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We consider the problem of sequential product recommendation when customer preferences are unknown.
First, we present empirical evidence of customer disengagement using a sequence of ad campaigns from
a major airline carrier. In particular, customers decide to stay on the platform based on the relevance
of recommendations. We then formulate this problem as a linear bandit, with the notable difference that
the customer’s horizon length is a function of past recommendations. We prove that any algorithm in this
setting achieves linear regret. Thus, no algorithm can keep all customers engaged; however, we can hope to
keep a subset of customers engaged. Unfortunately, we find that classical bandit learning as well as greedy
algorithms provably over-explore, thereby incurring linear regret for every customer. We propose modifying
bandit learning strategies by constraining the action space upfront using an integer program. We prove
that this simple modification allows our algorithm to achieve sublinear regret for a significant fraction of
customers. Furthermore, numerical experiments on real movie recommendations data demonstrate that our

algorithm can improve customer engagement with the platform by up to 80%.
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1. Introduction
Personalized customer recommendations are a key ingredient to the success of platforms such as
Netflix, Amazon and Expedia. Product variety has exploded, catering to the heterogeneous tastes
of customers. However, this has also increased search costs, making it difficult for customers to find
products that interest them. Platforms add value by learning a customer’s preferences over time,
and leveraging this information to match her with relevant products.

The personalized recommendation problem is typically formulated as an instance of collaborative
filtering (Sarwar et al. 2001, Linden et al. 2003). In this setting, the platform observes different cus-

tomers’ past ratings or purchase decisions for random subsets of products. Collaborative filtering
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techniques use the feedback across all observed customer-product pairs to infer a low-dimensional
model of customer preferences over products. This model is then used to make personalized recom-
mendations over unseen products for any specific customer. While collaborative filtering has found
industry-wide success (Breese et al. 1998, Herlocker et al. 2004), it is well-known that it suffers
from the “cold start” problem (Schein et al. 2002). In particular, when a new customer enters the
platform, no data is available on her preferences over any products. Collaborative filtering can
only make sensible personalized recommendations for the new customer after she has rated at least
O(dlogn) products, where d is the dimension of the low-dimensional model learned via collabora-
tive filtering and n is the total number of products. Consequently, bandit approaches have been
proposed in tandem with collaborative filtering (Bresler et al. 2014, Li et al. 2016, Gopalan et al.
2016) to tackle the cold start problem using a combination of exploration and exploitation. The
basic idea behind these algorithms is to offer random products to customers during an exploration
phase, learn the customer’s low-dimensional preference model, and then exploit this model to make
good recommendations.

A key assumption underlying this literature is that customers are patient, and will remain on
the platform for the entire (possibly unknown) time horizon 7" regardless of the goodness of the
recommendations that have been made thus far. However, this is a tenuous assumption, particularly
when customers have strong outside options (e.g., a Netflix user may abandon the platform for
Hulu if they receive a series of bad entertainment recommendations). We demonstrate this effect
using customer panel data on a series of ad campaigns from a major commercial airline. Specifically,
we find that a customer is far more likely to click on a suggested travel product in the current
ad campaign if the previous ad campaign’s recommendation was relevant to her. In other words,
customers may disengage from the platform and ignore new recommendations entirely if past
recommendations were irrelevant. In light of this issue, we introduce a new formulation of the bandit
product recommendation problem where customers may disengage from the platform depending
on the rewards of past recommendations, i.e., the customer’s time horizon T' on the platform is no
longer fixed, but is a function of the platform’s actions thus far.

Customer disengagement introduces a significant difficulty to the dynamic learning or bandit
literature. We prove lower bounds that show that any algorithm in this setting achieves regret
that scales linearly in 7' (the customer’s time horizon on the platform if they are given good
recommendations). This hardness result arises because no algorithm can satisfy every customer
early on when we have limited knowledge of their preferences; thus, no matter what policy we use,
at least some customers will disengage from the platform. The best we can hope to accomplish is
to keep a large fraction of customers engaged on the platform for the entire time horizon, and to

match these customers with their preferred products.
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However, classical bandit algorithms perform particularly badly in this setting — we prove that
every customer disengages from the platform with probability one as T' grows large. This is because
bandit algorithms over-explore: they rely on an early exploration phase where customers are offered
random products that are likely to be irrelevant for them. Thus, it is highly probable that the
customer receives several bad recommendations during exploration, and disengages from the plat-
form entirely. This exploration is continued for the entire time horizon, 7', under the principal of
optimism. This is not to say that learning through exploration is a bad strategy. We show that a
greedy exploitation-only algorithm also under-performs by either over-exploring through natural
exploration, or under-exploring by getting stuck in sub-optimal fixed points. Consequently, the
platform misses out on its key value proposition of learning customer preferences and matching
them to their preferred products.

Our results demonstrate that one needs to more carefully balance the exploration-exploitation
tradeoff in the presence of customer disengagement. We propose a simple modification of classical
bandit algorithms by constraining the space of possible product recommendations upfront. We
leverage the rich information available from existing customers on the platform to identify a diverse
subset of products that are palatable to a large segment of potential customer types; all recom-
mendations made by the platform for new customers are then constrained to be in this set. This
approach guarantees that mainstream customers remain on the platform with high probability, and
that they are matched to their preferred products over time; we compromise on tail customers,
but these customers are unlikely to show up on the platform, and catering recommendations to
them endangers the engagement of mainstream customers. We formulate the initial optimization
of the product offering as an integer program. We then prove that our proposed algorithm achieves
sublinear regret in T for a large fraction of customers, i.e., it succeeds in keeping a large fraction
of customers on the platform for the entire time horizon, and matches them with their preferred
product. Numerical experiments on synthetic and real data demonstrate that our approach signif-
icantly improves both regret and the length of time that a customer is engaged with the platform

compared to both classical bandit and greedy algorithms.

1.1. Main Contributions
We highlight our main contributions below:

1. Empirical evidence of disengagement: We first present empirical evidence of customer dis-
engagement using a sequence of ad campaigns from a major airline carrier. Our results strongly
suggest that customers decide to stay on the platform based on the quality of recommendations.

2. Disengagement model: A linear bandit is the classical formulation for learning product rec-

ommendations for new customers. Motivated by our empirical results on customer disengagement,
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we propose a novel formulation, where the customer’s horizon length is endogenously determined
by past recommendations, i.e., the customer may exit if given poor recommendations.

3. Hardness & classical approaches: We show that no algorithm can achieve sub-linear regret in
this setting, i.e., customer disengagement introduces substantial difficulty to the dynamic learning
problem. Even worse, we show that classical bandit and greedy algorithms over-explore and fail to
keep any customer engaged on the platform.

4. Algorithm: We propose the Constrained Bandit algorithm, which modifies standard bandit
strategies by constraining the product set upfront using a novel integer programming formula-
tion. Unlike classical approaches, the Constrained Bandit provably achieves sublinear regret for a
significant fraction of customers.

5. Numerical experiments: Extensive numerical experiments on synthetic and real world movie
recommendation data (we use the publicly available MovieLens data by Harper and Konstan 2016)
demonstrate that the Constrained Bandit significantly improves both regret and the length of time
that a customer is engaged with the platform. We find that our approach increases mean customer

engagement time on MovieLens by up to 80% over classical bandit and greedy algorithms.

1.2. Related Literature

Personalized decision-making is increasingly a topic of interest, and a central problem is that of
learning customer preferences and optimizing the resulting recommendations. However, customer
disengagement can introduces a significant difficulty to traditional learning algorithms that have
been proposed in the literature.

Personalized Recommendations: The value of personalizing the customer experience has been
recognized for a long time (Surprenant and Solomon 1987). We refer the readers to Murthi and
Sarkar (2003) for an overview of personalization in operations and revenue management applica-
tions. Recently, Besbes et al. (2015), Demirezen and Kumar (2016), and Farias and Li (2017) have
proposed novel methods for personalization in online content and product recommendations. We
take the widely-used collaborative filtering framework (Sarwar et al. 2001, Su and Khoshgoftaar
2009) as our point of departure. However, all these methods suffer from the cold start problem
(Schein et al. 2002). When a new customer enters the platform, no data is available on her prefer-
ences over any products, making the problem of personalized recommendations challenging.

Bandits: Consequently, bandit approaches have been proposed in tandem with collaborative fil-
tering (Bresler et al. 2014, Li et al. 2016, Gopalan et al. 2016) to tackle the cold start problem
using a combination of exploration and exploitation. The basic idea behind these algorithms is to
offer random products to customers during an exploration phase, learn the customer’s preferences

over products, and then exploit this model to make good recommendations. Relatedly, Lika et al.
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(2014) and Wei et al. (2017) use machine learning techniques such as similarity measures and deep
neural networks to alleviate the cold start problem. In this paper, we consider the additional chal-
lenge of customer disengagement, which introduces a significant difficulty to the dynamic learning
or bandit literature. In fact, we show that traditional bandit approaches over-explore, and fail to
keep any customer engaged on the platform in the presence of disengagement.

At a high level, our work also relates to the broader bandit literature, where a decision-maker
must dynamically collect data to learn and optimize an unknown objective function. For example,
many have studied the problem of dynamically pricing products with unknown demand (see, e.g.,
den Boer and Zwart 2013, Keskin and Zeevi 2014, Qiang and Bayati 2016). Agrawal et al. (2016)
analyze the problem of optimal assortment selection with unknown user preferences. Johari et al.
(2017) learn to match heterogeneous workers (supply) and jobs (demand) on a platform. Kallus and
Udell (2016) use online learning for personalized assortment optimization. These studies rely on
optimally balancing the exploration-exploitation tradeoff under bandit feedback. Relatedly, Shah
et al. (2018) study bandit learning where the platform’s decisions affects the arrival process of new
customers; interestingly, they find that classical bandit algorithms can perform poorly due to under-
exploration. Closer to our findings, Russo and Van Roy (2018) argue that bandit algorithms can
over-explore when an approximately good solution suffices, and propose constraining exploration
to actions with sufficiently uncertain rewards. A key assumption underlying this literature is that
the time horizon T is fixed and independent of the goodness of the decisions made by the decision-
maker. We show that this is a tenuous assumption for recommender systems, since customers
may disengage from the platform when offered poor recommendations. Thus, the customer’s time
horizon T is endogenously determined by the platform’s actions, necessitating a novel analysis.

Customer Disengagement: Customer disengagement and its relation to service quality have been
extensively studied. For instance, Venetis and Ghauri (2004) use a structural model to establish
that service quality contributes to long term customer relationship and retention. Bowden (2009)
models the differences in engagement behaviour across new and repeat customers. Sousa and Voss
(2012) study the impact of e-service quality on customer behavior in multi-channel services.

Closer to our work, Fitzsimons and Lehmann (2004) use a large-scale experiment on college
students to demonstrate that poor recommendations can have a considerably negative impact on
customer engagement. We show a similar effect of poor recommendations creating customer disen-
gagement on airline campaign data. It is worth noting that Fitzsimons and Lehmann (2004) studies
a a single interaction between users and a recommender, while we study the impact of repeated
interactions, which is critical for dynamic learning of a customer’s preferences. Relatedly, Tan et al.
(2017) empirically find that increasing product variety on Netflix increases demand concentration

around popular products; this is surprising since one may expect that increasing product variety
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would cater to the long tail of customers, enabling more nuanced customer-product matches. How-
ever, increasing product variety also increases customer search costs, which may cause customers to
cluster around popular products or disengage from the platform entirely. Our proposed algorithm,
the Constrained Bandit, makes a similar tradeoff — we constrain our recommendations upfront
to a set of popular products that cater to mainstream customers. This approach guarantees that
mainstream customers remain engaged with high probability; we compromise on tail customers,
but these customers are unlikely to show up, and catering recommendations to them endangers
the engagement of mainstream customers.

