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We present an integrated optimization approach to parameter estimation for discrete choice demand models

where data for one or more choice alternatives are censored. We employ a mixed-integer program (MIP)

to jointly determine the prediction parameters associated with the customer arrival rate and their substi-

tutive choices. This integrated approach enables us to recover proven, (near-) optimal parameter values

with respect to the chosen loss-minimization (LM) objective function, thereby overcoming a limitation of

prior multi-start heuristic approaches that terminate without providing precise information on the solution

quality. The imputations are done endogenously in the MIP by estimating optimal values for the proba-

bilities of the unobserved choices being selected. Under mild assumptions, we prove that the approach is

asymptotically consistent. For large LM instances, we derive a nonconvex-convex alternating heuristic that

can be used to obtain quick, near-optimal solutions. Partial information, user acceptance criteria, model

selection, and regularization techniques can be incorporated to enhance practical efficacy. We test the LM

model on simulated and real data, and present results for a variety of single- and multi-item, time varying

arrival rate, large-scale demand prediction scenarios, and a dual-layer estimation model extension to learn

the unobserved market shares of competitors.
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1. Introduction

Demand forecasting is an important part of business planning across a wide variety of industries.

An estimate of future demand forms a fundamental input for a variety of downstream decision-

making operations, such as manufacturing, inventory planning, scheduling and pricing. In today’s

price-transparent and omni-channel world, customers have a wide variety of choices in front of

them prior to finalizing their purchase. In this environment, it is important for sellers to not only

forecast demand for one’s own products or services, but also be able to accurately predict the

proportion of customers that are likely to walk away from the seller’s product assortment, as well

as the market-share that is at risk of being lost to one or more competitors. Tracking these lost

opportunities may require the purchase of expensive syndicated data regarding competitor sales,
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as well as video hardware and software to identify lost transactions, which is not yet available to a

vast majority of sellers and service providers. On the other hand, the demand forecasting methods

presented in this work are designed to provide a seller a panoramic view of future demand using

readily available aggregate-censored data.

Discrete choice models are one of the most widely used demand functions to model consumer

choice in marketing, economics, supply chain and revenue management (Ben-Akiva and Lerman

1985, Train 2009), with successful implementations in a variety of industries (e.g., Guadagni and

Little 1983, Ratliff et al. 2008, Vulcano et al. 2010, Subramanian and Sherali 2010). These demand

models have a convenient hierarchical structure, which first models the arrivals of interested cus-

tomers, and then the purchase probability of specific customer choices amongst alternatives. The

demand for a customer choice is calculated as the product of the number of arrivals and its corre-

sponding purchase probability. Customer choice scenarios that arise in practice includes (1) binary

choice setting (buy vs. no-buy); (2) multiple substitutive choice setting where there are at least

three choices for a customer (no-buy, vs. buying one of multiple competing substitutes in the assort-

ment, e.g., store brand vs. national-brand soda); and, (3) non-substitutive settings where demands

are positively correlated within the assortment (e.g., different T-shirt sizes). Their structural form

makes them a viable demand modeling alternative for downstream pricing and assortment opti-

mization applications where some computationally tractable and efficient algorithms have been

developed (e.g., Talluri and Van Ryzin 2004, Rusmevichientong et al. 2010, Keller et al. 2014).

Calibrating discrete choice models to accurately predict future demand can be challenging when

complete historical data regarding all the customer choices is unavailable. This prediction prob-

lem has received attention in recent years and our paper proposes novel methods using discrete

optimization to solve it effectively in practice.

Contributions: We present an integrated optimization approach to parameter estimation for

calibrating discrete choice demand models where historical data regarding one or more choice

alternatives are censored. We consider two distinct settings: (1) single unobserved no-purchase

option; and (2) multiple unobserved substitutive options, which additionally embeds the loss to one

or more competitors having observable attributes. In both cases, we jointly determine the prediction

parameters associated with variations in the customer arrival rate and their substitutive choices.

Our method is based on an effective mixed-integer program (MIP) that minimizes a measure of

the total error between predicted and observed (or imputed) quantities, both with respect to the

arrival rates as well as the market share ratios. The imputations are done endogenously in the MIP

by estimating optimal values for the probabilities of the unobserved choices being selected.

For typical (e.g., daily or weekly) demand forecasting instances, a black-box MIP solver can

recover proven, optimal prediction parameter values with respect to the loss-minimization objective
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under consideration. Furthermore, partial information, user acceptance criteria, model selection

and regularization techniques can be incorporated to enhance the efficacy of the proposed MIP in

practice. For large scale instances (e.g., thousands of observations), we exploit the special structure

of the integrated MIP and propose a nonconvex-convex alternating heuristic (AH) to obtain good

quality (near optimal) solutions.

We show that solving the integrated model to optimality (in both aforementioned censored data

settings) leads to asymptotically consistent estimators of all the parameters under mild assump-

tions. It is worth noting that this result does not require additional information for model iden-

tification. Also, there is no prior work that we are aware of that considers (1) disambiguation of

unobserved arrival rate variations, or (2) the estimation of the unobserved competitor share of

lost sales in discrete choice model estimation using censored data. We present several numerical

experiments that include arrival rate variations and large scale, ‘big data’ scenarios to highlight

the flexibility of the model and report on empirical results obtained using real world data. We

show that the proposed methods dominate EM, achieving better overall solution quality while

consuming only a fraction of the EM run time.

We have commercially deployed our method to predict omnichannel demand for retailers for pric-

ing applications (Harsha et al. 2019). We have successfully implemented these forecasting methods

over a wide range of industrial settings, from predicting price-sensitive time-of-day electricity load

in a ‘smart grid’ to forecasting demand for chemical and food manufacturers.

1.1. Background and related literature review

Complete information about all customer choices: A widely used method to estimate discrete choice

models under complete information is the maximum likelihood estimation (MLE) method (Domen-

cich and McFadden 1975, Ben-Akiva and Lerman 1985). MLE in its simplest form maximizes the

likelihood of a choice(s) given the assortment, which is a convex optimization problem. A com-

monly used alternative is the Berkson’s method (Berkson 1953, Ben-Akiva and Lerman 1985).

This method minimizes the error between the observed and predicted values of the log-transformed

market share ratio between any two purchase choices resulting in a simple linear regression prob-

lem. The observational data for the MLE method can be as granular as the actual response of an

individual and the associated covariate vector. In contrast, the Berkson’s method requires grouped

data in terms of counts or proportions which consists of the aggregate response of a group of

individuals to a common feature vector. Furthermore, even with grouped data, MLE methods can

seamlessly handle zero sales, while the Berkson’s method requires certain heuristic adjustments to

apply the log-transform, making MLE a viable alternative in a broad range of settings. For most

parametric choice models, both problems are relatively easy to solve numerically using different
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optimization algorithms, yet have the same theoretical asymptotic properties such as consistency

and asymptotic normality (Greene 2011).

As we will see next, under incomplete information, most parameter estimation approaches have

focused on the extensions of the MLE method, which employ gradient descent methods to solve the

resultant non-convex likelihood objectives. In contrast, our parameter estimation approach extends

the Berkson’s method by employing state-of-art linear and mixed integer programming modeling

techniques (Bixby 2012) to find (near-) globally optimal solutions.

Incomplete information about customer choices: Talluri and Van Ryzin (2004), in their work on

choice based revenue management, develop an iterative MLE based estimation method using an

expectation maximization (EM) approach (Dempster et al. 1977) to jointly estimate a constant

mean arrival rate and the parameters of the choice model based on sales transaction data and

unobserved no-purchases. The method iterates between estimating an expected lost sales in each

period, and maximizing the resulting expected value of the log-likelihood function. In general, an

EM method provably converges to stationary point only (Wu 1983). This means the solution can

be a local maximum, saddle point, or the local minimum of the likelihood function. Therefore,

multiple EM runs with different starting points are executed to probabilistically improve the quality

of parameter estimates, often resulting in prohibitive run times. However, EM approaches are

attractive because of their relative ease of implementation and wide applicability.

We refer to Vulcano et al. (2010) and Newman et al. (2014) for a study of the empirical per-

formance of the EM algorithm, and the former paper for an EM implementation on real airline

booking data. Kök and Fisher (2007) and Vulcano et al. (2012) review various demand estimation

approaches for assortment planning using the EM method.

Vulcano et al. (2012) extend and improve the performance of the EM algorithm for the incom-

plete data likelihood function with aggregate data for arrivals following a non-homogeneous (time-

dependent) Poisson distribution. However, to avoid multiple optimal solutions or a misidentification

of the choice parameters, the market share under the full assortment is required as an additional

input. For the same setting, the Minorization-Maximization (MM) approach of Abdallah and Vul-

cano (2017) with this additional input provably converges to a stationary point. For the pure

assortment case in the absence of covariates, the authors state sufficient conditions for identifiability

(and hence consistency) of the choice parameters.

Newman et al. (2014) propose a computationally fast two step estimation method by decom-

posing and optimizing the incomplete data likelihood function assuming a homogeneous Poisson

constant arrival rate model. A one-dimensional search is required in the second step to optimize a

non-convex objective, and a multi-start procedure is employed to probabilistically overcome local
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Property Proposed LM method Referenced MLE based methods

Number of observed choices 1 or more EM: 1 or more; Two step, MM: at least 2

Number of unobserved choices 1 or more At most 1

Data aggregation Required Classical EM: not required;
Other EM, MM and two step: required

Zero sales Needs heuristic adjustments No adjustment required

Probabilistic assumptions None Required

Covariates for arrivals Modeled Not modeled

Optimization solution
approach

Single step MIP; Alternating
heuristic for large instances;

(Near-) global optimal solution
with a certificate of optimality

At least two steps or iterative;

Multi-start heuristic procedures;
Local maxima guarantee;

Asymptotic consistency Proved No choice covariates and additional market
share data: EM, MM are consistent

Table 1 Comparing the proposed loss minimization (LM) method with respect to the referenced MLE based

methods to calibrate discrete choice models in an incomplete data setting.

optima. Talluri (2009) also proposes a two-step method wherein a risk-ratio error minimization is

instead adopted.

As a remark, except for the classical EM method, other methods in the literature cannot be

directly implemented in the binary-choice (buy vs. no-buy) setting, as the first step requires at

least two observed purchasing options. This is a basic setting (logistical regression) and is popular

in a variety of practical demand forecasting and pricing applications.

The aforementioned MLE based methods, in the presence of share covariates, employ multi-

start heuristic procedures to overcome local maxima when solving the resultant non-convex MLE

problem. We propose a single step MIP approach that solves a non-convex loss minimization

problem to provable (near-) optimality. Another modeling drawback of MLE based methods is that

customer arrivals are modeled with a Poisson random variable, independent of covariates. In reality,

arrival rates vary over time and additional covariates have to be incorporated to capture such

trends. Examples include, the increase in store traffic and sales during holidays and the lifecycle

behavior to bookings and sales for perishable products. By modeling these trends, we do not

require any additional market share data for model identification and are able to disambiguate the

observed sales fluctuations into arrival variations and purchase probability changes. Furthermore,

our paper also estimates the unobserved purchase probability of competitors. There is no prior

work that addresses either of these disambiguation problems. There are two practical limitations

of the proposed MIP model: it requires heuristic adjustments to manage zero sales, and requires

grouped data. Our proposed methods can be deployed within applications compatible with these

limitations. Based on the above discussion and our contributions, we summarize the key differences

of our method from the above methods in Table 1.
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Although our paper focuses only on estimation of discrete choice demand models, papers by

Haensel and Koole (2011), van Ryzin and Vulcano (2011), Farias et al. (2013) are a few examples

among several works that have studied demand prediction problems with censored data for other

classes of demand models, which has also been an active area of research.

In contrast to the above literature on censored choices, Berry (1994) uses uncensored aggregate

market share data to estimate mixed-logit models using a log-ratio transformation (similar to the

Berkson’s approach) where there are unobservable features, an aspect we do not cover in this paper.

2. Demand functions based on discrete choice models

Discrete choice demand models anchored in utility theory are one of the commonly used demand

functions to model consumer choice. They generalize the well-known multinomial logit (MNL) and

the multiplicative competitive interaction (MCI) demand models (McFadden 1974, Urban 1969). In

a setting with an assortment of purchasing choices and a no-purchase choice, we use the discrete

choice demand functions to model the demand of a choice by estimating its purchase probability.

Suppose M is the set of purchasing choices indexed by m and ∅ denotes the no-purchase choice.

The demand for a choice m∈M or the choice ∅ at time t is given by:

Dmt(Yt,Xt, St) = Arrivals at time t ∗ Purchase Probability
of item m at time t

(2.1)

= τ(Yt)
Am(Xmt)

1 +
∑

m′∈StAm′(Xm′t)
, m∈ St, (2.2)

Dmt(Yt,Xt, St) = 0, m∈M\St, and (2.3)

D∅t(Yt,Xt, St) = τ(Yt)
1

1 +
∑

m′∈StAm′(Xm′t)
, (2.4)

where

• τ(Yt) is the model for arrivals or market size that is a measure of consumers interested in any

of the choices, including the no-purchase option, as a function of a vector of the market size

attributes Yt at time t,

• Am(Xmt) is the attraction model of choice m as a function of the vector of attributes Xmt for

choice m at time t,

• Xt is the matrix of attributes where row m corresponds to Xmt, and

• St ⊂M is the set of purchasing choices that are available at time t.

Note that we interchangeably use the term features, covariates and attributes throughout the

paper, to refer to regressors in an estimation problem.

In continuous time settings, market size is measured and referred to also as an arrival rate. The

size function aims to capture the impact of higher (assortment) level attributes that influence the
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arriving traffic (e.g., temporal and marketing effects), and is independent of factors that impact

the purchase of a specific choice. The market size function can be modeled as a linear, exponential

or a power function of the attributes Yt (for example, for an exponential function, τ(Yt) = eγ
TYt)

whose prediction coefficients (γ, in the example) have to be estimated.

Purchase/choice probability models how consumers choose between alternatives, and is defined

by the relative attractiveness of an alternative (including no purchase with a default attraction of

1.0). Attraction models are based on a utility concept, where the utility is composed of an observ-

able component and an unobservable random component. The observable part for any purchasing

choice m is a function of the attributes Xmt at time t that depend on the specific choice m. Differ-

ent attraction models can be derived depending on the assumptions of the unobservable random

component. For example, when the noise for all choices are independent and identically distributed

Gumbel (type 1 extreme value) and the observable components are linear, i.e., βTmXmt, the MNL

demand model is derived. The attraction model in the case of the MNL model isAm(Xmt) = eβ
T
mXmt ,

in the case of the MCI model is Am(Xmt) =
∏
kX

βmk
mtk , and in the case of a linear attraction model

is Am(Xmt) =βTmXmt where βm are the prediction coefficients that need to be estimated.

