating model G1 and presents the results for various distributions of error discussed

in Section 4.1 and four different estimation procedures discussed in Section 4.2. Table 4 focuses

on generating model G2 and presents the results for seven different estimation methods. In the

tables, N refers to the number of data points in each instance of the data set ‘Instances’ denotes

the number of instances, amongst the Nmc = 200 randomly generated instances, where the GLR

procedure successfully converged. The mean and standard error results are presented only on the

instances where the GLR procedure successfully converged.

For both the generating models G1 and G2, with an exception of sparse instances in the Normal

and Gamma distributions for G1, the OLS method underperforms compared to all the other

methods, and the performance significantly degrades with the size of N . Specifically, when N =

1500, the best method relative to OLS is as high as ∼92% better for G2 and greater than ∼50%

for G1. Our observation of the poor performance of OLS seems different from Chun et al. (2012)

who compared the fit of OLS and MQR methods for superquantile estimation in a homoskedastic

setting (GLR is OLS in a homoskedastic setting) and conclude that even though theoretically both

estimators are consistent, Monte Carlo simulations indicate that OLS estimators perform better

than their MQR counterparts. The key in a homoskedastic setting to capture the mean accurately

while the quantiles and superquantiles capture the effect of the empirical noise distribution from the

residuals. Unlike this, in a heteroskedastic model (e.g., models G1 and G2) it is not only important

to capture the mean, but also the other quantities accurately (and estimating one depends on

estimating the other for the GLR estimator). Here OLS is unable to estimate the mean well (and

hence even its residuals), while its counterparts GLR that explicitly models heteroskedasticity and

MQR and SQR that implicitly model heteroskedasticity are effective.

It can be observed from Table 3 that for generating model G1 the GLR method tends to out-

perform the MQR and SQR for the Normal and Gamma distributions (∼ 17% and 8% respectively

relative to quantile methods when N = 1500) especially as N becomes larger. The reverse is true,

i.e., GLR tends to underperform compared to MQR and SQR for the other distributions such as

Student t, Lognormal and Mixture for larger N (∼ 50%, 38% and 8% respectively relative to

GLR when N = 1500). Recall that in this experiment, we focus only the variation in the quantile

and superquantile estimation procedures, while the mean for GLR, MQR and SQR methods are

derived from the GLR estimator.
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N
Normal Gamma

Instances OLS GLR SQR MQR Instances OLS GLR SQR MQR

50 198
0.907 0.916 1.099 1.010

192
2.209 2.077 2.4 2.435

(0.092) (0.101) (0.112) (0.089) (0.230) (0.208) (0.220) (0.232)

100 200
0.469 0.410 0.478 0.477

200
0.898 0.752 0.875 0.847

(0.051) (0.029) (0.036) (0.036) (0.106) (0.064) (0.074) (0.075)

250 200
0.189 0.146 0.171 0.171

200
0.331 0.266 0.312 0.303

(0.013) (0.011) (0.013) (0.013) (0.026) (0.020) (0.022) (0.021)

500 200
0.131 0.081 0.095 0.095

200
0.193 0.137 0.165 0.161

(0.010) (0.006) (0.007) (0.007) (0.013) (0.011) (0.013) (0.013)

1000 200
0.094 0.036 0.041 0.041

200
0.146 0.069 0.082 0.082

(0.005) (0.003) (0.003) (0.003) (0.010) (0.005) (0.007) (0.007)

1500 200
0.079 0.024 0.029 0.029

200
0.111 0.043 0.047 0.046

(0.004) (0.002) (0.002) (0.002) (0.006) (0.003) (0.003) (0.003)

N
Student t Lognormal

Instances OLS GLR SQR MQR Instances OLS GLR SQR MQR

50 177
2.080 2.117 1.889 1.816

157
3.616 3.160 3.282 2.989

(0.234) (0.216) (0.177) (0.182) (0.414) (0.472) (0.356) (0.339)

100 191
1.079 1.123 0.938 0.926

185
2.424 1.561 1.805 1.373

(0.131) (0.118) (0.091) (0.094) (0.295) (0.154) (0.207) (0.147)

250 198
0.474 0.430 0.334 0.336

186
0.863 0.560 0.565 0.446

(0.039) (0.033) (0.023) (0.024) (0.154) (0.046) (0.089) (0.035)

500 197
0.274 0.282 0.181 0.177

194
0.423 0.342 0.248 0.245

(0.018) (0.024) (0.014) (0.014) (0.086) (0.031) (0.023) (0.023)

1000 198
0.151 0.120 0.072 0.072

197
0.211 0.159 0.123 0.122

(0.01) (0.009) (0.005) (0.005) (0.016) (0.013) (0.011) (0.011)