There are also several papers that study service optimization to improve customer engagement.
For example, Davis and Vollmann (1990) develop a framework for relating customer wait times
with service quality perception, while Lu et al. (2013) provide empirical evidence of changes in
customer purchase behavior due to wait times. Kanoria et al. (2018) model customer disengagement
based on the goodwill model of Nerlove and Arrow (1962). In their work, a service provider has
two options: a low-cost service level with high likelihood of customer abandonment, or a high-cost
service level with low likelihood of customer abandonment. Similarly, Aflaki and Popescu (2013),
model the customer disengagement decision as a deterministic known function of service quality.
None of these papers study learning in the presence of customer disengagement.

A notable exception is Johari and Schmit (2018), who study the problem of learning a customer’s
tolerance level in order to send an appropriate number of marketing messages without creating
customer disengagement. Here, the decision-maker’s objective is to learn the customer’s tolerance
level, which is a scalar quantity. Similar to our work, the customer’s disengagement decision is
endogenous to the platform’s actions (e.g., the number of marketing messages). However, in our
work, we seek to learn a low-dimensional model of the customer’s preferences, i.e., a complex map-
ping of unknown customer-specific latent features to rewards based on product features. The added
richness in our action space (product recommendations rather than a scalar quantity) necessitates
a different algorithm and analysis. Our work bridges the gap between state-of-the-art machine
learning techniques (collaborative filtering and bandits) and the extensive modeling literature on

customer disengagement and service quality optimization.

2. Motivation

We use customer panel data from a major commercial airline, obtained as part of client engagement
at IBM, to provide evidence for customer disengagement. The airline conducted a sequence of ad
campaigns over email to customers that were registered with the airline’s loyalty program. Our
results suggest that a customer indeed disengages with recommendations if a past recommendation

was irrelevant to her. This finding motivates our problem formulation described in the next section.
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2.1. Data

The airline conducted 7 large-scale non-targeted ad campaigns over the course of a year. Each
campaign involved emailing loyalty customers destination recommendations hand-selected by a
marketing team at discounted rates. Importantly, these recommendations were made uniformly
across customers regardless of customer-specific preferences.

Our sample consists of 130,510 customers. For each campaign, we observe whether or not the
customer clicked on the link provided in the email after viewing the recommendations. We assume
that a click signals a positive reaction to the recommendation, while no click could signal either (i)
a negative reaction to the recommendation, or (ii) that the customer is already disengaged with

the airline campaign and is no longer responding to recommendations.

2.2. Empirical Strategy

Since recommendations were not personalized, we use the heterogeneity in customer preferences to
understand customer engagement in the current campaign as a function of the customer-specific
quality of recommendations in previous campaigns. To this end, we use the first 5 campaigns in
our data to build a score that assesses the relevance of a recommendation to a particular customer.
We then evaluate whether the quality of the recommendation in the 6 (previous) campaign
affected the customer’s response in the 7" (current) campaign after controlling for the quality of
the recommendation in the 7" (current) campaign. Our reasoning is as follows: in the absence of
customer disengagement, the customer’s response to a campaign should depend only on the quality
of the current campaign’s recommendations; if we instead find that the quality of the previous
campaign’s recommendations plays an additional negative role in the likelihood of a customer click
in the current campaign, then this strongly suggests that customers who previously received bad
recommendations have disengaged from the airline campaigns.

We construct a personalized relevance score of recommendations for each customer using click
data from the first 5 campaigns. This score is trained using the standard collaborative filtering
package available in Python, and achieves an in-sample RMSE of 10%. A version of this score was
later implemented in practice by the airline for making personalized recommendations to customers
in similar ad campaigns, suggesting that it is an effective metric for evaluating customer-specific

recommendation quality.

2.3. Regression Specification

We perform our regression over the 7" (current) campaign’s click data. Specifically, we wish to
understand if the quality of the recommendation in the 6" (previous) campaign affected the cus-
tomer’s response in the current campaign after controlling for the quality of the current campaign’s

recommendation. For each customer i, we use the collaborative filtering model to evaluate the
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relevance score prev; of the previous campaign’s recommendations and the relevance score curr; of

the current campaign’s recommendation. We then perform a simple logistic regression as follows:

vi = f(Bo+ B1-prev; + By - curr; +€;)

where f is the logistic function and y; is the click outcome for customer 4 in the current campaign,
and ¢; is i.i.d. noise. We fit an intercept term [y, the effect of the previous campaign’s recom-
mendation quality on the customer’s click likelihood S, and the effect of the current campaign’s
recommendation quality on the customer’s click likelihood (3,. We expect (5 to be positive since
better recommendations in the current campaign should yield higher click likelihood in the cur-
rent campaign. Our null hypothesis is that 5, =0, and a finding that 8; < 0 would suggest that

customers disengage from the campaigns if previous recommendations were of poor quality.

2.4. Results

Our regression results are shown in Table 1. As expected, we find that customers are more likely
to click if the current campaign’s recommendation is relevant to the customer, i.e., 5, > 0 (p-value
= 0.02). More importantly, we find evidence for customer disengagement since customers are less
likely to click in the current campaign if the previous campaign’s recommendation was not relevant
to the customer, i.e., By >0 (p-value = 7 x 107%). In fact, our point estimates suggest that the
disengagement effect dominates the value of the current campaign’s recommendation since the
coefficient f3; is roughly three times the coefficient 5,. In other words, it is much more important to
have offered a relevant recommendation in the previous campaign (i.e., to keep customers engaged
with the campaigns) compared to offering a relevant recommendation in the current campaign
to get high click likelihood. These results motivate the problem formulation in the next section

explicitly modeling customer disengagement.

Variable Point Estimate Standard Error
(Intercept) —3.62%+* 0.02
Relevance Score of Previous Ad Campaign 0.06*** 0.01
Relevance Score of Current Ad Campaign 0.02* 0.01

*p < 0.10, **p < 0.05, ***p < 0.01
Table 1 Regression results from airline ad campaign panel data.

3. Problem Formulation
3.1. Preliminaries

We embed our problem within the popular product recommendation framework of collaborative
filtering (Sarwar et al. 2001, Linden et al. 2003). In this setting, the key quantity of interest is

a matrix A € R™*", whose entries A;; are numerical values rating the relevance of product j to
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customer ¢. Most of the entries in this matrix are missing since a typical customer has only evaluated
a small subset of available products. The key idea behind collaborative filtering is to use a low-rank

decomposition
A=U"V,

where U € R™*4 V € R™" for some small value of d. The decomposition can be interpreted as
follows: each customer i € {1,...,m} is associated with some low-dimensional vector U; € R? (row i
of the matrix U) that models her preferences; similarly, each product j € {1,...,n} is associated with
a low-dimensional vector V; € R? (given by column j of the matrix V') that models its attributes.
Then, the relevance or utility of product j to customer i is simply U,"V;. We refer the reader to Su
and Khoshgoftaar (2009) for an extensive review of the collaborative filtering literature. We assume
that the platform has a large base of existing customers from whom we have already learned good
estimates of the matrices U and V. In particular, all existing customers are associated with known
vectors {U;};~,, and similarly all products are associated with known vectors {V;}7_,.

Now, consider a single new customer that arrives to the platform. She forms a new row in
A, and all the entries in her row are missing since she is yet to view any products. Like the
other customers, she is associated with some vector U, € R? that models her preferences, i.e., her
expected utility for product j € {1,...,n} is U, V;. However, U, is unknown because we have no
data on her product preferences yet. We assume that Uy ~ P, where P is a known distribution over
new customers’ preference vectors; typically, P is taken to be the empirical distribution of known
preference vectors associated with the existing customer base {Uy,...,U,,}. For ease of exposition
and analytical tractability, we will take P to be a multivariate normal distribution N (0,02%1;)
throughout the rest of the paper.

At each time ¢, the platform makes a single product recommendation a; € {V,...,V,,}, and

observes a noisy signal of the customer’s utility
U(;rat + Et,

where ¢, is £-subgaussian noise. For instance, platforms often make recommendations through email
marketing campaigns (see Figure 1 for example emails from Netflix and Amazon), and observe
noisy feedback from the customer based on their subsequent click/view/purchase behavior. We
seek to learn U, through the customer’s feedback from a series of product recommendations in
order to eventually offer her the best available product on the platform

V.,=arg max U, V.
V}E{Vl,‘.,,Vn}

We impose that U, V, > 0, i.e., the customer receives positive utility from being matched to her

most preferred product on the platform; if this is not the case, then the platform is not appropriate



Author: Learning Recommendations with Customer Disengagement

10

I < just added a TV show you might like o isex & O
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amazon

New from
Ree Drummond

Get crowd-pleasing recipes,
fun decorating ideas, and great new finds

» PLAY ‘ +MY LIST

TV star Ree Drummond brings you a taste of the ranch life with her magazine full of great
recipes, helpful advice, fun shopping, and heartfelt stories.

Figure 1 Examples of personalized recommendations through email marketing campaigns from Netflix (left)

and Amazon Prime (right).

for the customer. We further assume that the product attributes V; are bounded, i.e., there exists
L >0 such that
Vil <L Vi.

The problem of learning U, now reduces to a classical linear bandit (Rusmevichientong and Tsit-
siklis 2010), where we seek to learn an unknown parameter Uy given a discrete action space {V;}}_,
and stochastic linear rewards. However, as we describe next, our formulation as well as our defini-

tion of regret departs from the standard setting by modeling customer disengagement.

3.2. Disengagement Model

Let T be the time horizon for which the customer will stay on the platform if she remains engaged
throughout her interaction with the platform. Unfortunately, poor recommendations can cause the
customer to disengage from the platform. In particular, at each time ¢, upon viewing the platform’s
product recommendation a;, the customer makes a choice d; € {0,1} on whether to disengage. The
choice d; =1 signifies that the customer has disengaged and receives zero utility for the remainder
of the time horizon T'; on the other hand, d; = 0 signifies that the customer has chosen to remain
engaged on the platform for the next time period.

There are many ways to model disengagement. For simplicity, we consider the following stylized
model: each customer has a tolerance parameter p >0 and a disengagement propensity p € [0, 1].
Then, the probability that the customer disengages at time ¢ (assuming she has been engaged until
now) upon receiving recommendation a; is:

0 if Uja, > U/ V.—p,
p  otherwise.

Pr[d; =1 a,] :{

In other words, each customer is willing to tolerate a utility reduction of up to p from a recommen-

dation with respect to her utility from her (unknown) optimal product V.. If the platform makes a
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recommendation that results in a utility reduction greater than p, the customer will disengage with
probability p. Note that we recover the classical linear bandit formulation (with no disengagement)
when p=0 or p — co.

We seek to construct a sequential decision-making policy m = {ay,---,ar} that learns U, over
time to maximize the customer’s utility on the platform. We measure the performance of © by
its cumulative expected regret, where we modify the standard metric in the analysis of bandit
algorithms (Lai and Robbins 1985) to accommodate customer disengagement. In particular, we
compare the performance of our policy 7w against an oracle policy 7* that knows U, in advance
and always offers the customer her preferred product V.. At time ¢, we define the instantaneous
expected regret of the policy w for a new customer with realized latent attributes ug:

. ug V. if dy=1 forany t' <t,
(p:pyu0) = { oV.—uga;  otherwise.