A discrete choice function is practically convenient because of its parsimony in the number of

coefficients to be estimated, and is O(M) for M purchasing choices as opposed to O(M 2) in demand

models such as linear, exponential or power-law (Reibstein and Gatignon 1984, Berry 1994).

3. Estimation of censored data discrete choice models with a single
unobserved no-purchase option

Consider a seller managing an assortment of m ∈M substitutable purchasing options. The no-

purchase option ∅ is always available to the consumers. The seller varies the availability of the

purchasing options, denoted by St, and its attributes (e.g., prices) over time. The seller only observes

the total sales transactions for each of the available purchasing options in M over time but cannot

observe the lost sales, which is the number of arriving customers choosing the no-purchase option

∅. Our goal is to use historical sales observations, the corresponding attributes, and availability

data to predict the demand for each of the m ∈M purchasing options, as well as the unobserved

lost sales. We present the single step MIP based estimation method in Section 3.1, prove that it is a

consistent estimator in Section 3.2, and discuss model enhancements and extensions in Section 3.3.

3.1. Proposed estimation method

Table 2 describes the notation used. We assume that when a choice is not in the offer set, the

corresponding observed sales are zero, i.e., m /∈ St, s̄mt = 0, and that the observed sales are strictly

positive otherwise, i.e., s̄mt > 0 ∀m ∈ St. The latter assumption is reasonable in most instances

because we work with aggregated data. In Appendix B we discuss we discuss how we relax this
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Indices

t,m,k, a period, a choice, a lost share value

Sets

T ,M , all periods (time windows), all purchasing choices

St, all available purchasing choices in period t, St ⊂M
K, all lost share values chosen between [ε,1− ε], where ε is a small number greater than 0

Parameters

s̄mt, observed sales for choice m in period t

X̄mt, row vector of attribute values for choice m in period t

Ȳt row vector of attribute values for arrivals in period t

fk, lost share value corresponding to index k

λ̄kt, lost sales due to no-purchase in period t, and equals fk
1−fk

∑
m∈St s̄mt

θ̄kt, market size in period t, and equals 1
1−fk

∑
m∈St s̄mt

Decision Variables

βm, row vector of coefficients for the attributes of choice m (X̄mt), modeled as continuous variables

γ, row vector of coefficients for attributes of market size (Ȳt), modeled as continuous variables

zkt, probability that the lost share in period t is fk.

Table 2 Notation used.

assumption for settings with low levels of aggregation and employ an adjustment method when

zero sales are present and comprise a significant portion of the training data. We assume that the

attribute vectors Ȳt and X̄mt incorporate the constant 1 to retrieve the intercept coefficients.

Formulation: Without loss of generality, for exposition, we present the optimization formulation

for an exponential market size function and an MNL choice model. Generalizations to other discrete

choice models are discussed later in this section. We aim to perform the following fit:

s̄mt ∼ eγ
T Ȳt

eβ
T
mX̄mt

1 +
∑

m′∈St e
βT
m′X̄m′t

∀m∈ St, t∈ T , (3.1)

where the notation T refers to the transpose of the vector. Suppose we know the lost sales, denoted

by λt, for each period, we obtain an additional set of equations to fit:

λt ∼ eγ
T Ȳt

1

1 +
∑

m′∈St e
βT
m′X̄m′t

∀t∈ T . (3.2)

Transforming Eqs. (3.1–3.2) using log and ratio-transformations, we obtain:

ln (s̄mt)− ln (λt)∼βTmX̄mt ∀m∈ St, t∈ T , and (3.3)

ln

(∑
m∈St

s̄mt +λt

)
∼ γT Ȳt ∀t∈ T . (3.4)

The first equation employs the log-ratio transformations like the Berkson’s estimator and the second

is the log-sum of the Eqs. (3.1–3.2). We now employ a piecewise linear (PWL) transformation to

tractably model the unknown lost sales λt. To do so, we introduce a discrete sampling of possible lost
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shares in [ε,1− ε], where ε is a small positive number and denote them by fk ∈K. The underlying

assumption here is that we do not observe either extreme of lost shares. We use an auxiliary

decision variable set zkt ∀ ∈K for each observation where zkt corresponds to the probability that

the lost share in period t is fk and model them as a Special-Ordered-Set Type 2 (SOS2) variables

wherein at most two adjacent members of this ordered set (assuming the fk’s are ordered) can

be non-zero. Therefore, the PWL representation of the true share in any period can be written

exactly as fkzkt, while the true lost sales λt is approximated with a PWL function λ̄ktzkt where

λ̄kt = fk
1−fk

∑
m∈St s̄mt. Substituting these expressions, we get:

ln (s̄mt)−
∑
k∈K

ln
(
λ̄kt
)
zkt ∼βTmX̄mt ∀m∈ St, t∈ T , and (3.5)∑

k∈K

ln
(
θ̄kt
)
zkt ∼ γT Ȳt ∀t∈ T . (3.6)

where θ̄kt = 1
1−fk

∑
m∈St s̄mt.

Our goal is therefore to identify the optimal values for the prediction parameters β and γ and

the lost share variables zkt for each period that minimizes the total error between the predicted and

observed (or imputed) quantities. Towards this, we formulate an integrated optimization approach

to estimate all variables jointly, as shown below. We employ a general loss function denoted by L[.]

where L [.] :R→R+ and refer to it as the loss minimization (LM) model:

min
β,γ,z

∑
t∈T

∑
m∈St

L

[
ln(s̄mt)−

∑
k∈K

ln(λ̄kt)zkt−βTmX̄mt

]
+
∑
t∈T

L

[∑
k∈K

ln(θ̄kt)zkt−γT Ȳt

]
(LM)

∑
k∈K

zkt = 1 ∀ t∈ T (3.7)

zkt ≥ 0 ∀ t∈ T , k ∈K (3.8)

{zkt ∀ k ∈K} ∈ SOS2 ∀ t∈ T . (3.9)

The LM objective function minimizes the error between the left-hand and the right-hand side of

Eqs. (3.5–3.6) using a loss function L[.].1 In this paper, we work with non-negative continuous

convex loss functions where L[0] = 0 and L[x]→∞ if x→±∞. We focus on the L1 or the L2 norms.

The constraints (3.7–3.9) imposes the SOS2 nature of the lost share variables. We do not expand on

the SOS2 form as all standard optimization packages allow this level of specification and manage

these variables internally. If we adopt the L1 loss function, the objective function can be linearized

(see chapter 1 in Bertsimas and Tsitsiklis 1997). The resultant formulation is a MIP because of the

additional binary variables required to model the SOS2 conditions in the presence of non-convexity.

1 The chosen objective function directly optimizes the relative accuracy metric (log ratio of predicted to actuals)
which is a commonly used criterion for model selection to avoid bias in under-prediction (Tofallis 2015).



Subramanian and Harsha: Demand Modeling in the Presence of Unobserved Lost Sales
10

0 0.2 0.4 0.6 0.8 1
Lost share, f (# knots =5)

-15

-10

-5

0

5

10

15
F

un
ct

io
n 

va
lu

e

0 0.2 0.4 0.6 0.8 1
Lost share, f (# knots =10)

-15

-10

-5

0

5

10

15

F
un

ct
io

n 
va

lu
e

0 0.2 0.4 0.6 0.8 1
Lost share, f (# knots =20)

-15

-10

-5

0

5

10

15

F
un

ct
io

n 
va

lu
e

Figure 1 True and approximate value of the projected lost sales and market size per unit of observed sales as a

function of the lost share, f, for varying number of knots uniformly chosen in [10−6,1− 10−6].

Instead if we adopt an L2 loss function, the problem reduces to a mixed-integer convex quadratic

program. These formulations can be directly solved by generic optimization software packages like

IBM CPLEX to produce a (near-) optimal solution within a user-specified optimality tolerance

(e.g., within 1-10% of optimality). For large scale LM instances, we exploit the special structure

of this model in Section 3.3 and propose a mathematical programming based nonconvex-convex

alternating heuristic (AH) that can be used to quickly obtain good quality (near optimal) solutions.

A key insight in the proposed model is that the lost sales imputations are done endoge-

nously within the optimization problem because when the lost sales fractions are specified, all

the unknowns (market size and all shares) are fully specified and can be used for estimation of

the parameters (β,γ). As these lost sales fractions are modeled as SOS2 variables, the search is

practically on the entire range of the PWL projections of lost sales, ln
(

f
1−f

)
, and size, ln

(
1

1−f

)
,

for every unit of observed sales.

Fig. 1 plots the true (solid line) and approximate value (dotted lines) of these functions for

varying number of discrete sampling points (also commonly referred to as knots) of the PWL

segments uniformly chosen between [10−6,1− 10−6]. As the number of knots increases, we obtain

better approximations. The slope of these functions rapidly increases when the lost shares get

closer to 0 or 1 and is relatively invariant in the mid range. In Section 4 we computationally show

that the number of knots directly influences the tradeoff between run time and solution quality.

Given this, a judicious selection of knot locations can be beneficial (e.g., log-spaced, i.e., uniform

in the range of ln
(

f
1−f

)
instead of uniform-spacing in f).

We conclude the model discussion with two remarks on the impact of problem structure on the

difficulty of optimization. Our experiments in Section 4 shed more light on these observations.

1. For |M | choices, there are |M | share terms and one size term per observation in the objective.

As |M | increases, more share information per observation is available. As a result, the single

purchase choice case, |M |= 1, can be relatively harder to solve to provable optimality, resulting
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in longer runtimes. Note that besides our method, EM is the only method in the literature that

addresses this case and we observe that EM also appears to face a similar challenge.

2. A constant mean arrival rate has been the popular setting studied in the literature, wherein

all the observed sales variations are attributed to the changes in the purchase probability.

The setting when observed sales variations have to be disambiguated into its size and share

components, increases the problem difficulty, and necessitates a joint non-convex optimization

of share and size models.

3.2. Consistency of the proposed estimator

For consistency, we work with an arrival rate instead of a market size, because we analyze the

optimization solution quality as the number of arrivals in a time bin tends to infinity. We use the

notation N to denote the number of unit time intervals present within any single aggregate time

bin t (in other words, replications) and for simplicity, assume it is the same for all t. Thus, in the

LM model, θkt is modified to θkt
N

to compute an arrival rate as opposed to market size. For finite

data, we conveniently set N = 1 to identify market size.

In the censored data setting, a joint optimization of the two types of loss terms is required.

For example, in the single purchase choice case, for any feasible value of the purchase probability

parameters βm, a feasible value for the lost share variable zkt for each t∈ T can be trivially chosen

to reduce the error in the first term close to zero. Therefore, the second term is required to break the

ties among all feasible alternatives that minimize the error in the first term. Similarly, for multiple

choices, there remains one degree of freedom that requires the second term for model identification.

This joint estimation is the main intuition underlying the consistency of the proposed estimator,

which we prove in the theorem below. We begin by considering the continuous version of LM model:

ZC(N,βN ,γN , fN) = min
βm,γ,ft∈(0,1)

ZC(N,β,γ, f) (LM-C)

where

ZC(N,β,γ, f) =
∑
t∈T

∑
m∈St

L

[
ln

(
s̄mt(1− ft)

ft
∑

m′∈St s̄m′t

)
−βTmX̄mt

]
+
∑
t∈T

L
[
ln

(∑
m∈St s̄mt

(1− ft)N

)
−γT Ȳt

]
.

Note that when N →∞, the unobserved arrivals in each time bin t ∈ T tends to infinity. Before

proving the main result on consistency, we make two assumptions.

Assumption 1. For a given data set, suppose we have to identify the km unknown parameters

for each choice m∈M and l arrival rate parameters then we assume that the data set with covariate

or assortment variations across time bins satisfies the following:

1. There exists sets of time bins Km ⊂ T for each choice m ∈M such that |Km| = km and the

choice attribute vectors X̄mt for all t∈Km are linearly independent.

2. The set of time bins L = ∪m∈MT \Km is such that |L| ≥ l with at least l linearly independent

size attributes vectors Ȳt across t∈L.
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This is a mild and natural necessary assumption on the minimum number of time bins having

linearly independent covariates for identifiability of the model given the number of unknowns. Note

that because of the joint estimation of size and share terms, the size term has to be included

whenever a share term for any choice is present.

Assumption 2. For at least one choice of sets Km m ∈ M (described above), the following

system of equations has a unique solution for γ:

wt =
∑
t′∈Km

ηmt′ wt′ ∀ m∈ St, t∈ T \Km. (3.10)

Here ηm satisfies X̄mt =
∑

t′∈Km η
m
t′ X̄mt′ , and

wt = ln

[(
e(γ−γ

∗)
T

Ȳt − 1

)(∑
m∈St

eβ
∗T
m X̄mt + 1

)
+ 1

]
,

where 〈β∗,γ∗〉 are the true parameters. Note that γ = γ∗ is always a feasible solution.

Eq. (3.10) are the resultant limiting non-linear equations for identifying unknown true parameter

γ∗ as N →∞. The assumption ensures a unique optimal solution using the chosen covariates and

assortments across time bins T for the true parameters. In most settings, the true parameters are

unknown and the choice of the covariates cannot often be designed, yet the assumption is relatively

easy to satisfy. This is because, in general, wt′ cannot be basis functions for generating wt for any

value of the true parameters 〈β∗,γ∗〉, given the choice of ηm vector for all choices m. So, even with

a small number of time bins and variation of covariates and assortments (X̄t, Ȳt, St) across the

time bins, Eq. (3.10) will hold only if γ = γ∗ and hence the assumption will hold. We are unable

to further simplify and quantify the precise condition to prescribe, as Eq. (3.10) is non-linear and

so we state it as an assumption in the paper. Allowing |T |→∞ guarantees the assumption, while

simulation experiments show that a small number of time bins (even just l) with a reasonable

variation of covariates or assortments suffices to identify the parameters.

For a pure assortment problem with no covariates for both choice and arrival rate, the assumption

implies every choice is offered at least once and there is at least one pair of time bins that offer a

common choice where the sum of the true attraction functions are not identical, i.e.,
∑

m∈St1
eβ
∗
m 6=∑

m′∈St2
eβ
∗
m′ where St1 ∩St2 6= ∅ for some t1 6= t2 ∈ T . in the presence of potentially identical β∗m

across choices, this condition can be easily guaranteed if St1 is a strict subset of St2 or vice-versa.