1500 197
0.123 0.106 0.052 0.053

198
0.177 0.141 0.087 0.087

(0.007) (0.014) (0.003) (0.004) (0.016) (0.013) (0.007) (0.007)

N
Mixture

Instances OLS GLR SQR MQR

50 198
6.485 5.606 5.064 4.967

(0.321) (0.301) (0.301) (0.301)

100 200
4.822 3.636 3.464 3.450

(0.250) (0.233) (0.236) (0.233)

250 200
4.058 2.295 2.212 2.210

(0.185) (0.128) (0.129) (0.128)

500 200
3.244 1.378 1.273 1.271

(0.123) (0.067) (0.067) (0.067)

1000 200
3.298 1.036 0.970 0.972

(0.094) (0.048) (0.048) (0.048)

1500 200
3.279 0.748 0.687 0.685

(0.071) (0.041) (0.041) (0.041)

Table 3 Mean and standard error (in brackets) for the AE of the profit using the generating model G1. We

boldface the method that has the best performance at each N .
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N Instances OLS
GLR mean MQR mean

GLR SQR MQR GLR SQR MQR

50 189
2.967 2.059 2.139 2.264 2.062 2.082 2.014

(0.329) (0.238) (0.241) (0.271) (0.240) (0.253) (0.235)

100 199
1.277 0.681 0.704 0.698 0.648 0.664 0.678

(0.156) (0.062) (0.056) (0.058) (0.054) (0.051) (0.053)

250 200
0.738 0.300 0.235 0.231 0.301 0.222 0.225

(0.065) (0.020) (0.017) (0.017) (0.021) (0.016) (0.016)

500 200
0.655 0.235 0.141 0.138 0.237 0.136 0.140

(0.033) (0.015) (0.012) (0.012) (0.015) (0.012) (0.012)

1000 200
0.497 0.144 0.059 0.058 0.143 0.056 0.058

(0.017) (0.007) (0.004) (0.004) (0.007) (0.004) (0.004)

1500 200
0.481 0.131 0.037 0.037 0.131 0.036 0.038

(0.013) (0.005) (0.003) (0.003) (0.005) (0.003) (0.003)

Table 4 Mean and standard error (in brackets) for the AE of the profit using the generating model G2. We

boldface the method that has the best performance at each N .

In Table 4 for generating model G2, the SQR and MQR methods with either mean estimation

method tends to dominate over the GLR based method (∼ 70% relative to GLR when N = 1500).

This is surprising because generating model G2 only employs a Normal distribution of error and

for generating model G1 under a Normal distribution GLR method dominated over the MQR and

SQR methods. It is possible here that the MQR mean estimation method here performs slightly

better than the GLR mean estimation method as heteroskedasticity is implicitly model instead of

an explicit location-scale model assumed by a GLR which in this case does not approximate the

generating model accurately. We believe this is where quantile based methods like QR, MQR and

SQR are powerful in comparison to GLR. For smaller data sets, no method statistically dominates

another method although some methods seem to have smaller mean for the same standard errors.

We also note that across all the results that it is harder to distinguish the MQR and the SQR

methods as their mean performances are very similar with near identical standard error levels. We

do see that MQR tends to slightly outperform SQR for smaller sized data sets in generating model

G1 and SQR tends to slightly outperform in generating model G2.

To understand the impact of the degree of heteroskedasticity on the above results, we consider

variation of the generating model G1 at different levels of heteroskedasticity by introducing a scalar

multiplier H to parameters γ1 and γ2 respectively. If H = 0, the setting is homoskedastic. The

results above were presented when H = 1. Finally, if H = 2, we increase the heteroskedasticity even

more; and to differentiate the settings between H = 1 and H = 2, we refer to them as low and high

heteroskedasticty respectively. Table 5 presents the results of three methods in these settings when

N = 250, 500 and 1000: the baseline OLS approach, the complete GLR method (GLR mean and

GLR residuals for superquantile and quantile estimates) and the SQR method (MQR0 for mean,



Harsha, Natarajan and Subramanian: A prescriptive machine learning framework for the price-setting newsvendor problem
28

Distribution N
Homoskedastic Low heteroskedasticity High heteroskedasticity

OLS GLR SQR OLS GLR SQR OLS GLR SQR

Normal

250
0.289 0.322 0.357 0.204 0.149 0.174 0.622 0.019 0.031

(0.022) (0.022) (0.029) (0.013) (0.010) (0.011) (0.018) (0.001) (0.003)

500
0.135 0.152 0.180 0.122 0.077 0.089 0.593 0.009 0.016

(0.010) (0.011) (0.012) (0.008) (0.006) (0.006) (0.013) (0.001) (0.001)