This is simply the expected utility difference between the oracle’s recommendation and our
policy’s recommendation, accounting for the fact that the customer receives zero utility for all
future recommendations after she disengages. The expectation is taken with respect to ¢, the &-
subgaussian noise in realized customer utilities that was defined earlier. The cumulative expected

regret for a given customer is then simply

RF(T:PJ%UO papau(J (1>

HMH

Our goal is to find a policy 7 that minimizes the cumulative expected regret for a new customer
whose latent attributes Uy is a random variable drawn from the distribution P =N (0,021;). We
will show in the next section that no policy can hope to achieve sublinear regret for all realizations
of Uy; however, we can hope to perform well on likely realizations of Uy, i.e., mainstream customers.

We note that our algorithms and analysis assume that p (the tolerance parameter) and p (the
disengagement propensity) are known. In practice, these may be unknown parameters that need
to be estimated from historical data, or tuned during the learning process. We discuss one possi-
ble estimation procedure of these parameters from historical movie recommendation data in our
numerical experiments (see Section 6).

To aid the reader, a summary of all variables and their definitions is provided in Table 2 in

Appendix A.

4. Classical Approaches
We now prove lower bounds that demonstrate (i) no policy can perform well on every customer in

this setting, and (ii) bandit algorithms and greedy Bayesian updating can fail for all customers.
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4.1. Preliminaries
We restrict ourselves to the family of non-anticipating policies IT: 7 = {m;} that form a sequence
of random functions m, that depend only on observations collected until time ¢. In particular, if
we let H, = (a1, Y1, a9, Ys,...a;_1,Y;_1) denote the vectorized history of product recommendations
and corresponding utility realizations and F; denote the o-field generated by H;, then m,,; is F;
measurable. All policies assume full knowledge of the tolerance parameter p, the disengagement
propensity p, and the distribution of latent customer attributes P.

Next, we define a general class of bandit learning algorithms that achieve sublinear regret in the
standard setting with no disengagement.

DEFINITION 1. A bandit algorithm 7 € IT is consistent if for all wug, there exists v € [0,1) and
R(T,p,p=0,up) =O(T"). This is equivalent to the following condition:

log (R(T', p,p = 0,uy))

Yll—r)rc}o Sup log(T) -

where the supremum is taken over all feasible realizations of the unknown customer feature vector
ug. As discussed before, when p = 0, our regret definition reduces to the classical bandit regret
with no disengagement. The above definition implies that a policy 7 is consistent if its rate of
cumulative regret is sublinear in T. This class (II¢) includes the well-studied UCB (e.g., Auer
2002, Abbasi-Yadkori et al. 2011) Thompson Sampling, (e.g., Agrawal and Goyal 2013, Russo and
Van Roy 2014), and other bandit algorithms. Our definition of consistency is inspired by Lattimore
and Szepesvari (2016), but encompasses a larger class of policies. We will show that any algorithm
in I1¢ fails to perform well in the presence of disengagement.

Notation: For any vector V € R? and positive semidefinite matrix X € R¥™4, ||V x refers to the
operator norm of V with respect to matrix X given by vV T XV . Similarly, for any set S, S \i for
some ¢ € S refers to the set S without element i. I; refers to the d x d identity matrix for some
d € Z. For any series of scalars (vectors), Yi,...Y;, Y1, refers to the column vector of the scalars
(vectors) Yi,..,Y;. Next, we define the set S(ug, p) of products that are tolerable to the customer,
i.e., recommending any product from this (unknown) set will not cause disengagement:

DEFINITION 2. Let S(ug, p) be the set of products, amongst all products, that satisfy the toler-

ance threshold for the customer with latent attribute vector, uy. More specifically, when p > 0,
S(ug,p):={i:ugV; > uj Vi, —p,Vi=1,..,n}. (2)

Note that in the classical bandit setting, this set contains all products, |S(ug, p)| =n. When S(uq, p)
is large, exploration is less costly, but as the customer tolerance threshold p decreases, |S(ug,p)]
decreases as well.
Finally, we consider the following simplified latent product features to enable a tractable analysis.
EXAMPLE 1 (SIMPLE SETTING). We assume that there are d total products in R?, and the latent

product features V; = e;, the i** basis vector. We also take p > 0, i.e., customers may disengage.
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4.2. Lower bounds
We first show an impossibility result that no non-anticipating policy can obtain sublinear regret
over all customers. We consider the worst-case regret of any non-anticipating policy over all feasible

customer tolerance parameters p.
THEOREM 1 (Hardness Result). Under the assumptions of Example 1, any non anticipating
policy w € 11 achieves regret that scales linearly with T':

inf sup E, p [R™(T, p,p,u0)] =C-T =0(T),

well p>0
where C' € R is a constant independent of T but dependent on other problem parameters.

Proof:  See Appendix B. [

Theorem 1 shows that the expected worst case regret is linear in 7'. In other words, regardless
of the policy chosen, there exists a subset of customers (with positive measure under P) who incur
linear regret in the presence of disengagement. The proof relies on showing that there is always a
positive probability that the customer (i) will not be offered her preferred product in the first time
step, and consequently, (ii) for sufficiently small p, will disengage from the platform immediately.
Thus, in expectation, any non-anticipating policy is bound to incur linear regret.

Theorem 1 shows that product recommendation with customer disengagement requires mak-
ing a trade-off over the types of customers that we seek to engage. No policy can keep all the
users engaged without knowing the user’s preference apriori. Nevertheless, since Theorem 1 only
characterizes the worst case expected regret, this poor performance can be caused by a very small
fraction of customers. Hence, another approach could be to ensure that at least a large fraction
of customers (mainstream customers) are engaged, while potentially sacrificing the engagement of
customers with niche preferences (tail customers).

In Theorem 2, we show that consistent bandit learning algorithms fail to achieve engagement
even for mainstream customers throughout the time horizon. Thus, in contrast to showing that
the worst case ezpected regret is linear (Theorem 1), we show that the worst case regret is linear

for any customer realization wuy.

THEOREM 2 (Failure of Bandits). Let uy be any realization of the latent user attributes from
P. Under the assumptions of Example 1, any consistent bandit algorithm m € II¢ achieves regret

that scales linearly with T for this customer as T — oo. That is,

inf sup R™(T,p,p,uo) =C1-T =O(T),

TrEHC p>0

where C; € R is a constant independent of T but dependent on other problem parameters.
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Proof:  See Appendix B. [

Theorem 2 shows that the worst case regret of consistent bandit policies is linear for every
customer realization (including mainstream customers). We note that this result is worse than
what we may have hoped for given the earlier hardness result (Theorem 1), since the linearity of
regret applies to all customers rather than a subset of customers. The proof of Theorem 2 considers
the case when the size of the set of tolerable products |S(ug, p)| < d, which occurs for sufficiently
small p. Clearly, exploring outside this set can lead to customer disengagement. However, since
|S(ug, p)| < d, this set of products cannot span the space R?, implying that one cannot recover the
true customer latent attributes ug without sampling products outside of the set. On the other hand,
consistent bandit algorithms require convergence to uy, i.e., they will sample outside the set S(uq, p)
infinitely many times (as T'— 00) at a rate that depends on their corresponding regret bound. Yet, it
is clear to see that offering infinitely many recommendations outside the customer’s set of tolerable
products S(ug, p) will eventually lead to customer disengagement (when p > 0) with probability 1.
This result highlights the tension between avoiding incomplete learning (which requires exploring
products outside the tolerable set) and avoiding customer disengagement (which requires restricting
our recommendations to the tolerable set). Thus, we see that the design of bandit learning strategies
fundamentally relies on the assumption that the time horizon T is exogeneous, making exploration
inexpensive. State-of-the-art techniques such as UCB and Thompson Sampling perform particularly
poorly by over-exploring in the presence of customer disengagement.

Recent literature has highlighted the success of greedy policies in bandit problems where explo-
ration may be costly (see, e.g., Bastani et al. 2017). One may expect that the natural exploration
afforded by greedy policies may enable better performance in settings where exploration can lead
to customer disengagement. Therefore, we now shift our focus to Greedy Bayesian Updating pol-
icy (Algorithm 1) below. We use a Bayesian policy since we wish to make full use of the known
prior P over latent customer attributes. Unfortunately, we find that, similar to consistent bandit
algorithms, the greedy policy also incurs worst-case linear regret for every customer. Furthermore,
the greedy policy can perform poorly even when there is no disengagement.

The greedy Bayesian updating policy begins by recommends the most commonly preferred prod-
uct based on the P. Then, in every subsequent time step, it observes the customer response, updates
its posterior on the customer’s latent attributes using Bayesian linear regression, and then offers
the most commonly preferred product based on the updated posterior. The form of the resulting
estimator 4, of the customer’s latent attributes is similar to the well-known ridge regression esti-
mator with regularization parameter %7 where we regularize towards the mean of the prior P over

latent customer attributes (which we have normalized to 0O here).
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Algorithm 1 Greedy Bayesian Updating (GBU)

Initialize and recommend a randomly selected product.
for t € [T] do
Observe customer utility, Y, = ug a; + &;.

Update customer feature estimate, @;.1 = (altal:t + ff—i[) (a] Y1)

— AT
Recommend product a;y; =arg max,_, 4,V
end for

In Theorem 3, we show that the greedy policy also fails to achieve engagement even for main-
stream customers throughout the time horizon. In essence, the free exploration induced by greedy
policies (see, e.g., Bastani et al. 2017, Qiang and Bayati 2016) is in theory as problematic as the
optimistic exploration by bandit algorithms. Furthermore, Theorem 4 shows that even when explo-
ration is not costly (there is no disengagement), the greedy policy can get stuck at suboptimal

fixed points, and fail to produce a good match.

THEOREM 3 (Failure of Greedy). Let ug be any realization of the latent user attributes from
P. Under the assumptions of Example 1, the GBU policy achieves regret that scales linearly with
T for this customer as T — oco. That is,

sup REPY(T, p,p,ug) =Co- T =O(T),
p>0

where Cy € R is a constant independent of T but dependent on other problem parameters.

Proof:  See Appendix B. [

Similar to our result for consistent bandit algorithms in Theorem 2, Theorem 3 shows that the
worst case regret of the greedy policy is linear for every customer realization (including mainstream
customers). While intuition may suggest that greedy algorithms avoid over-exploration, they still
involve natural exploration due to the noise in customer feedback, which may cause the algorithm
to over-explore and choose irrelevant products. Although Theorems 2 and 3 are similar, it is
worth noting that over-exploration is empirically much less likely with the greedy policy than with
a consistent bandit algorithm that is designed to explore. This difference is exemplified in our
numerical experiments in §6; however, we will see that one is still better off (both theoretically and
empirically) constraining exploration by restricting the product set upfront.

The proof of Theorem 3 has two cases: tail and mainstream customers. For tail customers (this
set is determined by the choice of p), the first offered product (the most commonly preferred
product across customers given the distribution P) may not be tolerable, and so they disengage
immediately with some probability p, yielding linear expected regret for these customers. Note that
this is true for any algorithm, including the Constrained Bandit. The more interesting case is that of

mainstream customers, who do find the first offered product tolerable. In this case, since customer
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feedback is noisy, the greedy policy may subsequently erroneously switch to a product outside of
the tolerable set, which again results in immediate customer disengagement with probability p.
Note that this effect is exactly the natural exploration that allows the greedy policy to sometimes
yield rate-optimal convergence in classical contextual bandits (Bastani et al. 2017). Putting these
two cases together, we find that the greedy policy achieves linear regret for every customer.