Theorem 1. The following statements are true as N →∞:

1. The true parameters 〈β∗,γ∗〉 are asymptotically optimal to the LM-C problem, i.e.,

lim
N→∞

ZC (N,β∗,γ∗, f∗ (β∗)) = 0, (3.11)

where f∗(β∗) is a vector of
(

1 +
∑

m′∈St e
β∗T
m′X̄m′t

)−1

∀t∈ T .
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2. The asymptotic optimal objective of the LM-C problem is also optimal, i.e.,

lim
N→∞

ZC
(
N,βN ,γN , fN

)
= 0. (3.12)

3. Under assumptions 1 and 2, the estimates βm ∀m∈M , γ and ft ∀t∈ T using the LM-C problem

are consistent with the true values as N →∞, i.e.,

lim
N→∞

〈
βN ,γN , fN

〉
= 〈β∗,γ∗, f∗〉 . (3.13)

The proof of the theorem is provided in Appendix A.1. The first part of the theorem shows that

the true parameters are optimal in the limit, meaning they achieve zero error to the LM-C problem.

The second part ensures that, in the limit, the optimal solution to the LM-C problem achieves

zero error. Therefore, with these parts, we can conclude that if any optimal solution converges to

a unique solution in the limit then it coincides with the true parameters. The existence as well as

the uniqueness property is shown in the third part of the theorem. This part of the proof depends

on the integrated optimization of the share and size loss terms and reducing the limiting problem

to a system of non-linear equations of the form Eq. (3.10) whose uniqueness is guaranteed by

the assumptions 1 and 2, or by assuming sufficient variation in covariates and assortments across

several time bins.

To summarize, Theorem 1 proves that the estimator using the LM-C problem, which is the

continuous version of the proposed integrated optimization method, is asymptotically optimal in

the limit and in other words, consistent. This asymptotic property is the same as that achieved by

the Berkson’s estimator in the uncensored data settings (Ben-Akiva and Lerman 1985).

Corollary 1. If the number of feature vectors are finite then the parameters estimated with the

LM-C model, after aggregation of observed sales across identical feature vectors and assortments,

are consistent with increasing observations, i.e., as |T |→∞.

If |T | →∞, aggregating observed sales with identical feature vectors and assortments (which is

finite for a finite M) results in increasing arrivals rates, and applying Theorem 1 trivially proves the

result. Consistency of MLE-based methods with EM or MM has been established (Abdallah and

Vulcano 2017) for the case of varying assortments when products have fixed utilities. The corollary

generalizes this result to allow a finite number of possible size and share covariate vectors. The

most general case of infinite possibilities of feature vectors is left for future research, along with

other statistical properties of the LM estimators such as asymptotic normality and efficiency.

Remark 1. Assume that the true no purchase probability in any time bin is such that f∗ ∈

[ε,1− ε] for a sufficiently small ε > 0. Now suppose the PWL lost function approximates functions

ln
(

1−f
f

)
and ln

(
1

1−f

)
with an accuracy α in the range f ∈ [ε,1− ε] and the Lipschitz constant for
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the loss function L[.] is ψ (e.g., ψ is 1 for L1 norm and 2 for L2 norm). Then |Z − ZC | ≤ ψα
where ZC and Z are the objective functions of the LM-C and LM problems respectively.

Because α is a function of the number and spread of the PWL segments that are chosen in the

LM problem, it can be refined to approximate the LM-C problem arbitrarily closely. So, together

with the theorem, the proposed integrated approach (LM estimator) is consistent if both the number

of arrivals in a time bin as well as the number PWL segments go to infinity. Even though the

proofs are in the asymptotic limit, the finite data performance of the estimator using only a few

knots (e.g., 10 to 20), is relatively good and discussed in Section 4.

3.3. Model enhancements and extensions

Model enhancements: Partial information, user acceptance criteria, model selection, and regular-

ization are easy to incorporate within the proposed method and we describe a few below:

1. Partial or aggregate lost sales information: Sometimes partial or aggregate loss sales information

may be available from syndicated data sources and can be included as constraints in the LM

model. Sample lost-share data can be employed to set up confidence-interval based restrictions

to bound the range of the zkt variables. For example, suppose a retailer knows that their market

share is 60 ± 5% in a particular month. This can be used to impose a constraint that says

35≤
∑

k∈K,t∈Tmonth
fkzkt
|Tmonth|

≤ 45. Prior information can also be used to optimize the placement

and number of PWL knots or prune the lost share range.

2. Model selection, regularization, sign-constraints, prior values and weighted optimization: Con-

straints on prediction parameters (e.g., negative price coefficients) are useful in an automated

demand estimation environment and easy to incorporate within an MIP along with desired prior

values. Weighted or iterative weighted error minimization is useful in managing heteroskedas-

ticity in the data (Theil 1970, Greene 2011), while ridge, lasso or elastic net penalties (James

et al. 2013) are also easy to implement. An explicit constraint to identify the best subset of

features as motivated in (Bertsimas et al. 2016) can also be included.

Model extensions: We describe a few different extensions of the proposed LM model below.

1. Alternative discrete choice models: For the MCI and linear attraction demand models, market

share terms in the objective of the LM model can be replaced as follows:

L

[
ln(s̄mt)−

∑
k∈K

ln(λ̄kt)zkt−βTm ln(Xmt)

]
for MCI and (3.14)

L

[∑
k∈K

A−1
m

(
s̄mt
λ̄kt

)
zkt−βTmXmt

]
for generalized linear models. (3.15)

Here, ln(X̄mt) refers to a vector with the logarithm of each term of Xmt, and generalized linear

models employ attraction functions Am(Xmt) of the form Am(βTmXmt).
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2. Non-substitutive and positively correlated demands: Consider the case where demand for an

item is positively correlated with that of other items in the assortment (e.g., different sizes of

a Tshirt). Customers buy their preferred size if it is available or walk away otherwise. This

scenario can be represented using the following demand model using covariates for the arrival

rate alone:

Dmt(Yt, St) =

{
τ(Yt)

βm∑
m′∈M βm′

, ∀ m∈ St.
0 o.w.

(3.16)

The purchase probabilities comprise the size profile and its accurate estimation is a critical

requirement in short lifecycle supply chains (e.g. fast fashion, consumer electronics). Stock-outs

are common here and result in censored historical data. Eqs. (3.5–3.6) can be appropriately

modified to derive a formulation here that is similar to the LM model.

3. A practical approach for large scale instances: nonconvex-convex alternating heuristic: In the

absence of partial information, an out-of-the-box MIP solver approach may not be practical for

large problem instances (e.g., thousands of observations and SOS2 variable sets). To manage

such cases, we exploit the special marketsize and market share structure of the LM model

and propose a nonconvex-convex alternating heuristic (AH). The feasible solution generated by

AH can provide an advance start to the exact MIP approach. We show, based on extensive

computational experiments in Section 4, that this AH method can be used to quickly obtain

provably good quality solutions to the LM model. The details of the AH are described in

Procedure 1.

In step 1, all the variables are initialized. When |M | > 1 then the relative shares between

the observable choices and a default choice d are initialized with model PP. In step 2, the

market size coefficients γ are estimated jointly with the choice intercepts β0
m, fixing β−0

m and

restricting β0
m = β0

d +∆md ∀m∈M . The AH-LM model is obtained from the resultant LM model

by replacing the observation-specific SOS-2 variable sets with just one SOS-2 variable set, by

evaluating the resultant purchase probabilities for every observation for the various discretized

feasible values of β0
d. Consequently, the non-convex AH-LM model can be quickly solved to global

optimality even for large instances with a finely discretized β0
d (e.g., 100 knots). In step 3, given

the market size parameters, all the market share parameters are jointly estimated with model

PP-L. For the special case of a constant mean arrival rate, this step can be iteratively invoked

with an updated mean arrival rate. The convergence criterion is based on the improvement in

the LM objective function and the number of iterations. Models PP-L and PP are simple LPs

or convex QPs for L1 and L2 loss functions respectively.

A fundamental difference between the AH and EM is the novel step 2 update using the AH-

LM model. In AH, the γ covariates are jointly estimated along with the marketshare intercepts
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Procedure 1 Nonconvex-Convex Alternating Heuristic (AH)

Input: Observations Yt,Xmt, s̄mt∀m∈ St, t∈ T ; LM objective tolerance τ ; Iteration limit Imax.

Notation: We denote the intercept and the non-intercept terms of the purchase probability coef-

ficients βm by β0
m and β−0

m respectively. For a default choice d ∈M , let ∆md = β0
m − β0

d, i.e., the

difference in the intercept terms. Let Z (β,γ, f(β)) denote the LM objective evaluated using input

parameter values β,γ, and purchase probabilities ft(β) =
(

1 +
∑

m∈M eβ
T
mX̄mt

)−1

.

1: Initialization: Choose d ∈ M . Set i = 0, γi = 0, ∆i
md = 0, βim = 0. If |M | > 1, update(

∆i
md,β

−0,i
m

)
by solving the following purchase-probability (PP) model:

min
∆md,β

−0
m

∑
t∈T

∑
m∈St

L
[
ln(s̄mt)− ln(s̄dt)−∆md−β−0,T

m X̄−0
mt +β−0,T

d X̄−0
dt

]
(PP)

Set Z∗i =Z
(
βi,γi, f i(βi)

)
.

2: Estimate market-size coefficients γi+1 and intercepts β0,i
m given

(
∆i
md,β

−0,i
m

)
: Com-

pute partial attractions Ri
mt = ∆i

md + β−0,i
m X−0

mt. Use ε ≤ (1 + eβ
0
d
∑

m∈M eR
i
mt)−1 ≤ 1 − ε to

obtain bounds β0
d,min, β0

d,max on β0
d. Let β̄0,i

dl for l ∈ L be discretely sampled values of β0
d in

[β0
d,min, β

0
d,max]. For each l ∈ L, set lost share at f ilt = (1 + eβ̄

0,i
dl
∑

m∈M eR
i
mt)−1, market size at

θ̄ilt = 1
1−fi

lt

∑
m∈St s̄mt and lost sales at λ̄ilt = f iltθ̄

i
lt. Solve the restricted LM model denoted by

AH-LM, assuming β0
m = β0

d + ∆md, to estimate γi+1 and y:

min
y,γ

∑
t∈T

∑
m∈St

L

[
ln(s̄mt)−

∑
l∈L

ln(λ̄ilt)yl− β̄
0,i
dl yl−Ri

mt

]
+
∑
t∈T

L

[∑
l∈L

ln(θ̄ilt)yl−γT Ȳt

]
(AH-LM)

∑
l∈L

yl = 1 (3.17)

yl ≥ 0 ∀ l ∈L (3.18)

{yl ∀ l ∈L} ∈ SOS2. (3.19)

Set β̃
i+1

=
[∑

l∈L β̄
0,i
dl yl + ∆i

md,β
−0,i
m

]
and Zi+1

1 =Z
(
β̃
i+1
,γi+1, f

(
β̃
i+1
))

.

3: Estimate corresponding purchase probability coefficients βi+1
m given γi+1: Compute

θ̄i+1
t = min

{
Salest
ε

,max
{
Salest

1−ε ,γ
i+1,TYt

}}
∀t∈ T where Salest =

∑
m∈St s̄mt. Set λ̄i+1

t = θ̄i+1
t −

Salest. Obtain βi+1
m ∀m∈M by solving model PP-L given below:

min
βm

∑
t∈T

∑
m∈St

L
[
ln(s̄mt)− ln(λ̄i+1

t )−βTmX̄mt

]
(PP-L)

Set Zi+1
2 =Z

(
βi+1,γi+1, f

(
βi+1

))
.

4: Stopping criteria: Compute Z∗i+1 = min{Z∗i,Zi1,Zi2} and denote the corresponding solution

by (γ∗i+1, β∗i+1
m ). If |Z∗−max{Z1,Z2}|< τZ∗ or i > Imax then estimate the optimality gap ψ̂

of (γ∗i+1, β∗i+1
m ∀m ∈M) to the best available lower bound (e.g. obtained from a root node

analysis of the LM model) and stop. Else go to Step 2 with ∆i+1
md = β0,i+1

m − β0,i+1
d and β−0,i+1

m

and set i to i+ 1.

Output: γ∗i+1, β∗i+1
m ∀m∈M , ψ̂.
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by solving a non-convex restricted LM model. In contrast, EM relies entirely on convex local

optimization updates. As a result, AH’s step 2 can overcome some local-optima that existing

EM approaches cannot, thereby accelerating the convergence to a good quality stable point

without depending on randomized starting points. The computational results in Table 9 in

Section 4 comparing AH and EM demonstrate the achieved performance gain. Moreover, existing

methods, including EM, are restricted to constant mean arrival rate models unlike the AH.

As we will see in Section 4, introducing additional arrival rate covariates is computationally

more challenging. Our non-convex joint optimization approach is important for disambiguating

observed sales fluctuations into its unobserved win rate, and arrival rate variation components.

Lastly, operating on the underlying LM model, AH provides an optimality gap upon termination

unlike EM. AH can provide warm starts to the MIP solver and can additionally be invoked

within an MIP solver to periodically generate feasible solutions by initializing step 1 (of the

AH) using the beta-covariate values from an incumbent MIP lower bound (LP relaxation).

4. Computational experiments with simulated and real data

Our computational experiments aim to highlight the modeling and estimation capability of our

proposed method on simulated and real data so as to provide guidelines on using and solving the LM

model in practice. We present the following experiments: (i) empirical unbiasedness, (ii) consistency

of the estimation procedure with respect to the number of arrivals and the number of observations,

(iii) the sensitivity bias of the LM model to PWL segments and (iv) to optimality tolerance, (v)

the achieved performance when arrival covariates are incorporated, (vi) a performance analysis as

the data becomes truly large-scale, and (vii) close with an experiment using real-data to highlight

the ability of the LM model to incorporate partial information. In some of these experiments, for

benchmarking purposes, we provide comparison on the performance of our method against EM.

Table 3 provides a consolidated view of the settings for each of the experiments. The key LM

levers or hyperparameters include the lost share range (specified with ε), the number and spacing

of the PWL knots and the optimality tolerance of the MIP solver. We simulate data in many of

the experiments to analyze the performance of the proposed method in a controlled environment.