1000
0.079 0.089 0.105 0.089 0.039 0.049 0.598 0.005 0.007

(0.006) (0.007) (0.008) (0.005) (0.003) (0.003) (0.009) (0.000) (0.000)

Gamma

250
0.807 0.722 0.818 0.365 0.276 0.337 0.587 0.030 0.042

(0.090) (0.059) (0.062) (0.063) (0.022) (0.029) (0.021) (0.002) (0.003)

500
0.285 0.299 0.323 0.213 0.138 0.173 0.560 0.016 0.024

(0.023) (0.023) (0.024) (0.016) (0.010) (0.013) (0.015) (0.001) (0.002)

1000
0.145 0.148 0.181 0.143 0.070 0.084 0.526 0.008 0.014

(0.011) (0.011) (0.013) (0.009) (0.005) (0.006) (0.009) (0.001) (0.001)

Student t

250
0.733 1.073 0.834 0.431 0.381 0.315 0.765 0.049 0.048

(0.076) (0.095) (0.087) (0.042) (0.025) (0.022) (0.025) (0.004) (0.003)

500
0.460 0.624 0.407 0.223 0.229 0.169 0.704 0.027 0.024

(0.044) (0.053) (0.032) (0.015) (0.016) (0.012) (0.019) (0.002) (0.002)

1000
0.195 0.370 0.200 0.156 0.116 0.074 0.649 0.016 0.012

(0.017) (0.040) (0.015) (0.008) (0.009) (0.005) (0.012) (0.001) (0.001)

Lognormal

250
2.260 1.385 1.118 0.887 0.598 0.464 0.479 0.078 0.070

(0.278) (0.104) (0.095) (0.131) (0.051) (0.040) (0.023) (0.007) (0.006)

500
0.891 0.930 0.574 0.482 0.318 0.238 0.416 0.033 0.037

(0.126) (0.080) (0.043) (0.089) (0.028) (0.021) (0.015) (0.003) (0.003)

1000
0.377 0.430 0.283 0.226 0.204 0.126 0.408 0.027 0.022

(0.035) (0.033) (0.023) (0.019) (0.020) (0.012) (0.011) (0.003) (0.002)

Mixture

250
4.027 4.499 4.131 3.602 1.949 1.801 4.097 0.294 0.291

(0.255) (0.267) (0.258) (0.162) (0.101) (0.099) (0.267) (0.016) (0.015)

500
2.677 2.732 2.742 3.207 1.501 1.305 3.835 0.209 0.200

(0.153) (0.164) (0.158) (0.131) (0.079) (0.076) (0.030) (0.011) (0.011)

1000
1.690 1.860 1.682 3.370 1.083 0.979 3.862 0.148 0.136

(0.091) (0.104) (0.099) (0.090) (0.051) (0.051) (0.021) (0.008) (0.008)

Table 5 Mean and standard error (in brackets) of the AE in profit using a modified generating model G1 at

different heteroskedasticity levels. We boldface the method that has the best performance for each distribution

under each heteroskedasticity level.

SQR for superquantile and QR for quantile). When the data has heteroskedasticity (H=1 or 2), our

observation, similar to that noted earlier, is that the methods that model heteroskedasticity are

particularly effective. Their performance relative to OLS, which ignores heteroskedasticity, shows

significant gains (∼ 50% and 90% when H = 1 and 2 respectively when N = 1000). On the other

hand, in the case of homoskedasticity, the OLS method tends to outperform in most distributions

(not surprisingly as it coincides with the assumptions of the generating model and also similar

to that observed by Chun et al. (2012) for the superquantile estimation problem), but the best
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heteroskedastic method is competitive relative to OLS (<∼ 3% degradation when N = 1000 except

for the Normal distribution where it is ∼ 13%). Here, in the Lognormal distribution SQR has a

notable improvement (∼ 25% relative to OLS when N = 1000).

We now summarize our observations and lessons learnt from the above experiments. Our results

in the context of the price-setting newsvendor suggest that ignoring heteroskedasticity can lead

to significant errors, and that amongst the methods that model heteroskedasticity the SQR and

the MQR methods result in better solutions for a wide range of generating models over GLR.

GLR performs best in Normal and Gamma distributions but if the error distributions are highly

asymmetric or heavy tailed or bi-modal (even though symmetric) or possess heteroskedastic effects

that cannot fully be explained by a variance predictor (i.e., quantiles that depend differently on

the different covariates aside from the effects of the noise), a mean-variance model captured by

GLR may not have the best performance. Sometimes, GLR can even fail to converge, more so in

some distributions over others.