It is also worth considering the performance of the greedy policy when there is no disengagement
and exploration is not costly. In Theorem 4, we show that the greedy policy may under-explore and
fail to converge in the other extreme, i.e., when there is no customer disengagement. Note that,
unlike the previous results, this result is under the case of p=0 (otherwise, the setting of Example

1 applies).

THEOREM 4 (Failure of Greedy without Disengagement). Let p— oo orp=0, i.e., there
is no customer disengagement. The GBU policy achieves regret that scales linearly with T. That
18,

Eupnr [REPY(T, p,p=0,u0)] =C5- T =0O(T),

where C3 € R is a constant independent of T but dependent on other problem parameters.

Proof:  See Appendix B. O

Theorem 4 shows that the greedy policy fails with some probability even in the classical bandit
learning setting when there is no customer disengagement. The proof follows from considering the
subset of customers for whom the most commonly preferred product is not their preferred product.
We show that within this subset, the greedy policy continues recommending this suboptimal prod-
uct for the remaining time horizon T" with positive probability. This illustrates that a greedy policy
can get “stuck” on a suboptimal product due to incomplete learning (see, e.g., Keskin and Zeevi
2014) even when customers never disengage. Thus, we see that the greedy policy can also fail due
to under-exploration. In contrast, a consistent bandit policy is always guaranteed to converge to the
preferred product when there is no disengagement; the Constrained Bandit will trivially achieve
the same guarantee since we will not restrict the product set when there is no disengagement.

These results illustrate that there is a need to constrain exploration in the presence of cus-
tomer disengagement; however, naively adopting a greedy policy does not achieve this goal. This
is because, intuitively, the greedy policy constrains the rate of exploration rather than the size of
exploration. The proof of Theorem 2 clearly demonstrates that the key issue is to constrain explo-
ration to be within the set of tolerable products S(ug, p). The challenge is that this set is unknown
since the customer’s latent attibutes ug are unknown. However, our prior P gives us reasonable
knowledge of which products lie in S(ug, p) for mainstream customers. In the next section, we will

leverage this knowledge to restrict the product set upfront in the Constrained Bandit. As we saw
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from Theorem 1, we may as well restrict our focus to serving the subset of mainstream customers,

since we cannot hope to do well for all customers.

5. Constrained Bandit Algorithm

We have so far established that both classical bandit algorithms and the greedy algorithm may fail
to perform well on any customer. We now propose a two-step procedure, where we play a bandit
strategy after constraining our action space to a restricted set of products that are carefully chosen
using an integer program. In §5.3, we will prove that this simple modification guarantees good

performance on a significant fraction of customers.

5.1. Intuition

As shown in Theorem 2, classical bandit algorithms fail because of over-exploration. Bandit algo-
rithms rely on an early exploration phase where customers are offered random products; the feed-
back from these products is then used to infer the customer’s low-dimensional preference model, in
order to inform future (relevant) recommendations during the exploitation phase. However, in the
presence of customer disengagement, the algorithm doesn’t get to reap the benefits of exploitation
since the customer likely disengages from the platform during the exploration phase after receiving
several irrelevant recommendations. This is not to say that learning through exploration is a bad
strategy. Theorem 3 shows that greedy exploitation-only algorithm also under-perform by under-
exploring, and getting stuck in sub-optimal fixed points. This can be harmful since the platform
misses out on its key value proposition of learning customer preferences and matching them to
their preferred products.

These results suggest that a platform can only succeed by avoiding poor early recommendations.
Since we don’t know the customer’s preferences, this is impossible to do in general; however, our key
insight is that a probabilistic approach is still feasible. In particular, the platform has knowledge of
the distribution of customer preferences P from past customers, and can transfer this knowledge
to avoid products that do not meet the tolerance threshold of most customers. We formulate this
product selection problem as an integer program, which ensures that any recommendations within
the optimal restricted set are acceptable to most customers. After selecting an optimal restricted set
of products, we follow a classical bandit approach (e.g., linear UCB by Abbasi-Yadkori et al. 2011).
Under this approach, if our new customer is a mainstream customer, she is unlikely to disengage
from the platform even during the exploration phase, and will be matched to her preferred product.
However, if the new customer is a tail customer, her preferred product may not be available in
our restricted set, causing her to disengage. This result is shown formally in Theorem 6 in the

next section. Thus, we compromise performance on tail customers to achieve good performance on
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mainstream customers. Theorem 1 shows that such a tradeoff is necessary, since it is impossible to
guarantee good performance on every customer.

We introduce a set diameter parameter y in our integer program formulation. This parameter can
be used to tune the size of the restricted product set based on our prior P over customer preferences.
Larger values of v increase the risk of customer disengagement by introducing greater variability
in product relevance, but also increase the likelihood that the customer’s preferred product lies
in the set. On the other hand, smaller values of v decrease the risk of customer disengagement
if the customer’s preferred product is in the restricted set, but there is a higher chance that the
customer’s preferred product is not in the set. Thus, appropriately choosing this parameter is a

key ingredient of our proposed algorithm. We discuss how to choose v at the end of §5.3.

5.2. Constrained Exploration

We seek to find a restricted set of products that cater to a large fraction of customers (which
is measured with respect to the distribution P over customer attributes), but are not too “far”
from each other (to limit exploration). Before we describe the problem, we introduce notation that
captures the likelihood of a product being relevant for the new customer:

DEFINITION 3. C;(p) is the probability of product i satisfying the new customer’s tolerance level:

Ci(p) =Puyp (i € S(ug, p)),

where S(ug, p) is given by Definition 2.

Recall that S(uo, p) is the set of tolerable products for a customer with latent attributes ug. Given
that ug is unknown, C;(p) captures the probability that product i is relevant to the customer with
respect to the distribution P over random customer preferences. In the presence of disengagement,
we seek to explore over products that are likely to satisfy the new customer’s tolerance level. For
example, mainstream products may be tolerable for a large probability mass of customers (with
respect to P) while niche products may only be tolerable for tail customers. Thus, C;(p) translates
our prior on customer latent attributes to a likelihood of tolerance over the space of products.
Computing C;(p) using Monte Carlo simulation is straightforward: we generate random customer
latent attributes according to P, and count the fraction of customers for which product i was
within the customer’s tolerance threshold of p from the customer’s preferred product V..

As discussed earlier, a larger product set increases the likelihood that the new customer’s pre-
ferred product is in the set, but it also increases the likelihood of disengagement due to poor
recommendations during the exploration phase. However, the key metric here is not the number

of products in the set, but rather the similarity of the products in the set. In other words, we
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wish to restrict product diversity in the set to ensure that all products are tolerable to mainstream
customers. Thus, we define

Di; = lVi=Vjl2,
the Euclidean distance between the (known) features of products i and j, i.e., the similarity between
two products. We seek to find a subset of products such that the distance between any pair of
products is bounded by the set diameter 7. Let ¢;;(y) be an indicator function that determines

whether D;; <. Hence,
1 if D;; <7,
bij () = { ’

0 otherwise.
Note that v and p are related. When the customer tolerance p is large, we will choose larger values
of the set diameter v and vice-versa. We specify how to choose v at the end of §5.3.
The objective is to select a set of products, which together have a high likelihood of containing
the customer’s preferred match under the distribution over customer preferences P (i.e., high C;(p)),
with the constraint that no two products are too dissimilar from each other (i.e., pairwise distance

greater than ). We propose solving the following product selection integer program:

n

OP(y)=max » Ci(p)z; (3a)
s.t. zZ;lei, i=1,...,n, (3b)

zij<wmj, j=1,....n, (3c)
zij>xit+a;—1, i=1,...,n, j=1,...,n, (3d)

2i; < ¢i;(v), i=1,...,n, j=1,...,n, (3e)

2, €{0,1} i=1,...,n. (3f)

The decision variables in the above problem are {z;};_, and {z;;}};_,. In particular, z; in OP(y)
defines whether product ¢ is included in the restricted set, and z;; is an indicator variable for
whether both products i and j are included in the restricted set. Constraints (3b) — (3e) ensure
that only products that are “close” to each other are selected.

Solving OP () results in a set of products (products for which the corresponding z; is 1) that
maximizes the likelihood of satisfying the new customer’s tolerance level, while ensuring that every
pair is within ~ distance from each other.

Algorithm 2 presents the Constrained Bandit (CB) algorithm, where the second phase follows
the popular linear UCB algorithm (Abbasi-Yadkori et al. 2011). There are two input parameters: A
(the standard regularization parameter employed in the linear bandit literature, see, e.g., Abbasi-

Yadkori et al. 2011) and v (the set diameter). We discuss the selection of 7 and the corresponding
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Algorithm 2 Constrained Bandit(\,y)

Step 1: Constrained Exploration:
Solve OP(v) to get =, the constrained set of products to explore over. Let a; be a randomly
selected product to recommend in =.
Step 2: Bandit Learning:
for t € [T] do
Observe customer utility, Y; = ug a; + &;.
Let 4y = (a],a1.s + A ) "ta;.4 Y1, and,

Q= {u R i, — ulx, < (5\/dlog (1 +;L2> + ﬁs) } |

Let (Uopt, ar) = arg maxcz e, ' Vi

Recommend product a; at time t if the customer is still engaged. Stop if the customer
disengages from the platform.
end for

tradeoffs in the next subsection and in Appendix D. As discussed earlier, we employ a two-step
procedure. In the first step, the action space is restricted to the product set given by OP(+y). This
step ensures that subsequent exploration is unlikely to cause a significant fraction of customers
to disengage. Then, a standard bandit algorithm is used to learn the customer’s preference model
and match her with her preferred product through repeated interactions. The main idea remains
simple: in the presence of customer disengagement, the platform should be cautious while exploring.
Since we are uncertain about the customer’s preferences, we optimize exploration for mainstream

customers who are more likely to visit the platform.

5.3. Theoretical Guarantee

We now show that the Constrained Bandit performs well and incurs regret that scales sublinearly
in T over a fraction of customers. We begin by defining L, ,,, an indicator variable that captures
whether the customer is still engaged at time ¢:

DEFINITION 4. Let,

I 1 Customer engaged until time t,
"PPT1 0 otherwise.

Clearly,
H{LT,M? = 1} = Hthl]l{dt = O} )

where we recall that d, is the disengagement decision of the customer at time ¢. To show our result,
we first show that as T'— oo, Ly ,, =1 for some customers, i.e., they remain engaged. Next, we
show that most engaged customers are eventually matched to their preferred product.

Theorem 5 shows that the worst-case regret of the Constrained Bandit scales sublinearly in T’

for a positive fraction of customers. In particular, regardless of the customer tolerance parameter
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p, we can match some subset of customers to their preferred products. Note that this is in stark

contrast with both bandit and greedy algorithms (Theorems 2 and 3).