Experiments with simulated data employ an MNL choice model, and an exponential arrival rate

model, along with varying choice and arrival rate attributes that feed their respective models. We

generate a probabilisitic (Poisson-distributed unless stated otherwise) number of arrivals based

on the mean size, and the purchase choice of each arrival is simulated using the MNL choice

probabilities. The resultant average sales rate per product for each data set is also included in

Table 3 to describe the portion of the arrivals that are actually observed. As needed, additional

experiment-specific details are provided.



Subramanian and Harsha: Demand Modeling in the Presence of Unobserved Lost Sales
18

Setting # 1 2 3 4 5 6 7

Unbiasedness Consistency
PWL Optimality Arrival Large Partial

Hyperparameters segments Tolerance Covariates∗ Instances Information

Lost share ε 10−3 10−6 10−6 10−6 10−6 10−3 10−3

PWL knots 20 20 3-100 10 20∗ 20 10

Opt. Tolerance 1% 1% 1% 1-40% 1% 10% 1%

Data & Setting

# Purchase choices 8 1 1 5 1-10 1-100 1

# Share features 3 1 1 5 10-100 100-100K 7

# Observations 100 50-200 20 50 500 200-50K 30

# Instances 50 30 30 100 10 10 1

eγ0 (Base arrival rate) 4000 5-20K 5000 100-10K 5200 50-1000
Real
data
for 4
products
with
arrival
trend

γ−0 - - - 2,6 - or same as β0

β0
Given
in Tbl.

4

3 U[0.5,2.5] U[-1.5, 2] |M |U[-0.5, -0.1] |M |U[-0.55, -0.05]

β−0 -0.03 10-2U[-4, -2] U[-0.025,0] (-1)i-1U[1,2]|M |-1 (-1)i-1U[0.25,1.25]

X U[0,200] U[0,200] U[0,200] U[-3, 3] U[-0.25,0.25]
Avg. Product

Sales Rate 50 39 1460 12-1170 23-185 5-500

Table 3 The key hyperparameters, setting and data generation process used in experiments in Section 4. The

bold entries highlight a feature or the parameter varied in the experiment. The notation U[.,.] refers to the

uniform distribution. *The PWL knots are uniformly spaced except in #6 where it is log-spaced.

In all the experiments, the mean market size (same as arrival rate) and the purchase probability

parameters are estimated using the LM model and a L1 loss function as a default choice, either

using the MIP solver or the AH based on observed sales data, without any additional partial

information on lost share. We solve our MIPs (even those within AH) using the CPLEX solver run

on a Windows Notebook PC having eight cores and 16GB RAM. We tabulate the computational

times and report on the solution quality in terms of model fit and achieved (out-of-sample, OOS,

if specified) accuracy of predicting observed sales and censored lost sales using the weighted mean

absolute percentage error (WMAPE) metric that is commonly used by practitioners.

WMAPE =

∑
t |predicted value(t)− actual value(t)|∑

t actual value(t)
∗ 100 (4.1)

We sometimes also report the percentage error in estimating the censored arrival rate and purchase

probability parameters. When we have thousands of parameters to estimate, we only confirmed

that the estimated coefficients were of the right sign.

1. Unbiasedness and comparison to EM: (Setting #1) This experiment is based on a single

large urban hotel data (“Hotel 1”) that is made publicly available (Bodea et al. 2009). A choice

model specification that closely represents the behavior of this real hotel data set with product

attributes was created and used by Newman et al. (2014). We use their parameters and assortment

simulation strategy to test the performance of the LM model.

Every arrival selects from a total of 9 choices: 8 room choices in the assortment offered at their

respective price, and a no-buy option. There are three (time) nested price effect terms common to
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No assortment changes

Parameter True LM Method EM Method

Value Estimate % Error Estimate % Error

βNobuy 0 0 − 0 −
βKing1 5.3 5.3292 0.6 5.2528 −0.9

βKing3 4.3465 4.3350 −0.3 4.2703 −1.8

βKing4 5.3488 5.3645 0.3 5.2974 −1.0

βQueen1 3.9869 3.9809 −0.1 3.9309 −1.4

βSpecial 4.2074 4.1994 −0.2 4.1445 −1.5

βSuite1 7.6141 7.6175 0.0 7.5485 −0.9

βSuite2 5.176 5.1741 0.0 5.0840 −1.8

βTwoDbl 4.2262 4.2544 0.7 4.1651 −1.4

βprice −0.01719 −0.01701 −1.1 −0.01683 −2.1

βprice,day≥1 −0.00361 −0.00367 1.6 −0.00368 1.9

βprice,day≥14 −0.00193 −0.00186 −3.7 −0.00191 −0.9

γ (per day) 40 38.424 −3.9 38.136 −4.7

Cum. Time
- 10 (single run)

8,642 (converged 13),

(secs) 26,453 (all 20)

Cum. #
- 1

34,657 (converged 13),

Iterations 104,657 (all 20)

Table 4 Estimated parameters of LM and

EM for one instance.

No assortment changes With assortment changes Assortment & arrival trend

Mean % Error
CoV

Mean % Error
CoV

Mean % Error
CoV

estimate in mean estimate in mean estimate in mean

0 0.0 − 0 0.0 − 0 0.0 −
5.3413 0.8 0.040 5.3513 1.0 0.047 5.3780 1.5 0.055

4.3858 0.9 0.046 4.3923 1.1 0.053 4.4138 1.5 0.066

5.3910 0.8 0.038 5.3923 0.8 0.044 5.4170 1.3 0.053

4.0251 1.0 0.051 4.0267 1.0 0.059 4.0551 1.7 0.073

4.2464 0.9 0.048 4.2543 1.1 0.055 4.2688 1.5 0.067

7.6643 0.7 0.031 7.6648 0.7 0.037 7.7021 1.2 0.042

5.2071 0.6 0.042 5.2185 0.8 0.050 5.2428 1.3 0.057

4.2648 0.9 0.048 4.2615 0.8 0.058 4.2948 1.6 0.067

−0.01725 0.3 −0.021 −0.01721 0.1 −0.020 −0.01725 0.3 −0.019

−0.00362 0.3 −0.064 −0.00364 0.8 −0.038 −0.00365 1.2 −0.038

−0.00188 −2.7 −0.029 −0.00195 0.8 −0.020 −0.00194 0.4 −0.048

40.28 0.7 0.134 39.76 −0.6 0.166 40.35 0.9 0.209

0.49 −1.8 0.117

11.4 secs per instance 34 secs per instance 64 secs per instance

1 per instance

Table 5 Empirical unbiasedness with 50 instances of LM with

and without assortment effects.

all rooms associated with 14-day ahead, 7-day ahead, and 1-day ahead purchases, respectively. The

simulated historical data is in the form of 28-day booking curves for one year’s worth of check-in

days. We simulate Poisson arrivals for every booking day, which are aggregated across 100 bins.

Every bin is associated with one of the 28 booking days, and a random price vector which is

uniformly distributed between their minimum and maximum values as specified in Newman et al.

(2014). The resultant average lost share was approximately 90%. Assuming an average of 40 daily

transactions, we obtained approximately 40,000 (∼40 x 360 x 28 x 0.1) purchases in all. If stock-

outs are simulated, all rooms are available for booking days 1 through 7 and thereafter, a room

independently closes with 6% probability and remains closed for the remainder of the booking curve

(see Newman et al. 2014), which is then aggregated to the bin associated with that assortment.

This results in a room being available for booking 65-75% of the time.

We formulate the LM model, with the no-buy transactions censored, and compare the solution

quality of the LM against the EM. We employed the EM algorithm described in Talluri and

Van Ryzin (2004) with minor modifications to account for aggregated bins (see Appendix C).

For a simulation instance, Table 4 summarizes the true and estimated parameter values and the

cumulative run times for the two methods. As we take the utility of the no-purchase option to be

zero, we recalibrate the original parameter values from Newman et al. (2014) to reflect this.

We observe that, for the given model settings, the solution quality of the LM method is better

than that achieved by the EM using 20 different starting points. We present the best EM parameter

estimates, in terms of the likelihood value, which also happens to be the mode estimate (6 of

the 20 runs). The cumulative run time for the EM required to produce this mode estimate is 7.4

hours, while it took 10 seconds for the LM method to solve this nonconvex problem and produce a
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solution having the same or better quality. Importantly, the MIP approach also returns a certificate

of (near-)global optimality, which the earlier multi-start methods are unable to provide.

We additionally analyze the empirical unbiasedness of the LM model by re-running the estimation

method multiple times, using a different randomization seed each time to generate different data

sets. In Table 5, we report the average parameter estimate and run times for the model with, and

without stock-outs. We additionally consider a marketsize model variant with an arrival rate trend:

4000e0.5d where d is the booking day, and report its results with simulated stockouts. All parameter

estimates are within 3% of the true value, with a coefficient of variation (CoV) of less than 0.21.

The average run time per instance is 11.4 seconds without assortment changes. This increases to

34 and 64 seconds respectively with assortment changes, and additionally with arrival covariates.

We observe that the mean error and CoV in the stock-outs scenario are slightly higher than those

obtained in the uncapacitated setting. This is to be expected because there are fewer loss terms in

the objective function due to stock-outs. Note that the run time doubles after adding just a single

size covariate. The challenge here is that the LM model has to contend with the simultaneous

impact of assortment changes, nested price effects, and an increasing arrival trend. Overall, these

findings are encouraging from a practical perspective, particularly, given that we are solving a

non-convex optimization problem to near global optimality.

2. Empirical bias and consistency with arrivals and with observations: (Setting #2) We

first analyze the impact of increasing arrival rate on the quality of estimation of a three-parameter

binary choice model with 50 observations. The model parameters produce win rates between 40

to 60% for any instance. The box plot of the estimated parameters for the different arrival rates

are presented in Fig. 2. The ratio of the estimated to the true γ values are presented to enable

comparison across different arrival rates. The true values of the parameters are marked with the

dotted line as a reference. We observe that the parameters converge to the true values relatively

quickly (no more than 40 arrivals, and within the box after 20 arrivals) with lower biases in the

parameter estimates achieved at higher arrival rates. We observe high errors at 10 or lower arrivals

because a significant percentage of observations consisted of zero sales, and were discarded, which

adversely impacted the estimation quality (see the discussion and the proposed heuristic to manage

the zero sales issue in Appendix B). We empirically show asymptotic normality in Appendix D.6.

In Fig. 3 we present the model fit WMAPEs for the observed and unobserved quantities. The above

results provide an empirical substantiation to the results in Theorem 1 and Remark 1.

Using the same binary choice model, we next analyze the impact of increasing the number of

observations (from 5 to 200) on the quality of estimation assuming a mean arrival rate of 100 with an

L2 loss function. The box plot of some of those estimated parameters for the different observations

are presented in Fig. 4. We observe that the parameters converge to the true values quickly along
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Figure 2 Box plots of the estimated parameters as a function of increasing mean arrival rate with 50

observations per instance across 30 instances. The true values are marked with dotted lines.
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Figure 3 Average WMPAE of the observed and unobserved sales as a function of the increasing arrival rates.
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Figure 4 Box plots of the estimated parameters across 30 instances as a function of increasing the number of

observations with a mean arrival rate of 100. The true values are marked with dotted lines.
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Figure 5 Average WMPAE of the observed and unobserved sales with increasing number of observations.
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Figure 6 Average WMAPEs and run times as a function of the number of piecewise linear lost sales segments.

with a reduction in sample variance as the number of observations increase. The convergence

is quicker with a higher mean arrival rate. Fig. 5 tracks the WMAPEs for observed sales and

unobserved lost sales. These absolute deviation-based errors converge to a nonzero value depending

on the prevailing sales and lost sales rates, respectively. Interestingly, with more observations, the

overfitting with observed sales is reduced at the cost of a better fit with unobserved lost sales. The

above result empirically substantiates Corollary 1 of Theorem 1.

3. Model sensitivity to the granularity of piecewise-linearization: (Setting #3) In this

experiment, we report on the impact of varying the number of uniformly spaced PWL knots on

the solution quality and run times. Fig. 6 presents the average in-sample model fit WMAPEs of

the observed and unobserved quantities, as well as the average run time per instance as a function

of the number of knots. The key observation here is that the model performance significantly

improves with an initial increase in the number of PWL segments, while a further increase yields

diminishing returns. There is no discernible improvement beyond 20 knots while the run times grow

exponentially. Employing fewer, judiciously located knots (e.g., even log-spaced) further reduces run

times in practice without sacrificing solution quality.

4. Model sensitivity to the optimality tolerance setting: (Setting #4) In this experiment, we

analyze the model sensitivity to the user-tunable ‘MIP optimality tolerance’ hyper-parameter. We

can balance LM run time and solution quality in practice by choosing an appropriate value for this

hyper-parameter that specifies an acceptable worst-case relative gap between the best upper bound

(feasible objective value) and lower bound (best continuous relaxation objective). We test three

arrival rate settings (10, 100, 1000 arrivals per bin), which for the sake of comparison, we denote

as sparse, medium, and dense, respectively. We model 5 purchasing choices having an average win

rate of 30%, 10% and 4-6% for the remaining 3 choices.

Table 6 summarizes the results. We observe that a tighter optimality tolerance leads to an

improvement in predictive performance but yields diminishing returns beyond a 5% (near-optimal)
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Optimality Sparse (100) Medium (1000) Dense (10,000)

Tolerance WMAPE Runtime WMAPE Runtime WMAPE Runtime

Unobs Obs (in secs) Unobs Obs (in secs) Unobs Obs (in secs)

40% 2.99 0.49 11 0.93 0.33 15 0.29 0.22 56

20% 1.55 0.51 13 0.37 0.26 29 0.18 0.22 64

10% 0.92 0.52 14 0.2 0.25 36 0.13 0.22 71

5% 0.52 0.47 26 0.15 0.24 51 0.12 0.22 75

1% 0.31 0.43 746 0.14 0.24 885 0.12 0.22 137

Table 6 Impact of optimality tolerance on the average WMAPEs and run times

range. Although the sparser instances converge faster, the run times for the dense data are lower

for a given performance level. As we move from a 5% to a 1% tolerance, the run times increases by

a factor of 2-10 for dense to medium instances without really improving solution quality, suggesting

that the CPU time is largely expended on generating a certificate of optimality. Solving to near-

optimality (say 5-10%) significantly improves upon the unobserved lost sales estimate compared to

observed sales. While a tighter optimality tolerance may not visibly improve WMAPE on a holdout

sample, it can result in better model identification and longer-term performance within forecasting

applications. We refer the reader to Appendix C to understand the sensitivity of the model to

different loss functions (L1, L2) for the same setting discussed here.