For quantile or superquantile estimations, unless one expects the error distributions to have

a unimodal, symmetric, non-heavy-tailed or homoskedastic behavior (i.e., similar to the Normal

distribution), our results suggest that quantile-based methods such as QR, MQR or SQR may be

better. For the mean estimation, quantile-based methods such as MQR may be preferred to GLR

whenever the quantiles have different dependence on the covariates (aside from the effects of the

noise distribution). However, when this is not the case, as in generating model G1, methods like

GLR can outperform MQR and we believe this stems from the BLUE property of weighted least

squares. Between MQR and SQR, SQR has some very interesting theoretical properties in terms

of risk measure and being part of the risk quadrangle but statistically we are unable to distinguish

MQR and SQR. Based on the above discussion, we gather that it is important the user of these

techniques understands the data and uses the insights from the application area together with

some of our conclusions to gauge the best technique that suits the data.

4.5. Non-price covariates, out-of-sample performance and regularization

We now consider an extension where the generating model G1 has additional non-price covariates

as described below, and empirically test the out-of-sample performance.

G3. Y = β0 +β1p+β3T +
K∑
k=1

Xk +

(
γ0 + γ1p+ γ2p

2 + γ3T +
K∑
k=1

Xk

)
ε, (4.4)

where ε is a Normal (0,1) random variable, β0 = 200.0, β1 = −35.0, β3 = 10.0, γ0 = 36.0, γ1 =

−12.0, γ2 = 2.1 and γ3 = 2.0. The covariates T and Xk, k = 1, · · · ,K are other independently and

identically drawn covariates from their respective distributions besides price p. Specifically, we

assume T is uniform between [-1,1] and half of the Xk, k= 1, · · · ,K are Normal (0,1) and the other
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Figure 5 Mean and standard error (error bars) of the out-of-sample absolute error as a function of the noisy

covariates K. Here, Ntraning = 100 , Nout−of−sample = 20 and number of instances Nmc = 200

half are Bernoulli with 0 or 1 outcomes with probability 0.5. We increase the dimensionality of

the model by varying K and measure the out-of-sample performance using the mean and standard

deviation of the absolute error in profit as described in Eq. (4.3). Note here that the true profit

and the realized profit depend on the out-of-sample covariates. The red line in Fig. 5(a) plots the

mean and error bars using the mixed-quantile (or quantile) estimation method for the mean and

CVaR (or VaR) over 200 instances, each with 20 out of sample observations when Ntraining = 100.

We observe smaller error and standard deviation when the number of non-price covariates is small,

and it is not surprising that it scales very quickly with the number of covariates due to overfitting.

To manage overfitting at higher dimensionality, we use Lasso (l1 norm) regularization, a standard

feature selection technique, for each individual estimation method within our framework (other

methods such as l2 norm ridge penalty or elastic-net can also be used; see Ban and Rudin (2018)

who motivate regularization in the context of data-driven estimations for inventory problems). The

blue and green lines in Fig. 5(a) plot the out-of-sample performance for different penalty levels

(we use the same penalty for mean, CVaR and VaR estimations and the results will only improve

if we fine tune the penalty for each method). As we observe in the plot, regularization techniques

are particularly useful in the big data settings with high-dimensional covariates, since they lead to

stable regression estimates with better predictive power. Fig. 5(b) shows the variation in the error

with the l1 norm penalty when K = 32 and it indicates the potential opportunity in decrease in

error with penalty tuning.

4.6. Run time comparisons

For the comparisons, we consider the heteroskedastic generating model G1 with a unit Normal

error distribution. The price optimization with the SQR method with 1000 observations converges
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Figure 6 Computational run times for GLR, QR, MQR and SQR-Decomposition as a function of N .

on average in 15 iterations (correspondingly the CVaR evaluations at different α) and 20 seconds

in total across all iterations. As the price optimization is a non-linear optimization problem, the

number of iterations and in the lost sales settings, the number of CVaR estimations as well the α at

which the CVaR is evaluated, varies across instances as well as choice of the CVaR estimator. For

ease of comparison, we focus on the run-times of the individual procedures of GLR, QR, MQR and

SQR at different α values as opposed to the overall time for solving the price-setting newsvendor

problem. Fig. 6 shows the average computational time needed to solve the different estimation

methods as a function of N for two different α values (i.e., 0.7 and 0.85). For each value of N and

α, the plot shows the mean value of the run times and the corresponding error (standard deviation)

bars estimated over 200 independently generated data sets, each of size N .

GLR as a practical technique for larger data sets is much faster and grows at a negligible rate

compared to MQR and SQR at any quantile level, and even more so at quantiles closer to 0.