THEOREM 5 (Matching Upper Bound for Constrained Bandit). Let u, be any realiza-
tion of the latent user attributes from P. Under the assumptions of Example 1, the Constrained
Bandit with set diameter v =1/+/2 achieves zero regret with positive probability. In particular, there
exists W,\ﬂ:%; a set of realizations of customer latent attributes with positive measure under P,
i.e.,

B(W,,og ) >0,

such that, for all up € W,

= the worst-case regret of the Constrained Bandit algorithm is
’ 2

=1
sup RCB(AW?\/?) <T7p7p7 uO) =0.
p>0

Note that this result holds for any value of p, i.e., customers can be arbitrarily intolerant of
products that are not their preferred product V.. Thus, the only way to make progress is to
immediately recommend their preferred product. This can trivially be done by restricting our
product set to a single product, which at the very least caters to some customers. This is exactly
what we do in Theorem 5: the choice of v = 1/4/2 and the product space given in Example 1 ensures
that only a single product will be in our restricted set Z. By construction of OP(), this will be
the most popular preferred product. W denotes the subset of customers for whom this product is
optimal, and this set has positive measure under P by construction since we have a discrete number
of products. Note that these customers are immediately matched to their preferred product, so it
immediately follows that we incur zero regret on this subset of customers.

Theorem 5 shows that there is nontrivial value in restricting the product set upfront, which
cannot be obtained through either bandit or greedy algorithms. However, it considers the degen-
erate case of constraining exploration to only a single product, which is clearly too restrictive in
practice, especially when customers are relatively tolerant (i.e., p is not too small). Thus, it does
not provide useful insight into how much the product set should be constrained as a function of the
customer’s tolerance parameter. To answer this question, we move away from the setting described
in Example 1 and consider a fluid approximation of the product space. Since the nature of OP () is
complex, letting the product space be continuous V = [—1,1]¢ will help us cleanly demonstrate the
key tradeoff in constraining exploration: a larger product set has a higher probability of containing
customers’ preferred products, but also a higher risk of disengagement. Furthermore, for algebraic
simplicity, we shift the mean of the prior over the customer’s latent attributes, so P = N (@, %Id),
where ||@|l; = 1. This ensures that our problem is not symmetric, which again helps us analytically

characterize the solution of OP (7).
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Theorem 6 shows that the Constrained Bandit algorithm can achieve sublinear regret for a
fraction of customers under this albeit stylized setting. More importantly, it yields insights into
how we might choose the set diameter v as a function of the customer’s tolerance parameter p. In

86, we demonstrate the strong empirical performance of our algorithm on real data.

THEOREM 6 (Guarantee for Constrained Bandit Algorithm). Let P = N (q, %Id). Also
consider a continuous product space V. =[—1,1]%. There exists a set W of latent customer attribute

realizations with positive probability under P, i.e.,

ol

2 .
1-y/(-%) Sy =IAY
PW)>w = |1—-2dexp| ————— 1—2dexp | — | 21— ,
o
such that for all ug € W the cumulative regret of the Constrained Bandit is

RCB(\p) (T, p,p,up) < 5\/leog <>\ + ZL> (ﬁz +§\/log (T) +dlog (1 + 1)?5))
o(vT).

Proof:  See Appendix C. [

This result explicitly characterizes the fraction of customers that we successfully serve as a
function of the customer tolerance parameter p and the set diameter . Thus, given a value of p,
we can choose the set diameter v to optimize the probability w of this set.

The proof of Theorem 6 follows in three steps. First, we lower bound the probability that the
constrained exploration set = contains the preferred product for a new customer whose attributes
are drawn from P. Next, conditioned on the previous event, we lower bound the probability that
the customer remains engaged for the entire time horizon T" when recommendations are made from
the restricted product set =. Lastly, conditioned on the previous event, we can apply standard
self-normalized martingale techniques (Abbasi-Yadkori et al. 2011) to bound the regret of the
Constrained Bandit algorithm for the customer subset W.

Again, as in Theorem 5, we see that there can be significant value in restricting the product
set upfront that cannot be achieved by classical bandit or greedy approaches. We further see that
the choice of the set diameter ~ is an important consideration to ensure that the new customer is
engaged and matched to her preferred product with as high a likelihood as possible. As discussed
earlier, larger values of v increase the risk of customer disengagement by introducing greater
variability in product relevance, but also increase the likelihood that the customer’s preferred
product lies in the set. On the other hand, smaller values of ~ decrease the risk of customer

disengagement if the customer’s preferred product is in the restricted set, but there is a higher
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chance that the customer’s preferred product is not in the set. In other words, we wish to choose
to maximize w. While there is no closed form expression for the optimal -, we propose the following
approximately optimal choice based on a Taylor series approximation (see details in Appendix D):

Vo

YT and 4> 0},
2(4-+%)""

v*e{vrpz

Numerical experiments demonstrate that this approximate value of v is typically within 1% of the
value of v that maximizes the expression for w given in Theorem 6; the resulting values of w are
also very close (see Appendix D). This expression yields some interesting comparative statics: we
should choose a smaller set diameter v when customers are less tolerant (p is small) and customer

feedback is noisy (o is large). In practice, we can tune the set diameter through cross-validation.

6. Numerical Experiments

We now compare the empirical performance of the Constrained Bandit with the state-of-the-art
Thompson sampling (which is widely considered to empirically outperform other bandit algorithms,
see, e.g., Chapelle and Li 2011, Russo and Van Roy 2014) and a greedy Bayesian updating policy.
We present two sets of empirical results evaluating our algorithm on both synthetic data (§6.1),
and on real movie recommendation data (§6.2).

Benchmarks: We compare our algorithm with (i) linear Thompson Sampling (Russo and Van Roy
2014) and (ii) the greedy Bayesian updating (Algorithm 1).

Constrained Thompson Sampling (CTS): To ensure a fair comparison, we consider a Thomp-
son Sampling version of the Constrained Bandit algorithm (see Algorithm 3 below). Recall that
our approach allows for any bandit strategy after obtaining a restricted product set based on
our (algorithm-independent) integer program OP(7). We use the same implementation of linear
Thompson sampling (Russo and Van Roy 2014) as our benchmark in the second step. Thus, any

improvements in performance can be attributed to restricting the product set.

Algorithm 3 Constrained Thompson Sampling (\,7)

Step 1: Constrained Exploration:
Solve OP () to get the constrained set of products to explore over, Sconsirained- Let 4y = .
Step 2: Bandit Learning:
for t € [T] do
Sample u(t) from distribution N (4, 0%1).
Recommend a; = arg maxg;cq ‘amed}u(t)TVi if the customer is still engaged.
Observe customer utility, Y; = Uy a; + €;, and update i, = (VaTl:at Viriay ¥ M) Vaya, Y
Stop if the customer disengages from the platform.
end for
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6.1. Synthetic Data

We generate synthetic data and study the performance of all three algorithms as we increase the
customer’s disengagement propensity p € [0,1]. A low value of p implies that customer disengage-
ment is not a salient concern, and thus, one would expect Thompson sampling to perform well in
this regime. On the other hand, a high value of p implies that customers are extremely intolerant
of poor recommendations, and thus, all algorithms may fare poorly. We find that Constrained
Thompson Sampling performs comparably to vanilla Thompson Sampling when p is low, and offers
sizeable gains over both benchmarks when p is medium or large.

Data generation: We consider the standard collaborative filtering problem (described earlier)
with 10 products. Recall that collaborative filtering fits a low rank model of latent customer pref-
erences and product attributes; we take this rank! to be 2. We generate product features from
a multivariate normal distribution with mean [1,5]" € R? and variance 0.3 - I, € R**? where we
recall that I; is the d x d identity matrix. Similarly, latent user attributes are generated from a
multivariate normal with with mean [2,2]" € R? and variance 2 - I, € R?*2. These values ensure
that, with high probability for every customer, there exists a product on the platform that gen-
erates positive utility. Note that the product features are known to the algorithms, but the latent
user attributes are unknown. Finally, we take our noise € ~ A (0,5), the customer tolerance p to
be generated from a truncated N(0,1) distribution, and the total horizon length T'= 1000. All
algorithms are provided with the distribution of customer latent attributes, the distribution of the
customer tolerance p, and the horizon length T'. They are not provided with the noise variance,
which needs to be estimated over time. Finally, we consider several values of the disengagement
propensity, i.e., p € {1%, 10%,50%, 100%}, to capture the value of restricting the product set with
varying levels of customer disengagement.

Engagement Time: We use average customer engagement time (i.e., the average time that a
customer remains engaged with the platform, up to time T") as our metric for measuring algorithmic
performance. As we have seen in earlier sections, customer engagement is necessary to achieve low
cumulative regret. Furthermore, it is a more relevant metric from a managerial perspective since
higher engagement is directly related with customer retention and loyalty, as well as the potential
for future high quality/revenue customer-product matches.

Results: Figure 2 shows the customer engagement time averaged over 1000 randomly generated
users (along with the 95% confidence intervals) for all three algorithms as we vary the disengage-
ment propensity p from 1% to 100%. As expected, when p=1% (i.e., customer disengagement is

relatively insignificant), TS performs well, and CTS performs comparably. However, as noted in

! We choose a small rank based on empirical experiments showing that collaborating filtering models perform better
in practice with small rank (Chen and Chi 2018). Our results remain qualitatively similar with higher rank values.
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Figure 2  Time of engagement and 95% confidence intervals averaged over 1000 randomly generated
customers for disengagement propensity p values of 1% (top left), 10% (top right), 50% (bottom left), and
100% (bottom right).

Theorem 3, greedy Bayesian updating is likely to converge to a suboptimal product outside of the
customer’s relevance set, and continues to recommend this product until the customer eventually
disengages. As we increase p, all algorithms achieve worse engagement, since customers become
considerably more likely to leave the platform. As expected, we also see that CTS starts to sig-
nificantly outperform the other two benchmark algorithms as p increases. For instance, the mean
engagement time of CTS improves over the engagement time of the benchmark algorithms by a
factor of 2.2 when p =50% and by a factor or 4.4 when p =100%. Thus, we see that restricting
the product set is critical when customer disengagement is a salient feature on the platform.

A recent report by Smith (2018) notes that an average worker receives as many as 121 emails
on average per day. Furthermore, the average click rate for retail recommendation emails is as low
as 2.5%. These number suggest that customer disengagement is becoming increasingly salient, and
we argue that constraining exploration on these platforms to quickly match as many customers as

possible to a tolerable product is a key consideration in recommender system design.

6.2. Case Study: Movie Recommendations
We now compare CTS to the same benchmarks on MovieLens, a publicly available movie recom-

mendations data collected by GroupLens Research. This dataset is widely used in the academic
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community as a benchmark for recommendation and collaborative filtering algorithms (Harper and
Konstan 2016). Importantly, we no longer have access to the problem parameters (e.g., p) and

must estimate them; we discuss simple heuristics for estimating these parameters.

6.2.1. Data Description & Parameter Estimation The MovieLens dataset contains over
20 million user ratings based on personalized recommendations of 27,000 movies to 138,000 users.
We use a random sample (provided by MovieLens) of 100,000 ratings from 671 users over 9,066
movies. Ratings are made on a scale of 1 to 5, and are accompanied by a time stamp for when the
user submitted the rating. The average movie rating is 3.65.