5. Estimating arrival rate covariates with LM model with the MIP and the AH solu-

tion approaches: (Setting #5) In this experiment, we stress test the LM model by introducing

additional arrival rate covariates. The challenge here is to accurately disambiguate the observed

sales fluctuations into its market size and market share variation components, all of which vary over

time now due to their respective features. We increase the number of observations, the number of

choices, and features compared to the previous experiments in order to compare the performance

of the MIP approach against the AH.

We assume a mean arrival rate that has a product-life cycle (PLC) form: log θt = γo+γ1Y
1
t +γ2Y

2
t

where Y 1
t = log

(
0.1 + wt

wmax

)
and Y 2

t = log
(

1.25− wt
wmax

)
are time cyclical functions that represent

the completed and remaining proportion of the current PLC cycle, respectively. Here wmax is the

known PLC or season length and is fixed at 52, while wt
wmax

is the proportion of time elapsed within

a cycle. The high variation in arrival rates (0-650) due to the PLC function produces very low

rates for both the observed sales and unobserved lost sales in many bins, which further increases

the degree of difficulty.

We solve the resulting LM instances, each of which contain about 10 cycles of training data,

using the exact MIP and the AH, and report the OOS prediction quality achieved. For one data

instance, Fig. 7 depicts how the MIP method disambiguates the observed sales variations for a

product to estimate the PLC arrival variation and predict the censored lost sales and demand
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Figure 7 Predicted and actual observed sales, unobserved market size, and unobserved lost sales obtained

using a MIP solver in a single purchase choice setting for a time-cyclical arrival rate model.

LM with (cold start) MIP LM with AH

|M | # Choice Avg run time OOS sales OOS lost sales % Error in Avg run time OOS sales OOS lost sales % Error in

Features (seconds) WMAPE % WMAPE % arrival rate (seconds) WMAPE % WMAPE % arrival rate

1 10 44 8.7 17.6 5 114 18 37.7 8

10 100 92 24.1 10.4 1 15 24.2 12.1 1

Table 7 Comparing the performance of two solution methods of LM model in a setting with arrival covariates.

components. For two settings (1 and 10 purchase choices), Table 7 compares the run time, and the

OOS WMAPE averaged over 10 random data instances between the MIP and AH. We observe that

both approaches solve the LM instances accurately enough to disambiguate the size from the share

variations with a maximum error in the size parameters (not shown in table) being 8% and 5%

respectively. The AH is faster for the multi-choice setting but requires more iterations to converge

for the single purchase choice and hence slower than the MIP. We find that the MIP performance

is better when there is sufficient variation in the choice covariates. When this variation is limited,

a tighter MIP optimality tolerance setting is required to achieve comparable performance whereas

the AH does better here as it exploits the increased separability in the size and share estimators.

We provide more illustrative examples of mean market size trends that can be modeled using

LM without any distributional assumptions on the arrivals in Fig. 11 in the Appendix. We refer the

reader to Harsha et al. (2019) for omnichannel pricing applications run on censored sales data from

a Fortune 500 company. For hundreds of thousands of products, the LM models were optimized on

a weekly basis using the exact MIP approach to jointly estimate the channel switching behavior of

consumers with factors such as channel prices and promotions and whose arrival rates varied not

only due to a PLC effect, but also due to seasonality and holiday traffic.

6. Computational experiments for large-scale instances: (Setting #6) We analyze the per-

formance of the AH (sometimes followed by the MIP) in the following censored data scenarios:

(a) Big-data setting and regularization: Up to 100,000 noisy features and up to 1000 observations.

(b) Other large scale instances: Up to 5000 active features and up to 50,000 observations.
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(c) Comparing against EM: Up to 1000 active features and 1000 observations

Our goal is to obtain a good prediction model within a limited computation time that scores well

on OOS data (100 observations) and recovers a good estimate of the hidden arrival rate. Here, we

use CPLEX’s Barrier solver rather than the default Simplex for solving the underlying LPs, which

results in an order of magnitude improvement in solver performance. The average lost sales rate

in the training data set as a result of the parameters chosen varied between 20 to 80 percent and

every product contributed to at least 0.1% of the total observed sales.

(a) Big Data Instances: In the first series of tests, we simulate censored data instances having

up to 100,000 features, and up to 100 purchase choices. Between 0.5% to 10% of these features are

active and generated from a uniform distribution, while the remaining features are Normal(0,0.35/#

noisy features) random variables having a fixed feature coefficient value of 1.0. The number of

training observations (|T |) are thousand or fewer, and a L1-penalty of the form αL|T | is applied

on the parameter value to achieve sparsity, where the coefficient αL = 10−2. As depicted in Fig. 8,

the lost sales WMAPE is relatively less sensitive to the L1-penalty. Therefore, the best αL value

can be chosen based on the observed sales WMAPE itself.

Rows 1-4 in Table 8 summarizes the performance of the AH-initialized MIP solution approach

for select big-data scenarios. The entire table of results and additional discussion is available in

Appendix D.2. In all but the largest scenario, we obtain provable near-optimal solutions. We predict

the OOS lost sales within 12% WMAPE, and estimate the hidden arrival rate with 2.6% of the

true value for all scenarios. The average OOS observed sales WMAPE across all problem sizes

is 13.5% (and is relatively higher because it computed at product level). The achieved WMAPE

values can be further tuned down by varying the L1 penalty. Overall, the AH method converged

within 30 minutes on average for all but the largest instance (80 minutes) while we obtain provable

near-optimal solutions within three hours for the largest MIP-instance. We observe a superlinear

increase in MIP run time for the larger instances when the number of observations or the total

(but not the active proportion) features are increased. A disproportionate fraction of the MIP run

time is expended on improving the lower bound and proving solution quality (e.g. 87% of the run

time for scenario 8, comparing rows 2 and 3), a behavior which we previously remarked on in the

optimality-tolerance sensitivity experiment.

The ‘buy vs. no-buy’ instances are particularly tough to solve to near-optimality since a good

quality initial solution for the choice covariates via AH is unavailable as there are no cross-product

equations available. In contrast, the multiple purchase choice instances, although more time con-

suming due to a larger number of variables, are solved to provable near-optimality.

(b) Empirical performance on other large scale instances: Next we test censored data

instances having a large number of active features (up to 5000), and up to 50,000 observations and
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Figure 9 Achieved optimality gap of AH for scenarios

in Table 9; The R2 of the fit is 0.976.

Method Scenario |M | # Features
# Active

# Observations
Arrival Avg sales rate Avg run time OOS sales OOS lost sales % Error in

features Rate per product (minutes) WMAPE % WMAPE % arrival rate

B
ig

-d
a
ta

AH+LM
with L1

3 1 1000 100 400 1000 491 0.7 8 7.7 0.3

8 10 10000 1000 1000 1000 78 157 11 10 1.6

AH
with L1

8 10 10000 1000 1000 1000 78 14 12 9.1 1.8

10 100 100000 1000 400 1000 6.8 79 26 11 2.6

L
a
rg

e
-s

c
a
le

AH

4 10 1000 1000 10000 100 4.8 26 29 15 6.0

8 50 5000 5000 1000 1000 12 7.7 30 6.7 2.1

11 100 5000 5000 1000 1000 6.1 87 35 7.6 2.7

12 5 400 400 50000 50 6.3 55 30 34 9

13 100 200 200 1000 500eβ−0X−0 64 0.9 14.1 6 1.7

Table 8 Results of sample scenarios of Big-data and Large-scale experiments. See Tables 14, 15 in Appendix

for complete results. In scenario 13, γ−0,Y−0 are generated from the same distribution as β−0,X−0 respectively.

100 product choices with the AH method. We run one scenario using 100 arrival covariates. A

brief summary is presented here for a sample of results (rows 5-9 in Table 8). The complete results

are reported in Appendix D.2. We obtain good quality (within 15% of optimality obtained up on

warm starting the MIP solver) parameter estimates within 87 minutes of average training time

for the most difficult instance. We also observe that the problem with arrival covariates is solved

within a minute on average by AH. The average OOS lost sales WMAPE achieved is less than 15%

for all problem sizes, except for scenario 12 where it is 34% because of the relatively lower rate

of lost sales, and the estimated mean arrival rate is within 9% of the true value. We also obtain

reasonable observed sales WMAPE.

We test multiple scenarios that exhibit a low rate of sales by applying the heuristic method

described in Appendix B to the training data with zero-sales (scenarios 4 and 11 have more than

94% observations affected by zero sales). All adjusted observations are retained for training. While

we observe a moderate degradation in solution quality, the proposed method on average performs

well. Appendix B also reports results on the quality of the parameter estimates for a publicly

available Amazon DVD model that results in 99.5% of the 5000 observations impacted by zero

sales.



Subramanian and Harsha: Demand Modeling in the Presence of Unobserved Lost Sales
27

Avg sales Concurrent 8-multistart EM AH

Sce- |M | # Fea- # Obser- rate per Avg run time OOS sales OOS lost sales % Error in Avg run time OOS sales OOS lost sales % Error in

nario tures vations product (seconds) WMAPE % WMAPE % arrival rate (seconds) WMAPE % WMAPE % arrival rate

1 1 100 500 487 107 34 24 13 18 13 4.9 6.9

2 1 100 1000 401 168 41 44 -13 35 4.3 10 5.9

3∗ 1 100 500 40 60 18 28 -17 16 15 16 -3.8

4∗ 5 100 500 7.0 26 30 169 109 2 30 25 -7.0

5 5 100 500 73 66 10 127 83 2 10 3.9 -0.5

6 10 100 500 38 225 15 43 23 3 15 9.0 0.7

7 10 200 500 41 172 18 60 36 4 14 6.8 -1.3

8∗ 10 50 500 4.4 36 42 91 -57 6 37 26 -0.3

9 20 400 500 40 82 22 53 -6.6 9 22 6.6 2.2

10† 20 1000 500 43 636 34 41 -28 15 17 7.5 -0.1

Table 9 Comparison of the average results between EM and the AH across difference scenarios with 10

instances each (†1 instance). The arrival rate is 1000 except for scenarios marked with ∗ where it is 100.

(c) Comparing against EM: Here we compare the solution quality and run-time between the

AH and the EM method enhanced to handle larger data sets (see Appendix C) using simulated

data. As EM remained time consuming due to the expensive MLE gradient computations and poor

tail-end convergence, we limit the analysis to random instances having up to 100 product choices,

and up to 1000 choice coefficients. The results for the specific scenarios are shown in Table 9.

We report the best EM solution, based on OOS observed sales WMAPE, obtained from the 8

different starting points. EM usually converges to a stationary point within 20-100 MLE iterations

and produces reasonable observed sales forecasts but yields a poor lost sales estimate (68% avg

WMAPE) and arrival rate predictions (39% absolute error on avg). We see that in each of the

problem instances, the AH OOS lost sales and arrival rate prediction dominates EM. As far as the

average observed sales WMAPE, AH is strictly better in six instances and on par for the other

four, while being 4-66 times faster. Fig. 9 plots the achieved (worst-case) optimality gap of the AH

warm started MIP for the scenarios in Table 9. We observe that the achieved gap improves as the

number of product choices increase, with scenario 9 yielding AH solutions within 1.1% of global

optimality.

Overall, AH dominates EM, achieving better overall solution quality while consuming only a

fraction of the EM run time. This wide gap can be attributed to the nonconvex optimization step

of AH that enables it to quickly converge to the near-optimal solutions, solving no more than 5

PP-L LPs (up to 20 LPs for single purchase choice instances). In contrast, EM sometimes required

more than a 100 MLE iterations to converge to an overly suboptimal stationary point.

7. LM with partial information to improve win rate estimation using real-life data:

(Setting #7) In this section, we apply the LM model to analyze Request-for-Quote (RFQ) data that

arise in a Business-to-Business (B2B) setting for procuring high-end computer hardware products.

We have historical RFQ data for four different hardware products recorded over a duration of 30

weeks. Each record shows whether a particular quote was won or lost, and is associated with a
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Figure 10 Weekly actual vs. predicted censored arrivals.

Product
Number Actual Predicted

of RFQs Win Rate Win Rate

Product 1 1515 32.1 31.0

Product 2 1131 27.9 27.4

Product 3 1102 30.1 31.2

Product 4 735 28.3 36.6
Product 4 (with

partial info.) 735 28.3 30.4

Table 10 Average actual and predicted win rate.

feature vector whose components include the order date (week), normalized price, product quality,

manufacturing cost, list price, and other derived features. The weekly total sales across all products

reveals a declining trend over the last 30 weeks. We would like to identify the reason for this trend

using only the aggregated historical purchase data (losses are assumed to be hidden) in order to

predict the weekly arrival rate and average win rate and compare them with the actual values.

Toward this, we aggregate the winning transaction data into weekly sales bins. Doing so captures

the aggregate wins and average buyer response to the prevailing product attributes for a week.

The LM model with regularization penalty, and a week-index trend as an additional market-size

covariate is optimized using settings in #7 in Table 3). The cumulative CPU run time for all

products is 129 seconds. In Fig. 10 we plot the mean weekly predicted arrivals against the censored

actual values for two of the analyzed products. The LM model correctly identifies a seasonal decline

in weekly RFQ arrivals that affects all products, thereby confirming that the observed negative

trend in wins is less likely to be due to any adverse trends in component features (quality, price).

We used LM to learn the average win rate for three of the products as shown in Table 10.

However, the relatively low weekly sales rate for the fourth product reduces the prediction accuracy.

In practice, we are often able to obtain an approximate range for the average market share or

“wallet share”. To demonstrate the beneficial effect of such partial information, we used a one-

week (first week) sample of win-loss data to generate a 90% confidence interval for the win-rate of

the fourth product. The sample lost share was 79% out of 42 quotes and the corresponding 90%

confidence interval based heuristic cut is added to the MIP to restrict the average lost share to a

range [0.69,0.89] (i.e., 0.79± 1.65
√
.79(1− .79)/42 ). Re-solving the resultant optimization model

enables us to improve the win rate by 6 percentage points from 36.6% to 30.4% (see Fig. 10).