Observe also that the standard deviation of this method is very small. The time taken for MQR

in comparison to SQR is in the same order and a bit higher in many cases except for α= 0.7 and

large N . The run time of MQR can be tuned up or down by decreasing or increasing ∆ which

is currently set to 0.01. This reduces the number of discretizations over which the quantiles are

estimated. The decomposition method of SQR on the other hand uses the finest discretization that

can be generated with the residual data set. Observe also that the standard deviations of MQR and

SQR to increase for larger N (and smaller α for SQR in particular). To estimate a single quantile

QR is a fast practical routine with similar performance guarantees like GLR.

4.7. Bootstrap confidence intervals

An important aspect of a practical method for the price-setting newsvendor problem is obtaining

confidence intervals for the estimated optimal solutions and the resulting estimated optimal profit
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Figure 7 Coverage results for the 95% bootstrap confidence intervals for the estimated optimal profit obtained

using heteroskedastic regression for the sample size N = 50. The confidence intervals are shown along

with the exact optimal profit in each case for Nmc = 100 Monte Carlo simulations (the intervals shown

marked in red do not contain the exact optimal profit).

Π̂∗. These confidence intervals can clarify the impact of the model fit and estimation errors on the

optimal solution. We propose to use the non-parametric bootstrap (Efron and Tibshirani 1994) to

obtain the desired confidence intervals. In particular, we use the “paired bootstrap” whereby the

bootstrap data sets are generated by sampling entire individual cases with replacement from the

original data set. We implement our estimation procedure on each bootstrap data set to recover a

bootstrap confidence interval for the quantity of interest for each original data set.

For an explicitly-known stochastic price-demand function, the coverage and accuracy of the

resulting bootstrap confidence intervals can be evaluated through a Monte Carlo simulation study.

Fig. 7 shows the results of the Monte Carlo evaluation of the 95% bootstrap confidence intervals of

the estimated optimal profit Π̂∗ over Nmc = 100 instances (original data sets) of model G1 using

GLR based estimators for mean, quantile and superquantile respectively. For each of the Monte

Carlo instance, the 95% bootstrap confidence intervals are presented. The coverage of the bootstrap

method is evaluated as the fraction of simulated Monte Carlo data sets for which the exact optimal

profit is within the 95% bootstrap confidence intervals for the corresponding estimated optimal

profit. Fig. 7 shows that these bootstrap confidence intervals are quite adequate.
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5. An application of the framework with real data

We use the energy consumption data, a portion of which was depicted in Fig. 1, as an example

to motivate that the approaches proposed in the paper are well suited to realistic data sets. The

data consists of 2,313 observations in total and each observation corresponds to the average energy

consumption in kWh per household recorded every 15 mins between 7-9am on weekdays from

April 1, 2006 to March 31, 2007 along with a price and temperature measurement. We derive

two variables related to the temperature covariate which we refer to as the cooling degree day

(CDD= [T − 18]+) and the heating degree day (HDD= [15−T ]+), where T is the temperature.

These are well understood temperature boundaries where energy consumption patterns change:

in the former case households have air conditioners turned on, while in the latter case heaters

are turned on. Using price, CDD and HDD as covariates of the consumed energy, we identify the

optimal price, optimal order quantity and optimal predicted profit as a function of temperature

for the emergency order formulation of the price-setting newsvendor problem with αeo = 0.85 and

c = 4. Fig. 8 shows the bootstrap confidence intervals of the optimal price, the optimal order

quantity and the optimal predicted profit as a function of temperature using two approaches that

differ in the CVaR estimation procedure (SQR and MQR respectively). Both approaches use MQR

and QR to get estimates of the mean and quantile respectively. Interestingly, both approaches

result in fairly close values of optimal decisions and predicted profits, with negligible differences at

temperatures higher than 5oC. As opposed to constructing a multi-dimensional joint distribution

of the demand as a function of the covariates to identify the optimal decision quantities, the key

benefit of the proposed method is to perform the optimization in conjunction with the specific

estimation techniques that characterize certain statistics of the demand response as a function of

the covariates in a data-driven distribution-free manner for the prescriptive analytics.

Appendix A: Proof of Claim 1

The main part of our proof is to show that the estimate of the objective function in (2.5) uniformly converges

in probability in p∈ P . We begin with the estimators and then construct the case for the objective.

Suppose Q
(
X(p,z),β

)
is one of the statistical estimators of interest for a given α∈ [0,1), where X(p,z) and

β represent the covariates and the parameters of the data-driven estimator. (Note that the mean estimator

does not depend on α, while CVaR and VaR do.) We denote the estimate of Q
(
X(p,z),β

)
with sample data

of size N by the random variable Q̂
(
X(p,z),βN

)
. As Q

(
X(p,z),β

)
is consistent, we know that given any

ε > 0, δ > 0, ∃ No(ε, δ,β) such that P
(
|Q̂
(
X(p,z),βN

)
−Q

(
X(p,z),β

)
|> ε

)
< δ, ∀ N >No(ε, δ,β). Observe

that No(ε, δ,β) is independent of p because β is independent of the covariates X(p,z) and hence p as well.