The first step in our analysis is identifying likely disengaged customers in our data. We will argue
that the number of user ratings is a proxy for disengagement. In Figure 3, we plot the histogram
of the number of ratings per user. Users provide an average of 149 ratings, and a median of 71

ratings. Clearly, there is high variability and skew in the number of ratings that users provide. We

Rating Distribution
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Figure 3 Histogram of user ratings in MovielLens data.

argue that there are two primary reasons why a customer may stop providing ratings: (i) satiation
and (ii) disengagement. Satiation occurs when the user has exhausted the platform’s offerings that
are relevant to her, while disengagement occurs when the user is relatively new to the platform and
does not find sufficiently relevant recommendations to justify engaging with the platform. Thus,
satiation applies primarily to users who have provided many ratings (right tail of Figure 3), while
disengagement applies primarily to users who have provided very few ratings (left tail of Figure 3).

Accordingly, we consider the subset of users who provided fewer that 27 ratings (bottom 15%

of users) as disengaged users. We hypothesize that these users provided a low number of ratings
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because they received recommendations that did not meet their tolerance threshold. This hypothe-
sis is supported by the ratings. In particular, the average rating of disengaged users is 3.56 (standard
error of 0.10) while the average rating of the remaining (engaged) users is 3.67 (standard error of
0.04). A one-way ANOVA test (Welch 1951) yields a F-statistic of 29.23 and a p-value of 1078,
showing that the difference is statistically significant and that disengaged users dislike their recom-
mendations more than engaged users. This finding relates to our results in §2, i.e., disengagement
is related to the customer-specific quality of recommendations made by the platform.

Estimating latent user and movie features: We need to estimate the latent product features
{Vi}, as well as the distribution P over latent user attributes from historical data. Thus, we use
low rank matrix factorization (Ekstrand et al. 2011) on the ratings data (we find that a rank of 5
yields a good fit) to derive {U;}"; and {V;}!,. We fit a normal distribution P to the latent user
attributes {U,;}!",, and use this to generate new users; we use the latent product features as-is.

Estimating the tolerance parameter p: Recall that p is the maximum utility reduction (with
respect to the utility of the unknown optimal product V) that a customer is willing to tolerate
before disengaging with probability p. In our theory, we have so far assumed that there is a single
known value of p for all customers. However, in practice, it is likely that p may be a random
value that is sampled from a distribution (e.g., there may be natural variability in tolerance among
customers), and further, the distribution of p may be different for different customer types (e.g.,
tail customer types may be more tolerant of poor recommendations since they are used to having
higher search costs for niche products). Thus, we estimate the distribution of p as a function of the
user’s latent attributes uy using maximum likelihood estimation, and sample different realizations

for different incoming customers on the platform. We detail the process of this estimation next.

Distribution of User Relevance Threshold
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Figure 4 Empirical distribution of p, the customer-specific tolerance parameter, across all disengaged users for

a fixed customer disengagement propensity p =.75. This distribution is robust to any choice of p € (0,.75].
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In order to estimate p for a user, we consider the time series of ratings provided by a single
user with latent attributes uy in our historical data. Clearly, disengagement occurred when the
user provided the last rating to the platform, and this decision was driven by both the user’s
disengagement propensity p, and tolerance parameter p. For a given p and p, let t/***¢ denote the
last rating of the user, and a4, ....ay,_,_ be the recommendations made to the user until time #;cqye-

Then, the likelihood function of the observation sequence is:
£, =p(1 —p) (" EE esestom),

where we recall that S(ug, p) defines the set of products that the user considers tolerable. Since ug
and V; are known apriori (estimated from the low rank model), S(uq, p) is also known apriori for
any given value of p. Hence, for any given value of p, we can estimate the most likely user-specific
tolerance parameter p using the maximum likelihood estimator of L(p, p). In Figure 4, we plot the
overall estimated empirical distribution of p for our subset of disengaged users. We see that more
than 88% of disengaged users have an estimated tolerance parameter of less than 1.2, i.e., they
consider disengagement if the recommendation is more than 1 star away from what they would
rate their preferred movie. As we may expect, very few disengaged users have a high estimated
value of p, suggesting that they have high expectations on the quality of recommendations.

One caveat of our estimation strategy is that we are unable to identify both p and p simulta-
neously; instead, we estimate the user-specific distribution of p and perform our simulations for
varying values of the disengagement propensity p. Empirically, we find that our estimation of p
is robust to different values of p, i.e., for any value of p € (0,.75], we observe that our estimated

distribution of p distribution does not change. Thus, we believe that this strategy is sound.

6.2.2. Results Similar to §6.1, we compare Constrained Thompson Sampling against our
two benchmarks (Thompson Sampling and greedy Bayesian updating) based on average customer
engagement time. We use a random sample of 200 products, and take our horizon length 7" = 100.

Figure 5 shows the customer engagement time averaged over 1000 randomly generated users
(along with the 95% confidence intervals) for all three algorithms as we vary the disengagement
propensity p from 1% to 100%. Again, we see similar trends as we saw in our numerical experiments
on synthetic data (§6.1). When p=1% (i.e., customer disengagement is relatively insignificant), all
algorithms perform well, and CTS performs comparably. As we increase p, all algorithms achieve
worse engagement, since customers become considerably more likely to leave the platform. As
expected, we also see that CTS starts to significantly outperform the other two benchmark algo-
rithms as p increases. For instance, the mean engagement time of CTS improves over the engage-

ment time of the benchmark algorithms by a factor of 1.26 when p = 10%, by a factor of 1.66 when
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Figure 5  Time of engagement and 95% confidence intervals on MovielLens data averaged over 1000 randomly
generated customers for disengagement propensity p values of 1% (top left), 10% (top right), 50% (bottom
left), and 100% (bottom right).

p=50% and by a factor or 1.8 when p = 100%. Thus, our main finding remains similar on real
movie recommendation data: restricting the product set is critical when customer disengagement

is a salient feature on the platform.

7. Conclusions
We consider the problem of sequential product recommendation when customer preferences are
unknown. First, using a sequence of ad campaigns from a major airline carrier, we present empirical
evidence suggesting that customer disengagement plays an important role in the success of recom-
mender systems. In particular, customers decide to stay on the platform based on the quality of
recommendations. To the best of our knowledge, this issue has not been studied in the framework
of collaborative filtering, a widely-used machine learning technique. We formulate this problem
as a linear bandit, with the notable difference that the customer’s horizon length is a function
of past recommendations. Our formulation bridges two disparate literatures on bandit learning in
recommender systems, and customer disengagement modeling.

We then prove that this problem is fundamentally hard, i.e., no algorithm can keep all customers
engaged. Thus, we shift our focus to keeping a large number of customers (i.e., mainstream cus-

tomers) engaged, at the expense of tail customers with niche preferences. Our results highlight
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a necessary tradeoff with clear managerial implications for platforms that seek to make person-
alized recommendations. Unfortunately, we find that classical bandit learning algorithms as well
as a simple greedy Bayesian updating strategy perform poorly, and can fail to keep any customer
engaged. To solve this problem, we propose modifying bandit learning strategies by constraining
the action space upfront using an integer program. We prove that this simple modification allows
our algorithm to perform well (i.e., achieve sublinear regret) for a significant fraction of customers.
Furthermore, we perform extensive numerical experiments on real movie recommendations data
that demonstrate the value of restricting the product set upfront. In particular, we find that our
algorithm can improve customer engagement with the platform by up to 80% in the presence of

significant customer disengagement.

References
Abbasi-Yadkori, Yasin, Ddvid Pal, Csaba Szepesvéri. 2011. Improved algorithms for linear stochastic bandits.
NIPS. 2312-2320.

Aflaki, Sam, Ioana Popescu. 2013. Managing retention in service relationships. Management Science 60(2)

415-433.

Agrawal, Shipra, Vashist Avadhanula, Vineet Goyal, Assaf Zeevi. 2016. A near-optimal exploration-
exploitation approach for assortment selection. Proceedings of the 2016 ACM Conference on Economics

and Computation. ACM, 599-600.

Agrawal, Shipra, Navin Goyal. 2013. Further optimal regret bounds for thompson sampling. Artificial
Intelligence and Statistics. 99-107.

Auer, Peter. 2002. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine

Learning Research 3(Nov) 397-422.

Bastani, Hamsa, Mohsen Bayati, Khashayar Khosravi. 2017. Mostly exploration-free algorithms for contex-

tual bandits. arXiv preprint arXiv:1704.09011 .

Besbes, Omar, Yonatan Gur, Assaf Zeevi. 2015. Optimization in online content recommendation services:

Beyond click-through rates. Manufacturing & Service Operations Management 18(1) 15-33.

Bowden, Jana Lay-Hwa. 2009. The process of customer engagement: A conceptual framework. Journal of

Marketing Theory and Practice 17(1) 63-74.

Breese, John S, David Heckerman, Carl Kadie. 1998. Empirical analysis of predictive algorithms for collab-

orative filtering. UAI. Morgan Kaufmann Publishers Inc., 43-52.

Bresler, Guy, George H Chen, Devavrat Shah. 2014. A latent source model for online collaborative filtering.
NIPS. 3347-3355.

Chapelle, Olivier, Lihong Li. 2011. An empirical evaluation of thompson sampling. Advances in neural

information processing systems. 2249-2257.



Author: Learning Recommendations with Customer Disengagement

31

Chen, Yudong, Yuejie Chi. 2018. Harnessing structures in big data via guaranteed low-rank matrix estima-

tion. arXiv preprint arXiv:1802.08397 .

Davis, Mark M, Thomas E Vollmann. 1990. A framework for relating waiting time and customer satisfaction

in a service operation. Journal of Services Marketing 4(1) 61-69.

Demirezen, Emre M, Subodha Kumar. 2016. Optimization of recommender systems based on inventory.

Production and Operations Management 25(4) 593-608.

den Boer, Arnoud V, Bert Zwart. 2013. Simultaneously learning and optimizing using controlled variance

pricing. Management science 60(3) 770-783.

Ekstrand, Michael D, John T Riedl, Joseph A Konstan, et al. 2011. Collaborative filtering recommender
systems. Foundations and Trends® in Human-Computer Interaction 4(2) 81-173.

Farias, Vivek F, Andrew A Li. 2017. Learning preferences with side information .

Fitzsimons, Gavan J, Donald R Lehmann. 2004. Reactance to recommendations: When unsolicited advice

yields contrary responses. Marketing Science 23(1) 82-94.

Gopalan, Aditya, Odalric-Ambrym Maillard, Mohammadi Zaki. 2016. Low-rank bandits with latent mixtures.
arXw preprint arXiw:1609.01508 .

Harper, F Maxwell, Joseph A Konstan. 2016. The movielens datasets: History and context. Acm transactions

on interactive intelligent systems (tiis) 5(4) 19.

Herlocker, Jonathan L, Joseph A Konstan, Loren G Terveen, John T Riedl. 2004. Evaluating collaborative
filtering recommender systems. TOIS 22(1) 5-53.

Johari, Ramesh, Vijay Kamble, Yash Kanoria. 2017. Matching while learning. Proceedings of the 2017 ACM
Conference on Economics and Computation. ACM, 119-119.

Johari, Ramesh, Sven Schmit. 2018. Learning with abandonment. arXiv preprint arXiv:1802.08718 .

Kallus, Nathan, Madeleine Udell. 2016. Dynamic assortment personalization in high dimensions. arXiv

preprint arXiw:1610.05604 .
Kanoria, Yash, Ilan Lobel, Jiaqi Lu. 2018. Managing customer churn via service mode control .

Keskin, N Bora, Assaf Zeevi. 2014. Dynamic pricing with an unknown demand model: Asymptotically
optimal semi-myopic policies. Operations Research 62(5) 1142-1167.