4.1. Key-take aways and recommendations for real-world implementation

We recommend the use of the exact MIP solver as a default choice for forecasting sales at the daily

level and higher when the number of observations are less than a thousand. Any partial information

regarding the lost share can be incorporated within the MIP solver to improve performance. We

suggest switching to the nonconvex-convex AH to solve larger instances, especially when there is
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no partial information to guide and speed up the exact MIP solver. This heuristic can also be

invoked within an MIP solver to provide a ‘warm start’, periodically polish the solution, and obtain

a certificate of quality. A practical default setting for the three key hyperparameters are: a lost

sales tolerance of 10−3 with 20 PWL segments and the optimality tolerance set between 5-10%.

We recommend L1 loss function as a default choice, although L2 maybe use useful in low sale rate

settings. Tuning these settings can improve performance for difficult instances.

We observe when the number of observations (and hence lost sales imputations) and the number

of choice parameters to be estimated are in the hundreds, the run time is in the order of seconds.

In large-scale settings where the noisy parameters are up to hundred thousand, given no more

than a thousand training observations, the run time is in the order of minutes. Finally, to esti-

mate thousands of choice probability parameter values and perform up to ten thousand lost sales

imputations, requires up to three hours to identify near-optimal solutions.

The proposed LM model requires grouped observations and in general, multiple observations

with identical covariates can be aggregated into a single bin. When there are frequently changing

features over time, the choice of time bins can involve a practical tradeoff between more disaggregate

data (more zero sales, variance and observations) and aggregate bins (increased error-in-variables

and fewer observations). A brief discussion of this tradeoff for LM and EM methods is available in

Appendix E. When zero sales affect a significant portion of the training observations, say 20%, the

Poisson heuristic in Appendix B can be employed to adjust the data. We recommend a judicious

use of these censored demand estimation models when they are compatible with the application

and the quality of the data.

5. Estimating competitor parameters: scenarios with more than one
unobserved substitutive choice

In this section, we present a method that enables a seller to learn the purchase probabilities

and attractiveness of their competitors by analyzing their own censored historical sales data and

competitor product attributes such as competitive assortment, prices and promotions. A heuristic

approach would be to incorporate these factors within the LM model and treat the entire lost

sales as just one unobserved choice. However, this approach provides no information about how

much and when sales opportunities are lost to key competitors. To address this limitation, we

propose an alternative estimation approach that models the censored lost sales to competition as

an additional substitutive choice. Essentially, this requires the total unobserved sales by the seller

to be disambiguated based on the competitor’s observed attributes.

In addition to the no-purchase option ∅, let Mu ⊂M be the set of censored competing purchase

choices. For simplicity of exposition, we assume that all the options are always available, noting

that our method extends to include assortment changes as discussed in Section 3, using availability
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sets St. Let αmt denote the proportion of the total unobserved lost share that is attributed to choice

m ∈Mu ∪ ∅ in period t. We impute the sales for choice m, Dmt = αmt
∑

k∈K λ̄ktzkt We model αmt

as a PWL function over the set of possible discrete values ᾱmjt ∈ (0,1), i.e., αmt =
∑

j∈J ᾱmjtwmjt

where wmjt is the probability that αmt is at the discrete value ᾱmjt. We now linearize this combined

expression
(
Dmt =

[∑
j∈J ᾱmjtwmjt

]∑
k∈K λ̄ktzkt

)
for imputed sales and substitute Qmt = lnDmt

to obtain constraint (5.2) in the formulation below. We now formalize the full model:

min
β,γ,z,w,Q

∑
t∈T

∑
m∈M

L
[
Qmt−Q∅t−βTmX̄mt

]
+
∑
t∈T

L

[∑
k∈K

ln(θ̄kt)zkt−γT Ȳt

]
(Comp-LM)

Qmt = ln(s̄mt) ∀ t∈ T ,m∈M\Mu (5.1)

Qmt−
∑
k∈K

ln(λ̄kt)zkt−
∑
j∈J

ln(ᾱmjt)wmjt = 0 ∀ t∈ T ,m∈Mu ∪∅ (5.2)∑
m∈Mu∪∅

∑
j∈J

ᾱmjtwmjt = 1 ∀ t∈ T (5.3)∑
j∈J

wmjt = 1 ∀ t∈ T ,m∈Mu ∪∅ (5.4)∑
k∈K

zkt = 1 ∀ t∈ T (5.5)

{wmjt ∀ j ∈ J} ∈ SOS2 ∀ t∈ T ,m∈Mu ∪∅ (5.6)

{zkt ∀ k ∈K} ∈ SOS2 ∀ t∈ T (5.7)

wmjt, zkt ≥ 0. (5.8)

Disambiguation constraint (5.2) delineates the share of each unobserved choice based on its

observed attributes, while constraints (5.3–5.4) ensures that these proportions sum to 1.0 for every

time period. We model the w variables as SOS2 variables, similar to the z variables. The resultant

optimization instances for popular loss functions like L1 and L2 can be directly solved by standard

optimization software packages.

The Comp-LM model integrates two layers of estimation. The first layer estimates the total

unobserved share, and the second layer further disambiguates the no-purchase from the various

competitor purchase options based on the relative variations in their attributes over time. Con-

sequently, this problem is harder to solve compared to the no-competitor case. We observe that

relatively more time bins, with sufficient variation in the covariates (and/or assortments), are

required to recover a solution of comparable quality, which in turn increases the computational

time. Yet the continuous version of the Comp-LM model results in consistent estimators after

assumption 2 is extended as stated below.
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Assumption 3. For at least one choice of sets Km m∈M\Mu as described in assumption 1 the

following system of equations has a unique solution for γ and βM\Mu
:

wt =
∑
t′∈Km

ηmt′ wt′ ∀t∈ T \Km, m∈Mu. (5.9)

where 〈β∗,γ∗〉 are the true parameters. Here ηm satisfies X̄mt =
∑

t′∈Km η
m
t′ X̄mt′ , and

wt = ln

[(
e(γ−γ

∗)
T

Ȳt − 1

)(∑
m∈St

eβ
∗T
m X̄mt + 1

)
+ 1 +

∑
m∈Mu

eβ
∗T
m X̄mt

]
− ln

(
1 +

∑
m∈Mu

eβ
T
mX̄mt

)
,

where 〈β∗,γ∗〉 are the true parameters. Note that γ = γ∗ and βM\Mu
=β∗M\Mu

is a feasible solution.

Eq. (5.9) are the resultant limiting non-linear equations for identifying the unknown true param-

eters γ∗ and β∗M\Mu
as N →∞ and relatively complex compared to Eq. (3.10). Similar to what we

stated in Section 3.2, we know that in general, wt′ cannot be basis functions for generating wt for

any value of the true parameters 〈β∗,γ∗〉, given the choice of ηm vector for all choices m. So, even

with a small number of time bins and variation of covariates and assortments (X̄t, Ȳt, St) across

the time bins, Eq. (5.9) will hold only if γ = γ∗ and βM\Mu
= β∗M\Mu

and hence the assumption

will be satisfied. Eq. (5.9) highlights the higher degree of complexity of the non-linear equations we

have to satisfy and hence the need for additional time bins with distinct covariates and assortments

compared to the setting with no competitors in order to achieve a similar quality level.

We state the consistency theorem in this setting for completeness.

Theorem 2. Let Comp-LM-C be the continuous version of the Comp-LM problem and ZCC be

its objective function. Then the following statements are true as N →∞:

1. The true parameters 〈β∗,γ∗〉 are asymptotically optimal to the Comp-LM-C problem, i.e.,

lim
N→∞

ZCC (N,β∗,γ∗, f∗,α∗) = 0, (5.10)

where f∗ is a vector of
(
1 +

∑
m∈Mu

β∗Tm X̄mt

) (
1 +

∑
m∈M β∗Tm X̄mt

)−1 ∀t ∈ T and α∗(β∗) is a

|Mu| × |T | matrix of the form α∗mt = α∗∅te
β∗Tm X̄mt ∀m∈Mu and α∗∅t =

(
1 +

∑
m∈Mu

β∗Tm X̄mt

)−1
.

2. The asymptotic optimal objective of the Comp-LM-C problem is also optimal, i.e.,

lim
N→∞

ZCC
(
N,βN ,γN , fN , αN

)
= 0. (5.11)

3. Under assumptions 1 and 3, the estimates βm ∀m∈M , γ, ft ∀t∈ T and αmt ∀m∈Mu∪∅, t∈ T
using the Comp-LM-C problem are consistent with the true values as N →∞, i.e.,

lim
N→∞

〈
βN ,γN , fN , αN

〉
= 〈β∗,γ∗, f∗, α∗〉 . (5.12)

The proof of the above theorem is very similar to Theorem 1 with some differences, in particular,

the derivation of the limiting Eq. (5.9), the proof of which is provided in Appendix A.2.
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20 PWL segments 50 PWL segments, 100X arrival rate

Parameter True Mean % Error Coeff. of Mean % Error Coeff. of

value estimate in mean variation estimate in mean variation

βNobuy 0 0 − − 0 − −
βKing1 5.3 5.5446 4.6 0.046 5.3634 1.2 0.054

βKing3 4.3465 4.5896 5.6 0.052 4.4102 1.5 0.065

βKing4 5.3488 5.5323 3.4 0.049 5.3741 0.5 0.035

βQueen1 3.9869 4.2311 6.1 0.058 4.0508 1.6 0.071

βSpecial 4.2074 4.4510 5.8 0.055 4.2709 1.5 0.067

βSuite1 7.6141 7.8578 3.2 0.039 7.6769 0.8 0.040

βSuite2 5.176 5.4156 4.6 0.050 5.2385 1.2 0.056

βTwoDbl 4.2262 4.4719 5.8 0.056 4.2899 1.5 0.067

βprice −0.01719 −0.01703 −0.9 −0.024 −0.01702 −1.0 −0.030

βprice,day≥1 −0.00361 −0.00386 6.9 −0.067 −0.00378 4.7 −0.152

βprice,day≥14 −0.00193 −0.00189 −1.9 −0.032 −0.00193 −0.1 −0.031

γ 40 34.6 −13.5 0.111 39.2 −2.0 0.236

Run time 78 secs 137 secs

Table 11 Empirical unbiasedness of the estimated parameters with the proposed Comp-LM method over 50

simulation instances where the purchase history of room king4 is also unobserved.

5.1. Experiments with hidden competitor choice using simulated data

The first experiment analyzes the empirical unbiasedness of the Comp-LM model using the hotel

data from experiment #1 in Section 4, wherein additionally, the king4 room’s sales history as

well as the no-buy data are unavailable to the model. The model settings remain the same (#1

of Table 3) with the exception of the optimality tolerance which is relaxed to 5% for this diffi-

cult problem setting. The Comp-LM results for the same instances as the prior experiment are

reported in Table 11 under the columns titled ‘20 PWL’. We observe that all parameters exhibit

higher deviations from their true values in comparison to the LM model, ranging between 4-7%

for the attraction coefficients and 14% for the arrival rate. The run time is approximately 7 times

more (78 seconds on average). This increase in run-time and empirical bias is indicative of the

challenging nature of the Comp-LM’s MIP containing multiple estimation layers. Despite these

challenges, the performance of the model was reasonable. The average competitor purchase prob-

ability estimated by the Comp-LM model was 4.7% (and 4.2% using 50 PWL knots) compared

to the unobserved actual value of 4.1%. A detailed sensitivity analysis of the Comp-LM model

behavior and performance to increased arrival rates and finer PWL discretization is presented in

Appendix D.4.

In our second experiment, we test for empirical consistency with increasing arrival rate, where

additionally, the sales of one of the purchase choices are unobserved, along with the no-purchase

option. The results are provided in Appendix D.5 and the inferences are substantially similar to

experiment 2 in Section 4, although the rate of convergence is slower than the no-competitor case.
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Appendix A: Proof of Theorems in the paper

A.1. Proof of Theorem 1

Proof of part 1: We know that

lim
N→∞

s̄mt
N

= eγ
∗T Ȳt

eβ
∗T
m X̄mt

1 +
∑

m′∈St
eβ
∗T
m′

X̄m′t
∀m∈ St, t∈ T (A.1)

Substituting the true parameters 〈β∗,γ∗, f∗ (β∗)〉 and Eq. (A.1) in ZC(N,β,γ, f), proves this part of the

theorem that the true parameters are asymptotically optimal to the LM-C problem.

Proof of part 2: The existence of a finite minimum for the LM-C problem for any given data set N is always

guaranteed because the objective function of the LM-C problem is (1) continuous convex with boundaries

tending to positive infinity in the prediction parameters 〈β,γ〉 for given lost share values, ft ∀t∈ T and (2)

continuous and bounded below in the lost share values that are in a bounded range, i.e., ft ∈ (0,1) ∀t ∈ T ,

given the prediction parameters.

We also know that given data set N , the optimal solution of the LM-C problem is a lower bound to any

other feasible solution, in particular when the decision variables are equal to their true parameter values:

0≤ZC
(
N,βN ,γN , fN

)
≤ZC (N,β∗,γ∗, f∗ (β∗)) . (A.2)

Therefore, taking the limit at N →∞ and combining it with the results of the above part (i.e., Eq. (3.11)),

we get Eq. (3.12), proving this part of the theorem.

Proof of part 3: As N →∞, we have an infinite sequence of fNt in a bounded interval (0,1), and there must

be at least one converging subsequence of fNt . Consider the same converging subsequence of the fNt ∀t∈ T .

Substituting this subsequence in the LM-C problem, reduces the LM-C problem to the complete information

setting. We know that the first and second term in the complete information settings are consistent. Note that

consistency for the first term is obtained from the consistency of the Berkson’s estimator and the consistency

of the second term is derived from standard statistical theory where we see observations (arrivals) in a bin

tending to infinity, and hence the arrival rate converges to its true arrival rate for that bin. This in turn

means, that we have a corresponding converging subsequence for
〈
βN ,γN

〉
for the LM-C problem.

Now consider these converging subsequences and say they converge as N →∞ to
〈
β̂, γ̂, f̂t

〉
. We show that

any set of subsequences converge to the true parameters 〈β∗,γ∗, f∗t 〉. This means the limit exists and also

proves that the estimates are consistent. We prove this by contradiction.