Therefore Q
(
X(p,z),β

)
converges uniformly in probability over p∈ P .

We first consider the emergency order setting and prove its uniform convergence. We denote the objective

function and its estimate by Π(p) and Π̂(p) respectively. In this setting, α is a fixed constant, say αo. We
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Figure 8 Bootstrap confidence intervals for the energy consumption data as a function of temperature using

two methods to estimate CVaR: SQR (blue, left) and MQR (red, right) respectively and the MQR

method to estimate the mean. The box plots show median value (solid horizontal line) and 25-75th

percentile values (boundary of boxes), with the whiskers extending to the extreme points excluding

outliers marked with a dot.

have suppressed the dependence on z for notational brevity. Denote E(p), Ê(p) and C(p), Ĉ(p) the true and

estimated quantities of E[D(p,z)] and CVaRαo [D(p,z)] respectively.

For a given ε, δ, we construct No(ε, δ) for the convergence of Π(p) argument as follows: No(ε, δ) =

max{NE
o ,N

C
o } where NE

o ,N
C
o are the corresponding No’s (see above) for the mean and the CVaR estimators

with input parameters as follows: (1) NE
o =No (ε1, δ, β

E) for E[D(p,z)] estimator where ε1 = ε
pmax−c

; and (2)

NC
o =No (ε2, δ, β

C,αo) for CVaRαo [D(p,z)] estimator where ε2 = ε
c−s . Therefore, for any p∈ P , we have

P
(
|Π̂(p)−Π(p)|> ε

)
= P

(∣∣(p− s)[Ê(p)−E(p)]− (c− s)[Ĉ(p)−C(p)]
∣∣> ε) (A.1)

≤ P
(∣∣(p− s)[Ê(p)−E(p)]

∣∣> ε)+P
(∣∣(c− s)[Ĉ(p)−C(p)]

∣∣> ε) (A.2)

≤ P
(∣∣Ê(p)−E(p)

∣∣> ε1)+P
(∣∣Ĉ(p)−C(p)

∣∣> ε2) (A.3)

< δ ∀ N >No(ε, δ) (A.4)

As No(ε, δ) is independent of p by by construction, we have the uniform convergence in probability of Π̂(p)

to Π(p) for all p∈ P in the emergency order setting.

We now consider the lost sales setting. Here α is a function of p denoted by α(p). Barring the new notations

we need for the CVaR estimator that we describe here, we use the same notation as above. Denote C(p), Ĉ(p)

the true and estimated quantity of CVaRα(p)[D(p,z)]. Define NC
o =No

(
ε2, δ, β

C,α(p)
)

for CVaRα(p)[D(p,z)]

estimator where ε2 = ε
c−s . Because of our additional restrictive assumption in the lost-sales setting, we know

that No

(
ε2, δ, β

C,α(p)
)

is independent of p for all p ∈ P and hence NC
o as well. And with the same proof

above, we have the uniform convergence in probability of Π(p) for p∈ P even in the lost sales setting.

As the estimators for E[D(p,z)] and CVaRα[D(p,z)] are jointly continuous in p (and jointly in (p,α) in

the lost-sales setting), it is easy to conclude that Π̂(p) is continuous in p.

Together with the condition on the unique global maximum for Π(p), we meet all the conditions of

consistency theorem of extremum estimators, Theorem 4.1.1 in Amemiya 1985, which implies that the

estimated optimal solution p∗N from (2.5) is consistent to the true optimal price p∗∗.
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Next we show the consistency of the estimated x∗N using (2.3) to the true optimal x∗∗. We want to show

that given an ε > 0, δ > 0, ∃ No(ε, δ,β, p
∗∗) such that ∀ N >No(ε, δ,β, p

∗∗), we have P
(
|Q̂
(
X(p∗N ,z),βN

)
−

Q
(
X(p∗∗,z),β

)
| > ε

)
< δ where Q(.), Q̂(.) represents the the true VaR and its estimator. Now because

VaRα[D(p,z)] is a consistent estimator, we have for the same ε and δ, ∃No(ε,
δ
2
,β) such that ∀N >No(ε,