Lai, Tze Leung, Herbert Robbins. 1985. Asymptotically efficient adaptive allocation rules. Advances in
applied mathematics 6(1) 4-22.

Lattimore, Tor, Csaba Szepesvari. 2016. The end of optimism? an asymptotic analysis of finite-armed linear

bandits. arXiv preprint arXiv:1610.04491 .

Li, Shuai, Alexandros Karatzoglou, Claudio Gentile. 2016. Collaborative filtering bandits. SIGIR. ACM,
539-548.



Author: Learning Recommendations with Customer Disengagement

32

Lika, Blerina, Kostas Kolomvatsos, Stathes Hadjiefthymiades. 2014. Facing the cold start problem in rec-
ommender systems. Ezpert Systems with Applications 41(4) 2065-2073.

Linden, Greg, Brent Smith, Jeremy York. 2003. Amazon. com recommendations: Item-to-item collaborative

filtering. IEEE Internet computing (1) 76-80.

Lu, Yina, Andrés Musalem, Marcelo Olivares, Ariel Schilkrut. 2013. Measuring the effect of queues on

customer purchases. Management Science 59(8) 1743-1763.

Murthi, BPS, Sumit Sarkar. 2003. The role of the management sciences in research on personalization.
Management Science 49(10) 1344-1362.

Nerlove, Marc, Kenneth J Arrow. 1962. Optimal advertising policy under dynamic conditions. Economica

129-142.
Qiang, Sheng, Mohsen Bayati. 2016. Dynamic pricing with demand covariates .

Rusmevichientong, Paat, John N Tsitsiklis. 2010. Linearly parameterized bandits. Mathematics of Operations
Research 35(2) 395-411.

Russo, Daniel, Benjamin Van Roy. 2014. Learning to optimize via posterior sampling. Mathematics of

Operations Research 39(4) 1221-1243.

Russo, Daniel, Benjamin Van Roy. 2018. Satisficing in time-sensitive bandit learning. arXiv preprint

arXi:1803.02855 .

Sarwar, Badrul, George Karypis, Joseph Konstan, John Riedl. 2001. Item-based collaborative filtering rec-
ommendation algorithms. WIWW. ACM, 285-295.

Schein, Andrew I, Alexandrin Popescul, Lyle H Ungar, David M Pennock. 2002. Methods and metrics for
cold-start recommendations. SIGIR. ACM, 253-260.

Shah, Virag, Jose Blanchet, Ramesh Johari. 2018. Bandit learning with positive externalities .

Smith, Craig. 2018. 90 interesting email statistics and facts. URL https://expandedramblings.com/

index.php/email-statistics/.

Sousa, Rui, Chris Voss. 2012. The impacts of e-service quality on customer behaviour in multi-channel

e-services. Total Quality Management € Business FExcellence 23(7-8) 789-806.

Su, Xiaoyuan, Taghi M Khoshgoftaar. 2009. A survey of collaborative filtering techniques. Advances in
artificial intelligence 2009.

Surprenant, Carol F, Michael R Solomon. 1987. Predictability and personalization in the service encounter.

the Journal of Marketing 86-96.

Tan, Tom Fangyun, Serguei Netessine, Lorin Hitt. 2017. Is tom cruise threatened? an empirical study of the

impact of product variety on demand concentration. Information Systems Research 28(3) 643-660.

Venetis, Karin A, Pervez N Ghauri. 2004. Service quality and customer retention: building long-term rela-

tionships. European Journal of marketing 38(11/12) 1577-1598.



Author: Learning Recommendations with Customer Disengagement

33

Wei, Jian, Jianhua He, Kai Chen, Yi Zhou, Zuoyin Tang. 2017. Collaborative filtering and deep learning

based recommendation system for cold start items. Ezpert Systems with Applications 69 29-39.

Welch, Bernard Lewis. 1951. On the comparison of several mean values: an alternative approach. Biometrika

38(3/4) 330-336.



Author: Learning Recommendations with Customer Disengagement

34

Appendix

A. Summary of Notation

Variables Description

T Total time horizon

p Customer specific tolerance threshold

P Customer specific leaving propensity

U prior mean on latent user attributes

o? prior variance on user attributes

13 sub Gaussian noise parameter

v Sub linear rate of regret for the consistent policy
d, Customer’s leaving decision at time ¢

Uy Random vector denoting customer feature vector
Ug Realization of U,

S(p,ug) User specific set of “relevant” products

Ay Utility gap between the optimal and the sub optimal product

a; Recommendation made at time ¢

Y, User utility response at time ¢

V. Optimal product

A L2 regularization parameter

0 set diameter for the integer program

= Constrain product exploration set resulting from solving OP(7)
Table 2 Summary of notation used in the paper.

B. Lower Bounds for Classical Approaches

Proof of Theorem 1: In order to show the linearity of regret of any policy, we start by considering the
simple case when d = 2. Recall that, uy € R? such that ug ~ N(0,021;). Furthermore, by assumption
V1 =[1,0] and V5 = [0, 1] are the product attributes and p, the leaving propensity, is some positive constant.
Clearly, Product 1 is optimal when ug, > uo, and vice versa. Furthermore, if product 1 (product 2) is shown
to a customer who prefers product 2 (product 1), then the customer disengages with probability p as long

as the gap in utility is more than p. Hence, consider the following events:
81 = {Uol < Uog, — p}7and 52 = {u02 < Up, — p} .

Then over &, recommending product 1 leads to customer disengagement with probability p and over &,,
recommending product 2 leads to customer disengagement with probability p. Next, we will characterize the

probability of events & and &;.

Ug, — Uog. —p
P(&)=P <ug, —p)=P ! 2 <
( 1) (uol Uo, p) ( \/QO‘ \/§O'>

Z<_p> =C,
20

such that C € (0,1). Similarly,
P(gz) :P(Uo2 <o, *p) =P (u02 — Yo, < _r >

V2o V2o

Z p):c.

—P —
V20
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Any policy 7 has two options at time 1: either to recommend product 1 or to recommend product 2. We will

show that regret is linear in either of the two cases. First consider the case when a; =1 and note that

T T
]EUONP [Rﬂ(Ta PP uO)] :EUONP lzrt(papv UO)] 2 Zh(p,p, Up € gl)P (51)

t=1 t=1

ri(p,pyug €E1)-P(&)-1(dy=1)-P(dy =1)

'P(gl)'p
T .

v
el

|
Q

One can similarly show that when a; =2,
EuowP [RW(T7 P, D, UO)} Z CpT .

Hence,

inf supEy,p [R™(T,p,p,Us)|=C-p-T=0(T),

mell p>0

The proof follows similarly for any d > 2 and we skip the details here for the sake of brevity. [
Before we prove Theorem 2, we prove an important Lemma that relates the confidence width of the mean
reward of product V (||[V||2 _,) and shows that this width shrinks at a rate faster than the confidence width
t

of the estimation of the gap between reward from V and the optimal product (Ay ).

LEMMA 1. Let m be a consistent policy and let ay,..,a, be actions taken under policy w. Let ug € R be a
realization of the random user vector, Uy ~ P, such that there is a unique optimal product, V, amongst the

set of feasible products. Then ¥ V € {V1,...V,,}/ V.

AQ
lim sup log()|V]|2 .1 < —Y—
im sup og(t)|| IIXt S 2oy’

where Ay =uf V., —uV and X, =E [>"/_ a;a}].

Proof: ~ We will prove this result in two steps. In Step 1, we will show that

. A2
hmtsllglog(t)HV - V. Hit—l < 2(17r1/) ’

In Step 2, we will connect this result to the matrix norm on the features of V' which will prove the result.

The proof strategy is similar to that of Theorem 2 in Lattimore and Szepesvari (2016) and follows from
two Lemmas that are provided in Appendix E (Lemma 4 and Lemma 5) for the sake of completeness.

Step 1: First note that for any realization of ug, A, is finite and positive for all sub optimal arms since
there is a unique optimal product (V, for ug). Now consider any suboptimal arm. Then for any event A € Q,
(measurable sequence of recommendations and utility realizations until time t¢), and probability measures P

and P’ on €, for a fixed bandit policy, Lemma 4 shows that

) 1
KL(P,P') > log (%P(A)Jrﬂ”’(AC)> .

Combining the above with Lemma 5 shows that

1 2 1
- — =K 7y > _ ] .
g lluo = woll, =KL, F) 2 log <2P(A)+P/(Ac)>
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where ug and ug, are two different user latent attribute . Now assume that, uo and uy, are chosen such that
V. is not the optimal arm for ug. That is, 3V such that (V —V,)Tuy > 0. Now let A = {T;.(t) < §} where i*
is the index of product V,. Note that T;(t) is the total number of times arm ¢ is pulled until time ¢. Then,
A is the event that the optimal product is pulled very few times. By construction, for all consistent policies,
such an event will have a very low probability. More precisely, if we let

H(V-V.)

——— (Ay +e€),
Vv AV Te

’
Uy = Ug +

for some positive definite matrix H, then it follows that the optimality gap between V and V, is e. Now, if

we consider the expected instantaneous regret for ug until time ¢, then we have that

Rt o) = 3 AEIT ()2 A8t~ T (0] 2 Ao [1{1. (0 < T ] = B (1. < 1)

where A,,;,, is the minimum suboptimality gap. Note that we suppress the dependence of p and p for cleaner
exposition. Similarly, writing the regret characterization for uy, we have that

’ = "o , te t
R(t,uf) = ;AViE [T.()) > ALE [T (£)] > 5 P (Ti*(t) > 2) .

where A, E' and P’ are the optimality gap, the expectation operator induced by the probability measure
P’ over uj. We then have that
R(t, uo) +R(t, up)
et

> P(A) +P(A),

where we have assumed that e is sufficiently small. Next, considering g, we have that

EHU _u/ ||2 :(AV+€)||V—K||?{XLH>1Og ].
gt~ tollx, vy -\ e

> log (2 R uo)ei R(t, ué))) '

Hence, multiplying log(t) on both sides above, we have that

L (A4 IV Vil . log(s) |
t 1 —1 R(t R(t,ul)) —— .
Dlog® WV -Vih 2T g lee(Rlbu) +RIEW) 5oty

But recall that for any consistent policy,

log(R(t,up))
log(T')

for some 0 < v < 1. Hence, for any positive semidefinite H such that |V — V. ||z >0,

i L OV Vi, WV Ay oV Vil
e 2log(t) V-V e 2log(t) IV SVIE VIR T

Next, consider a subsequence {X,, }72, such that

c= tlim suplog(t) ||V — V.|| klim log(t) ||V — V*”?fl .
— 00 — 0 tk

-1 =
Xt
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Then,
V=V V-Vl WV =Vilier IV =Villx, u
lim inf L 5 L + < lim inf k 5 k 3
t=o0 log(t) IV =V*5 [V = Vil —kmee log(ty) [V =VillZ IV =Vl
t "k
limy, o0 inf |V = VLIS o IV = Villfrx, &
— tk

AV =Vl

Now if we let H, = X; '/||X; '|| and H be the limit of a subset of points {H,, } such that they converge
to H, and assume that ||V — V, ||z > 0, then,

, . : : v U2
iy oo inf [V = VL%, IV =Villbix,, n limy o0 inf [V = Vi[5, IV V*HHH;le

v =Vl - eV V.l
< imy oo inf [V = VAL [V VA 1
- v =Vl ¢

Hence,

A V-V.|2 2
| — < lim inf — (Av+e) | 4||HXtHS(AVf6)
t00 2log(t) IV -=V.|% 2z

. A2 +e
— hmts_lfop; log(¢)||V — V*Hx;l < ﬁ

Since this holds for any €, we have proved the first part. Note that we have assumed that ||V — V.|| > 0.
In order to show that this holds in our case, assume otherwise and let |V — V. ||z =0. Then, H(V —V,) is a
vector of 0. But since the kernel of H is the same as H ', we also have that H~*(V —V,) =0. Now consider
a A shifted H. That is let Hy = H + Al,;. Then, by assumption Ha(V —V,) = A(V —V,). Furthermore, since

we are only considering suboptimal arms, V' — V, is non zero by construction. Hence, ||V — V. ||z, > 0. Thus,

limy, o0 inf [V = VLI, IV = V.12 limy oo inf [V = Va3, IV = VA,

—1
HpHy M Hp .
:07

EIEA a v — Vit

which is a contradiction because it has to be 0 <1 —v < 1. This finishes part 1 of the proof. In the next part,
we connect this result to the spectral norm of a product with features V.