From part 2 of the theorem, i.e., Eq. (3.12), we know that every loss function term in the objective has to

be equal to zero as the loss function is by definition non-negative. We now arrive at a system of equations, one

for each loss function term, by substituting the converging subsequences of LM-C problem by
〈
β̂, γ̂, f̂t

〉
and

also, substituting the observed sales with the true parameters 〈β∗,γ∗, f∗ (β∗)〉 in the limit using Eq. (A.1).

ln

(
1− f̂t
f̂t

f∗t
1− f∗t

)
=
(
β̂m−β∗m

)T
X̄mt, ∀ m∈ St, t∈ T , and (A.3)

ln

(
1− f∗t
1− f̂t

)
= (γ̂−γ∗)

T
Ȳt, ∀ t∈ T . (A.4)

where f∗t =
(

1 +
∑

m∈St
eβ
∗T
m X̄mt

)−1
.
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Our goal is to show that the above system of equations has a unique solution which are indeed the true

parameters. First we eliminate f̂t from the above equations to get:

β̂
T

mX̄mt =β∗Tm X̄mt− ln

[(
e(γ̂−γ∗)T Ȳt − 1

)(∑
m∈St

eβ
∗T
m X̄mt + 1

)
+ 1

]
∀ m∈ St, t∈ T . (A.5)

The second term in the RHS varies with the assortment as well as the feature vector of the other choices,

and even that of the arrival rate. We first show below that γ̂ = γ∗. We begin by choosing K =
∑

m∈M km

equations from Eq. (A.5) that are linearly independent in the choice features, in particular, km per choice

m∈M . This is possible because of assumption 1. We solve for the K unknown β̂ values and substitute it in

the remaining equations to find the γ̂ vector. For ease of exposition, we introduce some notation.

We consider two types of matrices of [X̄mt] for the K equations each trying to simplify the representation

of LHS and second term of the RHS in Eq. (A.5) respectively. We denote the matrices by X and X̃. They are

both K ×K matrices where the rows correspond to the selected K equations and the columns correspond

to the K feature vectors of all the M choices. In every row of X, which corresponds to a specific equation

of Eq. (A.5), the feature vector of all choices except the specific choice m that resulted in that equation are

zero. In every row of X̃, which corresponds to a specific equation of Eq. (A.5), the feature vector of all choices

except those in the assortment offered at time t that resulted in that equation are zero. The corresponding

feature vector matrix [Ȳt] for the K equations is denoted Y. The matrixes for the remaining equations (at

least l in number) are denoted by X′, X̃′ and Y′. We know that X−1 exists because every row is linearly

independent. Also, let w(Y, X̃,β∗, γ̂−γ∗) be the vector of ln
[(
e(γ̂−γ∗)T Ȳt − 1

)(∑
m∈St

eβ
∗T
m X̄mt + 1

)
+ 1
]

for the K equations and rest are denoted by w(Y′, X̃′,β∗, γ̂−γ∗).

The selected K equations from Eq. (A.5) therefore have the following form:

Xβ̂ = Xβ∗−w(Y, X̃,β∗, γ̂−γ∗) (A.6)

Multiplying for X−1 on either side, we get,

β̂ =β∗−X−1w(Y, X̃,β∗, γ̂−γ∗) (A.7)

The remaining equations of Eq. (A.5) to identify γ̂ are

X′β̂ = X′β∗−w(Y′, X̃′,β∗, γ̂−γ∗) (A.8)

Substituting β̂ from Eq. (A.7) in Eq. (A.8) we get,

X′β∗−X′X−1w(Y, X̃,β∗, γ̂−γ∗) = X′β∗−w(Y′, X̃′,β∗, γ̂−γ∗) (A.9)

=⇒ w(Y′, X̃′,β∗, γ̂−γ∗) = X′X−1w(Y, X̃,β∗, γ̂−γ∗) (A.10)

This equation is the same as Eq. (3.10) where X′X−1 results in the superposition vector because the matrix

X is orthogonal and so X′ can be decomposed into elements of X. Under assumption 2, we are guaranteed

uniqueness of this system of equations resulting in γ̂ = γ∗. In order to provide more insight into this equation

and assumption 2, observe that the vector w(Y, X̃,β∗, γ̂−γ∗) are like basis functions and can potentially

generate other vectors of the form w(Y′, X̃′,β∗, γ̂−γ∗). More specifically, the vectors should be generated
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from the exact superposition vectors of X′X−1. Furthermore, the RHS is also independent of Y′. With a

sufficient variation of the covariates and assortments even for a small number of time bins, this cannot be

true and the assumptions holds relatively easily in practice.

Therefore, w(Y, X̃,β∗,γ∗− γ̂) = 0 and from Eq. (A.7), β̂ = β∗. Therefore, prediction parameters are

identical to the true parameters and so are the f̂t values. Hence Eqs (5.12) and the theorem. �

A.2. Proof of Theorem 2

Part 1, part 2 and the existence of the limit follow similar steps as in the proof of Theorem 1 provided in

Section A.1. The main difference is the derivation of the limiting equations which we show here.

Equations equivalent to Eqs. (A.3–A.4) in this setting are as follows:

ln

(
1− f̂t
α̂∅tf̂t

α∗∅tf
∗
t

1− f∗t

)
=
(
β̂m−β∗m

)T
X̄mt, ∀ m∈M\Mu, t∈ T , (A.11)

ln

(
α̂mt
α̂∅t

)
= β̂

T

mX̄mt, ∀ m∈Mu, t∈ T , (A.12)

ln

(
1− f∗t
1− f̂t

)
= (γ̂−γ∗)

T
Ȳt, ∀ t∈ T , and (A.13)∑

m∈Mu

α̂mt + α̂∅t = 1, ∀ t∈ T . (A.14)

where f∗t =
(

1 +
∑

m∈Mu
eβ
∗T
m X̄mt

)(
1 +

∑
m∈M eβ

∗T
m X̄mt

)−1
, α∗∅t =

(
1 +

∑
m∈Mu

eβ
∗T
m X̄mt

)−1
. Substituting for

f̂t using Eq. (A.13) and α̂mt ∀m∈Mu, α̂∅t using Eqs. (A.12–A.14) in Eq. (A.11), we get,

β̂
T

mX̄mt− ln

(
1 +

∑
m∈Mu

eβ̂
T
mX̄mt

)
=β∗Tm X̄mt

− ln

[(
e(γ̂−γ∗)T Ȳt − 1

)(∑
m∈M

eβ
∗T
m X̄mt + 1

)
+ 1 +

∑
m∈Mu

eβ
∗T
m X̄mt

]
∀ m∈M\Mu, t∈ T . (A.15)

The proof after this point again follows similar steps as in the earlier proof and using assumption 3 instead

of assumption 2 we can conclude that the consistency of the parameters is achieved. �

Appendix B: Adjusting the LM objective function for zero sales

The LM method uses aggregated censored data to jointly calibrate the MNL model as well as the arrival

rate model. When the average rate of sales of one or more product choices is low, there can be several

observations that record zero product sales. When such observations are few, they can simply be discarded,

but when they comprise a significant fraction of training data, we have to retain these observations by

replacing the zero values by a small positive quantity since the LM objective is undefined at zero sales. This is

a concern even for the Berkson’s method in the uncensored data setting and different zero-sales adjustments

have been proposed in the literature (Greene 2011).

Cox (1970) prescribes a weighted objective correction for the uncensored data setting and recommends

using a value of 0.5 for zero sales values. We adapted this weighting scheme to our censored data setting

but adjusted the observed sales for all purchase choices in an affected training observation from s̄mt to

s̄mt+(1−p0m), where p0m is the probability that choice m has zero sales in an observation. Assuming a Poisson

distribution, this is e−λm , where λm is the average observed sales rate for choice m. Using this probabilistic
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β0 βprice βvotes γ

True parameter value -4.31 -0.038 0.0000354 50

Mean estimate -3.88 -0.041 0.0000366 49.8

% Error in mean 9.9 6.7 3.4 -0.3

Coeff. Of variation -0.070 -0.059 0.018 0.252

Table 12 Empirical unbiasedness of the estimated parameters for the Amazon DVD model over 50 instances

with 99.5% of the observations impacted with zero sales.

adjustment better preserves the relative sales strength of products in the affected observations and helps

limit the estimated parameter bias.

We tested this heuristic approach using the AH method on simulated data set based on the Amazon DVD

model presented in Rusmevichientong et al. (2010) and studied in the censored data context in Abdallah and

Vulcano (2017). The data represents the sales of 15 DVD packages each of which has two fixed covariates:

average price per disc and a number of useful votes. The underlying nominal utility value for each DVD has

the same linear model, including the intercept term. The fixed DVD dependent covariate vector isspecified

in (Farias et al. 2013). Using a homogeneous mean Poisson arrival rate of 50 per observation, a total of 5000

observations were generated and their choices to assortment changes (uniform discrete between 4 and 11)

recorded. This simulation setting resulted in a low average observed sales rate of 0.26 units per DVD, with

more than 99.5% of the observations recording at least one zero sale in the offered assortment of DVDs.

The tabulated results of our method over 50 instances are shown in Table 12 with the average run time

being 63 seconds per instance. We were able to estimate the MNL parameters to within 10% of their true

value and accurately estimated the unobserved arrival rate to within 0.3% of the true value. These estimates

are noteworthy since they are obtained without additional information, such as the average total observed

market share under the full assortment setting used by Abdallah and Vulcano (2017), and instead relies on

the homogeneity assumption of the unobserved arrival rate.

In the other large-scale experiments with synthetic models discussed in Section 4, we also report results

for low sales rate settings that uses the above adjustment whenever we have zero sales observations.

Appendix C: EM algorithm implemented in the comparisons

Step 0: Initialization

1. Set k = 0. Generate an initial random vector of lost sales fkt ∀t ∈ T and obtain an average arrival rate

estimate θk =
∑

t(St+f
k
t )

|T | , where St = total observed sales across all choices.

2. Use the LBFGS algorithm to run MLE on the market shares to estimate MNL coefficients βk.

Step 1: Expectation

1. Compute predicted no-purchase probabilities pkt from βk for each observation t and calculate predicted

lost sales fk+1
t = θkpkt .

2. Compute expected market size θk+1 =
∑

t(St+f
k+1
t )

|T | .

3. Optional acceleration step: Recompute fk+1
t = θk+1pkt .

Step 2: Maximization

1. Given fk+1
t , calculate for every observation t the market shares for each purchase choice and the no

purchase option.
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2. Use the LBFGS algorithm to run MLE on the market shares, starting from βk, to estimate MNL coeffi-

cients βk+1.

Step 3: Convergence check:

If
∑

m∈M,i∈I |β
k+1
mi
−βk

mi|+|θ
k+1−θk|

(|M||I|+1)
< 0.01, stop. Else k= k+ 1. Go to Step 1.

This algorithm typically converges within 10-50 MLE iterations, but can consume more than 100 iterations,

depending on the starting point. Also, a more stringent convergence tolerance can significantly increase the

number of MLE iterations.

For the hotel data set, the EM method was terminated when the absolute change in parameter values

between successive iterations was less than 0.001, or if the iteration limit of 10,000 was reached.

Implementation enhancements for large datasets: In experiment (1) in Section 4 we reported the

EM performance using an exact Newton-Raphson method (described above). This is impractical for larger

instances. We therefore enhanced the EM approach in the following ways:

1. Replaced the Newton-Raphson method with the LBFGS algorithm and warm start capability.

2. Limited the number of MLE calls (one per EM iteration) to a maximum of 1000.

3. Concurrent processing spawn multiple EM instances starting from different initial solutions.

Despite this, the EM approach remained overly time-consuming for larger instances (thousand or more

coefficients) as the MLE gradient computations were expensive. So, we had to limit EM testing to some of

the smaller problem sizes (and sometimes just one instance).

Appendix D: Additional details on computational experiments in the paper

D.1. Sensitivity of the model to different loss functions (Setting #4)

Here we compare the achieved solution quality and run times when using L1 and L2 loss functions. We

use an optimality tolerance of 1% and employ the same data generation process as setting #4 in Table 3.

Table 13 summarizes the results of the study. From the perspective of achieved WMAPE, L1 loss functions

seem to outperform the L2 loss function except in very sparse instances. We also note that L2 is on-par

with L1 for very dense arrival rates. This is possible because WMAPE is a first order metric like L1 and

in general, these trends depend on the choice of the metric of evaluation. From a run time perspective, we

notice that the L2 loss function, interestingly, is an order of magnitude faster (even though it results in a

second order MIP) than the L1 loss function, unless the arrival rate is very high. Methods that combine L1

and L2 using side constraints and other risk mitigating loss functions, can be adopted in practice, depending

on the application and solution requirements.

D.2. Complete set of results for large-scale instances (Setting #6)

(a) Big Data Instances: Table 14 reports the average performance of the AH-initialized MIP solution

approach across various simulated big data scenarios for a wide range of problem sizes and features. In all

but the largest of these scenarios (marked by ∗ and scenario 4), we obtain provable near-optimal solutions

(converges within the optimality tolerance). Scenario 4 terminates upon reaching the preset CPLEX node

limit. For the large instances (marked by ∗), we obtain solutions of similar quality, but are unable to improve

the solution and calculate a lower bound using CPLEX-MIP due to computer memory limits.
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Arrival L1 L2

Rate WMAPE Runtime WMAPE Runtime

Unobs Obs (in secs) Unobs Obs (in secs)

10 1 0.53 384 0.91 0.47 70

25 0.57 0.59 596 0.93 0.55 39

100 0.31 0.43 746 0.67 0.56 54

1000 0.14 0.24 885 0.17 0.26 144

10000 0.12 0.22 137 0.12 0.22 150

Table 13 Impact of the choice of loss functions on the average WMAPEs and run times
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Figure 11 Mean market size and observed sales estimates when the size has the following distribution and

mean arrival rate form: (1) uniform and constant, (2) Poisson with a linear trend γ0 + γ1Yt and (3) Poisson with a

PLC form γo (Yt)
γ1 (1−Yt)

γ2 where Yt = t
|T | .

Note that the OOS observed sales WMAPE is a product level percentage-based metric that varies with

the observed sales rate per product. Consequently, this metric tends to be higher relative to that of the

lost sales and the arrival rate, which tend to be of larger magnitudes. The achieved WMAPE values can be

further tuned down by varying the L1 penalty.