δ
2
,β),

we have P
(
|Q̂
(
X(p∗∗,z),βN

)
−Q

(
X(p∗∗,z),β

)
|> ε

)
< δ

2
. We also know that every estimate of VaR for a

given set of observations is continuous in p. Therefore for the same ε, ∃η > 0 such that if |p∗N − p∗∗| < η

implies |Q̂
(
X(p∗N ,z),βN

)
− Q̂

(
X(p∗∗,z),βN

)
|< ε. But from consistency of price p∗N to the true p∗∗, we know

that for the same ε, η above, ∃ No(η,
δ
2
, p∗∗) such that ∀ N > No(ε,

δ
2
, p∗∗), P (|p∗N − p∗∗| > η) < δ

2
. This

means P (|Q̂
(
X(p∗N ,z),βN

)
− Q̂

(
X(p∗∗,z),βN

)
|)> ε)< δ

2
. Therefore we know that for N >No(ε, δ,β, p

∗∗) =

max
{
No(ε,

δ
2
,β),No(ε,

δ
2
, p∗∗)

}
, we have P (|Q̂

(
X(p∗,z),βN

)
−Q

(
X(p∗∗,z),β

)
|> ε)≤ P (|Q̂

(
X(p∗N ,z),βN

)
−

Q̂
(
X(p∗∗,z),βN

)
|)> ε)+P

(
|Q̂
(
X(p∗∗,z),βN

)
−Q

(
X(p∗∗,z),β

)
|> ε

)
< δ. This proves the consistency of x∗N

to the true optimal x∗∗.

With the consistency results on p∗N and x∗N we conclude that the proposed method is asymptotically optimal.

�

Appendix B: Generalized Linear Regression (GLR)

The first approach is based on heteroskedastic regression using generalized linear models (GLM). To

describe this approach in full generality, we need a specification of the mean-variance relationship and

denoting the mean by µ, we assume the variance is φV (µ), where V (µ) is the variance function, and φ is the

dispersion parameter. For example, a common specification for the variance function is V (µ) = µθ for some

fixed θ. Regression models for µ and φ can be specified in the form of generalized linear models, and the model

parameters can be estimated by a two stage iterative procedure where the inner stage uses GLM maximum

quasi-likelihood optimization (i.e., iterative re-weighted least squares) to separately estimate the updates

to the mean and the dispersion. For more information on this method we refer the reader to Nelder and

Pregibon (1987) and Davidian and Carroll (1987, 1988) respectively. We note that method maximizes quasi

likelihood retains the desirable properties of consistency, efficiency and asymptotic normality of the maximum

likelihood estimates, even if the distribution of Y is not explicitly known (so long as this distribution has a

finite second moment) (Wedderburn 1974).

Model Specification and Estimation. To fix ideas for our context, we consider the following generating

model for the stochastic demand function:

Y = µ+
√
φV (µ)ε, (B.1)

where ε is a random variable whose distribution is independent of X with E[ε] = 0 and E[ε2] = 1, with

g(µ) = βTX, h(φ) = γTZ, (B.2)

where β,γ are the respective regression parameters, and g :R→Range(Y ), and h : R→R+ are the respective

link functions (that which provides the relationship between the linear predictor and the mean of the response

variable) for µ and φ, and X and Z denote the respective set of covariates in the mean and dispersion

models (Nelder and Lee 1992, Smyth et al. 2001).
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The model in Eq. (B.1) and Eq. (B.2) is equivalent to the additive-multiplicative demand model in the

inventory literature, and the covariates X and Z represent the demand drivers including price in this model.

We outline the steps for estimating µ and φ in Procedure 4. This can be easily implemented using existing

software for fitting GLM models, that require the specification of the response, covariates, variance function,

dispersion parameter and link function.

Procedure 4 Heteroskedastic regression

Input: Data {xi,zi, yi} for i = 1, ...,N , the variance function V (µ), and the link functions g(.) and h(.)

respectively.

1: Set the initial values for φ̂i for i= 1, ...,N .

2: Use GLM fitting to obtain the mean regression parameters β̂, using response yi, covariates xi, variance

function V (µ), dispersion φ̂i, and link function g(.). Set µ̂i = g−1(β̂Txi) and obtain the Pearson residuals

d̂i = (yi−µ̂i)2

V (µ̂i)
.

3: Use GLM fitting to obtain the dispersion regression parameters γ̂, using response d̂i, covariates zi,

variance function φ2, dispersion 2, and link function h(.). Set φi = h−1(γ̂Tzi).

4: Repeat from step 2 till β̂, γ̂ converge.

Output: Estimates β̂ and γ̂ for heteroskedastic regression.

An estimate of the VaR and CVaR of ε can now be obtained from the empirical distribution of the adjusted

residuals ε̂ where ε̂i = yi−µ̂i√
φ̂iV (µ̂i)

. We denote the empirical cdf Fε̂(u) = 1
N

∑N

i=1 I[ε̂i](u), where I[ε̂i](u) is the

indicator function which takes the value 1 if (u− ε̂i)≥ 0, and 0 otherwise. Then,

V̂aRα[ε̂] = inf {u : Fε̂(u)≥ α} , (B.3)

ĈVaRα[ε̂] = λα(ε̂)V̂aRα[ε̂] + (1−λα(ε̂))E
[
ε̂|ε̂ > V̂aRα[ε̂]

]
, (B.4)

where λα(ε̂) =
Fε̂

(
V̂aRα[ε̂]

)
−α

1−α
.