(b) Empirical performance on other large scale instances: The results are reported in Table 15. The

prediction results are already described in the main paper. As far as training run times and sensitivity to

problem size, the empirical behavior is like that observed in the big data settings. We stress tested the LM

method for low rate of sales settings in two ways: (1) by keeping the total arrivals per observation fixed even

as we increased the number of product choices and number of observations, and (2) reducing the arrival rate

from 1000 to 100 per observation for scenarios 3 and 50 for scenario 12. Doing so reduces the average sales

rate per product choice to single digits, which results in a high proportion of observations being impacted by

zero sales in the simulated training data (close to 100% in some instances). The heuristic method described
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Scenario |M | # Features
# Active

# Observations
Avg sales rate Avg run time OOS sales OOS lost sales % Error in

features per product (minutes) WMAPE % WMAPE % arrival rate

1 1 1000 50 200 440 0.4 4.6 4.4 0.5

2 1 1000 50 400 440 0.9 3.9 4.1 0.7

3 1 1000 100 400 491 0.7 8.0 7.7 0.3

4 1 10000 100 400 487 28 7.1 7.2 0.4

5 10 10000 500 200 80 4.8 12 11 1.9

6 10 10000 500 400 79 26 11 12 2.1

7 10 10000 1000 400 78 35 12 10 1.6

8 10 10000 1000 1000 78 157 11 10 1.6

9 10 100000 500 200 79 227 12 11 1.6

8∗ 10 10000 1000 1000 78 14 12 9.1 1.8

9∗ 10 100000 500 200 79 30 14 12 2.2

10∗ 100 100000 1000 400 6.8 79 26 11 2.6

Table 14 Average results over 10 instances per scenario for the big-data setting using the MIP approach (with

L1 regularization and warm started with L1-regularized AH), except scenarios with ∗ where AH (with L1) was

used. The mean arrival rate is 1000.

Scenario |M | # Features # Observations
Arrival Avg sales rate Avg run time OOS sales OOS lost sales % Error in

rate per product (minutes) WMAPE % WMAPE % arrival rate

1 10 100 1000 1000 83 0.2 6.5 7.0 0.2

2 10 1000 1000 1000 84 1.4 11 7.2 0.1

3 10 1000 5000 100 4.6 4.3 28 14 5.6

4 10 1000 10000 100 4.8 26 29 15 6.0

5 20 1000 1000 1000 12 2.7 30 9.0 4.4

6 20 1000 10000 1000 24 83 21 6.2 2.8

7 40 2000 1000 1000 17 4.4 22 6.6 1.5

8 50 5000 1000 1000 12 7.7 30 6.7 2.1

9 50 5000 2000 1000 8.2 37 33 13 2.1

10 100 5000 500 1000 5.6 1.4 33 6.1 0.4

11 100 5000 1000 1000 6.1 87 35 7.6 2.7

12 5 400 50000 50 6.3 55 30 34 9

13 100 200 1000 500eγ−0Y−0 64 0.9 14.1 6 1.7

Table 15 Average results over 10 instances per scenario using AH. In scenario 13, γ−0,Y−0 are generated

from the same distribution as β−0,X−0 respectively.

in Appendix B is applied to the training data in such situations and all such adjusted observations are

retained for training. While we observe a moderate degradation in solution quality, the proposed method on

average performs well.

D.3. Tangential cutting planes to improve model performance (Setting #3)

Recall from Section 3.1 and Fig. 1 that the proposed method approximates the functions ln
(

f

1−f

)
, and

ln
(

1
1−f

)
which are the projected lost sales and market size per unit observed sales. We approximated these

functions using a PWL approximation using knots fk ∈ (0,1) ∀k ∈ K. Observe that these functions are

composed of two modular functions g(f) = lnf and h(f) = ln(1− f) because ln
(

f

1−f

)
= g(f)− h(f) and

ln
(

1
1−f

)
=−h(f). We can write the following valid inequalities for the functions g(f) and h(f) noting their
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No. of piecewise No tangent cuts With tangent cuts

linear knots WMAPE Runtime WMAPE Runtime

Unobs Obs (in secs) Unobs Obs (in secs)

4 16 8.3 4 5.9 3.3 5

6 11.4 3.2 4 6.4 1.9 5

8 7.9 2.1 5 6.1 1.7 7

10 7.6 1.9 6 5.6 1.7 11

20 5.4 1.6 24 4.7 1.6 50

50 5.2 1.6 278 5.1 1.6 418

100 5.2 1.6 1139 5 1.6 2778

Table 16 Impact of using tangent cuts on the average WMAPEs and run times

concavity in (0,1).

ln (fk)≤ g(f)≤ ln (fk) +
1

fk
(f − fk) ∀k ∈K (D.1)

ln (1− fk)≤ h(f)≤ ln (1− fk)−
1

1− fk
(f − fk) ∀k ∈K (D.2)

The LHS of the inequalities ensure that the functions g(f), h(f) are above or equal to the PWL approxi-

mation, while the RHS ensure that they lie within the tangent approximations. Based on Fig. 1, it may be

more beneficial to locate these tangents nearer the extremes of the boundary (0,1). Along with the valid

inequalities, the LM model can be modified by replacing the lost sales and the market size projection terms in

the objective function by g(f) and h(f) respectively (appropriately also multiplying by the observed sales).

Table 16 provides the results with and without tangential cutting planes for 30 random instances generated

for experiment 3 on PWL segments in Section 4. The achieved WMAPE of the model is better in the case

with the valid inequalities than without, but there is a runtime tradeoff. The improvement is significant for

the cases with few knots and in particular, for unobserved sales over observed sales. As the number of knots

increases, the WMAPE for the observed sales stabilizes in both scenarios even though the WMAPE for the

unobserved lost sales continues to slightly improve whenever the tangential cuts are employed. We observe

that the run times can be reduced while preserving solution quality, especially in the cases with more knots,

by including just a few tangents. This tradeoff between solution quality and run times can additionally be

exploited in practical settings.

D.4. Empirical sensitivity analysis of Comp-LM model to increased arrival rates and finer

PWL discretization using hotel data

In Table 11, we also present results when we increase the arrival rate by a factor of 100 and employ 50 PWL

knots. This was done in order to assess the impact of increased modeling accuracy and data on solution

quality. We were able to improve the results of the Comp-LM model and bring it closer to the performance

of the LM model, while doubling the run times to 137 seconds on average. From the CoV stand point,

interestingly, the performance of the Comp-LM method with 20PWL is similar to the LM-method (less than

.12) while it increases marginally for the 50PWL case. This slight increase in variation may be due to the

fact that the solution quality (achieved optimality gap) within the preset CPLEX node limit for the easier

20PWL instances was about 4 percentage points better than that achieved in the 50PWL case.
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Fully observed purchases King4 hidden, 20 PWL King4 hidden, 50 PWL, 100X arrivals
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Figure 12 Scatter plot of the predicted purchase probability versus the actual market share of king4 room.
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Figure 13 Box plots of the estimated parameters β1
0 , β

1
1 , β

2
0 , β

2
1 and (normalized) γ with 30 distinct instances as

a function of increasing mean arrival rate. The true values are marked with dotted lines. Here, the competitor

sales (choice 2) is hidden in addition to lost sales.

Fig. 12 shows the ability of the LM and Comp-LM models to successfully predict the weekly purchase

probability of the king4 room choice compared to the actual market shares across all the instances under

the various scenarios considered above. We notice that all points clustered around the 45 degree line, more

so when king4 room’s sales history was uncensored than in censored case. The average competitor purchase

probability estimated by the Comp-LM model was 4.7% and 4.2% for the 20PWL and 50PWL cases respec-

tively, compared to the unobserved actual value of 4.1%. The average estimated no-purchase probability

was 83.9% and 85.6% respectively, compared to the unobserved true value of 86.4%. Overall, the Comp-LM

models results are encouraging from a prediction standpoint.

D.5. Empirical consistency of the Comp-LM model

Similar to experiment 1 in Section 4, we estimate a five-parameter two purchase choice model with Poisson

arrivals and study the impact of increasing arrival rate, where additionally, the sales of one of the choices



Subramanian and Harsha: Demand Modeling in the Presence of Unobserved Lost Sales
42

   
 5

   
10

   
20

   
40

   
80

  1
60

  3
20

  6
40

 1
28

0
 2

56
0
 5

12
0

10
24

0

20
48

0

40
96

0

Mean arrival rate

0

10

20

30

40

50

60
W

M
A

P
E

 o
bs

er
ve

d 
ow

n 
sa

le
s

   
 5

   
10

   
20

   
40

   
80

  1
60

  3
20

  6
40

 1
28

0
 2

56
0
 5

12
0

10
24

0

20
48

0

40
96

0

Mean arrival rate

0

20

40

60

80

W
M

A
P

E
 u

no
bs

er
ve

d 
co

m
pe

tit
or

 s
al

es

   
 5

   
10

   
20

   
40

   
80

  1
60

  3
20

  6
40

 1
28

0
 2

56
0
 5

12
0

10
24

0

20
48

0

40
96

0

Mean arrival rate

0

20

40

60

80

100

W
M

A
P

E
 u

no
bs

er
ve

d 
lo

st
 s

al
es

Figure 14 Average WMPAE of the observed and unobserved sales as a function of the increasing arrival rates.

Here, the competitor sales are hidden in addition to lost sales.
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Figure 15 Finite sample variance scaled by the arrival rate of the error in the estimated parameters β0, β1 and

(normalized) γ as a function of increasing mean arrival rate.

is unobserved, along with the no-purchase option. Here, the sales data for choice 2 (competitor’s choice)

is unobserved. We simulate the arrivals over 50 bins, varying the mean arrival rates from 5 to 40,960. The

parameters of the two choices are set to β1
0 = 4, β2

1 =−0.04 β2
0 = 2 and β2

1 =−0.02. The prices for each bin

are uniformly generated between [0,200]. We generate 30 distinct instances for each arrival rate and estimate

the parameters using the Comp-LM model with 20 PWL knots. The f and α values uniformly distributed

in [10−3,1− 10−3]. Note that the absolute share of no-purchase is obtained as a product of the α and f and

can be as small as 10−6.

The box plot of the estimated parameters for the different arrival rates are presented in Fig. 13. We

observe that the parameters converge to their true parameters values relatively quickly (within the box

after 40 arrivals) with lower biases in the parameter estimates achieved at higher arrival rates. The rate of

convergence is slower than the no-competitor case, where an arrival rate of 10 was sufficient to contain the

true parameters within the box. We empirically show asymptotic normality in Appendix D.6. In Fig. 14, we

present the model fit WMAPEs for the observed and unobserved sales to competitor as well as no-purchase.

D.6. Empirical Asymptotic Normality

We report on an empirical study of asymptotic normality in the following way: (a) plotting the variance

of the error in the estimator scaled by the mean arrival rate in Fig. 15 and Fig. 16 respectively for the LM

and CompLM estimators respectively and observe that it is roughly a constant; and (b) use a QQ plot (see

Fig. 17a,b) to show that for various arrival rates this error is well approximated by a Normal distribution.
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Figure 16 Finite sample variance scaled by the arrival rate of the error in the estimated parameters

β1
0 , β

1
1 , β

2
0 , β

2
1 and (normalized) γ as a function of increasing mean arrival rate. Here, the competitor sales (choice

2) is hidden in addition to lost sales.
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(a) Lost sales censored (b) Choice 2 and lost sales censored

Figure 17 QQ plot to empirically illustrate normality in two settings for various arrival rate.

Appendix E: Tradeoff underlying the granularity of time bins

When there are frequently changing features over time, the choice of time bins can involve a practical tradeoff

between more disaggregate data (more zero sales and more observations) and aggregate bins (increased

error-in-variables that dampens the causal effects, and fewer observations). We first discuss the impact of

this tradeoff on two different censored estimation approaches (MLE-based EM and LM) given the same

aggregated data.

Fewer arrivals per bin (small Nt) and more observations:
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1. The probability of zero sales increases. MLE based methods are unaffected by zero sales. On the other

hand, the LM model due to its log-transformation may require a heuristic adjustment (such as the Poisson-

method discussed in Appendix B) to the training data when the percentage of zero sales is significant

(e.g. more than 20%).

2. With more observations, the LM’s runtime with an exact MIP solver increases due to the higher number

of SOS-2 variables, while the AH converges relatively quickly to good quality solutions. On the other

hand, the MLE gradient computations that are repeatedly invoked dominate the EM runtime and become

prohibitively expensive for large instances (see Section 4 experiment 6 Table 9 for a comparison).

3. The variance of the market shares increases (inversely proportional to Nt, Cox 1970, Ben-Akiva and

Lerman 1985), and this impacts both estimation methods.

More arrivals per bin (large Nt) and fewer observations:

Increased aggregation produces higher error-in-variables (EIV) due to a poorer approximation of the feature

variations using one or more aggregate properties such as mean, minimum, maximum, cumulative change, etc.

Fewer observations further worsens the prediction accuracy. These issues are likely to affect both estimation

approaches, while the reduced number of bins may computationally benefit the exact MIP approach for LM,

and faster gradient computations for MLE. Simulations done by Domencich and McFadden (1975) indicate

that Berkson’s method may provide desirable estimates even in the presence of EIV. This experimental study

of EIV is also reported in Ben-Akiva and Lerman (1985).

Empirical Study on tradeoff: We now empirically evaluate this tradeoff on predictive accuracy using real-

life B2B data available to us. We briefly summarize our findings. We consider 3 levels of data aggregation:

(1) Fine-grained (3-day bins), (2) Weekly groupings, (3) Biweekly groupings. The impact of zero-sales is

minimal at the fine-grained aggregation level and the average win rate (actuals in column 3 of Table 10)

remains steady at all three levels. The LM results for the weekly-aggregation are discussed in experiment

7 of Section 4, and we briefly compare the performance for the other two levels of aggregation. (a) Fine-

grained groupings worsened the win-rate prediction for all four products and the average predicted win-rate

error increased from 2.75% at the weekly level to 4.75%, due to the increase in variance even though the

observations increase. (b) The biweekly level improved the win-rate prediction for product-4 which had a

relatively low weekly sales rate but adversely impacted the other products, resulting in an average win rate

error of 4.5%. In practice, in a censored data setting, one cannot measure error in the win rates. We therefore

calculated the observed sales WMAPEs and noted that the weekly equivalent average WMAPE for cases (1),

(2) and (3) were 25%, 25.1%. and 30% respectively. Clearly, increased aggregation was not beneficial while

the reduction in WMAPE at the disaggregate level was insignificant. Based on these findings, we conclude

that the weekly granularity represents the best tradeoff for the LM model in this particular setting.

Therefore, in settings where when there are frequently changing features the modeler must choose time

bins that are not too fine-grained to limit zero sales and manage runtimes, and not overly aggregated to limit

the impact of EIV and preserve predictive accuracy. In our experience, the right level of aggregation has

been primarily driven by the underlying decision problem where the forecasting method is employed and/or

the users desired frequency of updates.
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