This description of CVaR for discrete distributions is given by Rockafellar and Uryasev (2002). The hat on

VaR and CVaR are to denote that they are estimates.

In summary, the three quantities of interest for the price-setting newsvendor problem (see Fig. 3 and

Section 2.2) are as follows:

Ê[Y |X,Z] = µ̂, (B.5)

V̂aRα[Y |X,Z] = µ̂+

√
φ̂V (µ̂) V̂aRα[ε̂], (B.6)

ĈVaRα[Y |X,Z] = µ̂+

√
φ̂V (µ̂) ĈVaRα[ε̂], (B.7)

where µ̂= g−1(β̂TX) and φ̂= h−1 (γ̂TZ). Here, β̂ and γ̂ are the outputs of estimation Procedure 4.
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Appendix C: Proof of Claim 2

Consider the subset J∗k = {i∈N | yi−βTxi−Uk > 0}. Then, we have

N∑
i=1

max{yi−βTxi−Uk,0}=
∑
i∈J∗

k

max{yi−βTxi−Uk,0} (C.1)

since any index i 6∈ J∗k contributes zero to the summation on the left hand side. Similarly,

J∗k ∈ arg max
Jk∈P(N)

∑
i∈Jk

(yi−βTxi−Uk) (C.2)

This is because any subset, say, Jk ⊂ J∗k can be augmented with elements from J∗k \ Jk to strictly increase

the objective function, while no superset Jk ⊃ J∗k can possibly increase the objective function relative to J∗k

due to its definition. Taken together, Eqs. (C.1–C.2) lead to Eq. (3.12). �

Appendix D: Proof of Claim 3

We firstly note that constructing a finite, feasible solution for the corresponding dual LP is sufficient to

establish boundedness of the above LP, due to weak duality. The corresponding dual LP is:

max
p,q

N∑
i=1

piyi +

N−1∑
k=Nα

N∑
i=1

yiqk (D.1)

s.t., qk ≤
ak

N(1−α)
, ∀ k=Nα, . . . ,N − 1, (D.2)

qk =
κk−κk−1
N(1−α)

, ∀ k=Nα, . . . ,N − 1, (D.3)

N∑
i=1

pi =
1

N(1−α)
, (D.4)

N∑
i=1

pixi,l +

N−1∑
k=Nα

N∑
i=1

xi,lqk =
1

N

N∑
i=1

xi,l, ∀ l= 1, . . . , n, (D.5)

pi, qk ≥ 0, ∀ i= 1, . . . ,N, k=Nα, . . . ,N − 1. (D.6)

Consider the candidate solution that evidently satisfies the non-negativity constraints, as well as con-

straints Eq. (D.3) and Eq. (D.4).

p̃i =
1

N2(1−α)
, q̃k =

κk−κk−1
N(1−α)

(D.7)

Constraint Eq. (D.2) is satisfied because, using a series expansion for the natural logarithm (where each

|κk|< 1), we have

ak = ln(1−κk−1)− ln(1−κk) =

∞∑
j=1

κjk−κik−1
j

> κk−κk−1 (D.8)

The final constraint Eq. (D.5) is also satisfied as verifiable via substitution, where ∀ l= 1, . . . , n,

LHS =
∑N

i=1 xi,l

(
1

N2(1−α) +
∑N−1

k=Nα

κk−κk−1

N(1−α)

)
=
∑N

i=1 xi,l

(
1

N2(1−α) + 1
N(1−α)

(
N−1
N
−α

))
= RHS.

We also note that feasibility of the above relaxed primal, namely RSQR−RELAX is self-evident. Taken

together, these imply a finite, non-empty optimal solution for RSQR−RELAX. �
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Appendix E: Proof of Theorem 1

Step 2 is guaranteed to result in a finite, non-empty solution in the very first iteration, due to Claim 3 and

thereby successfully seeds the delayed constraint-generation procedure. Finite convergence is guaranteed due

to the finiteness of the power set, P(N ). Convergence in the LP solution is achieved in step 3, when no new

constraint is identifiable for each index k, i.e. J∗k is already present in Jk. Upon such convergence, it can be

seen that the (final) converging linear program RSQR−RELAX is a relaxation of RSQR with respect to

the representation of Eq. (3.15), but it also satisfies all the unrepresented constraints from RSQR. Thereby,

its solution is also optimal for RSQR, and equivalently SQR. �
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