Step 2: Consider any suboptimal arm V. Then, we have to show that
A2

lin sup log (1) V(|5 -+ < 5~
1mtsl1£>o og( )||V||X,, t= 2(1—v)’

By part 1, we have that

AV >
_ TV > _ .
1y = lim sup log()]V = V. %,
=lim sup log(¢) (V= V.) T X' (V = V.))
t—oo
=lim sup log(¢) (V' X, 'V + (V)T X, H(V*) —2(V*) T X, 'V)
t—oo
= lim sup log(¢)||V||% -+ + lim sup log(¢) (V*) "X, ' (V") —2(V*) "X 'V) .
t— o0 t t— o0

Now first consider (V*)T X, '(V*). By definition, we have that X, = E[T.(#)]V*(V*)T. This implies that

log(t)
E[T. (t)]

X< MV*(V*)T. Now since, 7 is a consistent policy with order v > 0, we have that

T — oo. Otherwise, regret will be linear in 7. Hence, limsup, . (V*)T X, ' (V*) goes to 0.

— 0 as
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Next, consider (V*)TX,; 'V and for simplicity assume that V and V* are perpendicular. Note that the
proof is similar for the non perpendicular V as well. Given that V and V* are perpendicular, we have
that VTV* =0. Now let y = X, 'V. Then, clearly, V = X,y. Furthermore, X, = E[T;(¢)]V;V,". Therefore,
V=BTV (V) Y+ i E[Ti(1)]ViV;Ty. By the perpendicularity assumption between V' and V.,
we have that

EIT.OIVIP(V)Ty+ Y ELOIV) VY y=0
i=1,..n,iki*
Zi:l,“n,i;éi* E[T; (t)](V*)TVz‘ViTy
E[T. @]V~

= (V)'y=
Now,
lim sup log(t)(V*) " X, 'V = lim sup log(¢)(V*) "y

t—o00 t—o00
i sup log(t) itz ELOIV) VYT
Sn s E[T.@)][[V*]?

=0.
Where the last inequality again follows from the consistency of the policy under consideration. Hence,

A2
lim sup log(¢)|V[|% -1 +lim sup ((V*)"X; (V") =2(V*) "X, 'V) =lim sup log(t) |V |3 -1 < -

t—o0 t— 00 t—o0 - 2(1—1/)

which proves the final result. O

Proof of Theorem 2: We will prove the above statement by showing that whenever |S(ug,p)| < d, any
consistent policy, 7, recommends products outside of the customer’s feasibility set infinitely often. Note that
for any realization of ug, one can reduce p and make it smaller and smaller so that |S(ug, p)| < d. Customer
disengagement thus follows directly since there is a positive probability, p, of customer leaving the platform
whenever a product outside the customer’s feasibility set is offered.

In order to show that a consistent policy shows products outside the feasibility set infinitely often, we
will use Lemma 1. More specifically, we will construct a counter example such that no consistent policy will
satisfy the condition of the Lemma unless it exits the set of feasible products infinitely many times.

Let us assume by contradiction that there exists a policy 7 that is consistent and offers products inside the
feasible set infinitely often. This implies that there exists ¢ such that Vt >, a, € S(ug, p). Now under the
stated assumptions of Example 1, there are d products in total (n =d) and the feature vector of the "

product is the ** basis vector. That is,

1 0 0

0 1 0
i=]. a‘/2: . a‘/?n"'avcl:

0 0 1

Further let u,, the unknown consumer feature vector, and p, the tolerance threshold parameter be such
that WLOG, S(uo, p) ={2,3...d} (follows by Definition (2)). That is, only the first product is outside of the

feasible set. Also let,
T7(t) 0

0 T7(t)
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where
t
Ti(t) =E Zﬂ{a’;:j}] :
F=1
T;(n) is the total number of times the j* product is offered until time ¢ under policy 7.

Next consider the following:

lim supHoolog(t)HelHi;l =lim sup, ,  log(t)e; X, 'ey,

. -1
Zafa;] e1
F=1

=lim sup, ,__log(t)e] [R,] e

> tim sup, o 1o5(0) (75 )

=lim sup, ,_ log(t)e, E

1
> lim sup,_, . log(t) <m>

=00.
Where the second to last inequality follows by the fact that V¢ > ¢, 7 recommends products inside the feasible

set, S(uo, p), which does not contain product 1. Furthermore,

Ti(t)=Tit+1)=T1(t+2)=....= lim Ty ({ +n).

n—o0o

For any finite Ay,, and 0 < v <1, we have that,

. A2
tm sup,_,olog(®)ex 31 2 575

which implies that Ja; in the action space such that the condition of Lemma 1 is not satisfied. Hence we have
show that there exists no consistent policy that recommends products inside of the feasible set of products
infinitely often. Now since p is small and p is positive, this leads to a linear rate of regret for all customers.
That is,

inf sup R™(T,p,p,uq)=C1-T=0(T),

7€M 50

a

Proof of Theorem 3: We prove the result in two parts. In the first part we consider latent attribute
realizations for which the optimal aprior product, which is chosen by the GBU policy in the initial round,
is not optimal. In this case, if we take the tolerance threshold parameter to be small, there is a positive
probability that the customer leaves at the beginning of the time period, which leads to linear regret over
this set of customers. In the second part, we consider those customers for which the apriori product is indeed
optimal. For these customers, we again take the case when p is sufficiently small and reduce the leaving time
to the probability of shifting from the first arm to another arm. Since the switched arm is suboptimal and
outside of the user threshold, the customer leaves with a positive probability resulting in linear regret for
this set of customers.

Recall, by assumption, there are d total products and attribute of the ** product is the " basis vector.
Furthermore, the prior is uninformative. That is, the first recommended product is selected at random. Lets

assume WLOG that the GBU policy picks product 1 to recommend. We have two cases to analyze:
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e Product 1 is sub optimal for the realized latent attribute vector, ug.

e Product 1 is optimal for the realized latent attribute vector, ug.

Lets consider case (i) when product 1 is suboptimal. In this case, if we let p to be smaller than the difference
between the utility of the optimal product and product 1 (p <wug (Vi — V4)), then the customer leaves with

probability p in the current round. Hence, for all such customers

T
RW(Tvpvp, UO) = Z’rt(pvpv uO)

=pT.

Thus, for all such customers, the GBU policy incurs at least linear rate of regret.

Next, we consider the customers for which product 1 is optimal. In this case, the customer leaves with
probability p when the greedy policy switches from the initial recommendation to some other product. Again,
at any such time, ¢, if we let p to be small such that the chosen product is outside of the customer threshold,
then we will have disengagement with a constant probability p in that round. This would again lead to linear
rate of regret.

Let Ef ={V,"4, — V"4, > 0}. E! denotes the event that the initially picked product is indeed better than
the i*" product in the product assortment at time ¢. Similarly, define G* to be the event that the GBU policy

switches to some other product from product 1 by time ¢. Then,
P(Gt) =P (Ui:L.n,i;t; Uj=1..¢ (Ezj)c) 4
>P((E))), Vi=2,..,n,Vj=1,.,t. @
We will lower bound the probability of product 1 not being the optimal product for any time ¢ under the
GBU policy. Since we are dynamically updating the estimated latent customer feature vector, the probability
of switching depends on the realization of €,, the idiosyncratic noise term that governs the customer response.
We will first consider the case of two products (d = 2). Furthermore, we will analyse the probability of

switching from product 1 to product 2 after round 1 ((E3)¢). First note that,
E;={V{4,—V, i, >0}
— (B! ={V'a, — V"4, > 0}
={V,"t, — Vi, — Vi uo + V; ug — V,"ug + V; Tug > 0}
={(Vi=V1)" (@t —uo) > A}

where A; = V,Tuy — V,Tug. Now, note that
“1

-y )
ﬂt = Zafa; + %Id [alzt}T Yf:l:t
Lf=1
. _ |1+ 0 10
—u=|"7 2| 00
i 0'2Y1
— = |—-0
Lo? + &2 ]
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Therefore, we are interested in the event

2Y;
{0;2_2 <0} :{Yl <0}:{U01 +eé1 <0}:{U01 +ée1 <0}:{€1 <—U01}

Now note that for any realization of ug, there is a positive probability of the event above happening. Hence,
let
]P(El < —UOl) :C4 >0.

This implies that P(G*) > C,. Hence, following the same regret argument as before, we have that for all such
customers,

RGBU(Ta Py D5 uO) =C,-T.
The argument for d > 2 follows similarly and we skip the details for the sake of brevity. Hence, we have
shown that regardless of the realization of the latent user attribute, uo the GBU policy incurs linear regret
on the customers. That is, Yug,

sup RGBU(T7 PsPs UO) = CV2 T= O(T);

p>0
|

Proof of Theorem 4: We will use the same strategy as in the proof of Theorem 3 with two main exceptions;
(i) Because this is the case of no disengagement, we cannot select p to be appropriately small. (ii) Since the
result is on the expectation of regret over all possible latent attribute realizations, we need to show the result
only for a set of customer attributes with positive measure.

Noting (ii) above, we focus on customers for which the first recommended product is suboptimal and show
that with positive probability the greedy policy gets “stuck” on this product and keeps on recommending
this product. This leads to a linear rate of regret for these customers.

Step 1 (Lower bound on selecting an initial suboptimal product): WLOG assume that product 1 was
recommended and consider the set of customers for which wg is suboptimal. Note that since ug is Multivariate
Normal, there is a positive measure of such customers.

Step 2 (Upper bound on the probability of switching from the current product to a different product during
the later periods:) Now that we have selected a suboptimal product, we will bound the probability that the
GBU policy continues to offer the same product until the end of the horizon. This will lead to a linear rate
of regret over all the customers for which the selected product was not optimal.

We will use the same notation as before. Recall that E! = {V,"4, — V,"4, > 0}. E! denotes the event
that the initially picked product is indeed better than the ¢*"* product in the product assortment at time ¢.
Similarly, G* denotes the event that the GBU policy switches to some other product from product 1 by time
t. Then, we are interested in lower bounding the event that the GBU policy never switches from the product
1 and gets stuck. That is:

B((G')) = 1—P((G")

=1=P (Uizt.nizi- Uj1.e (BY)°) (5)

>1- % Y BE)).

j=1..ti=1..n,iz%i*
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As before, first we consider the case when there are only 2 products. In this case, if we start by recom-
mending product 1, we want to calculate the probability of continuing with Product 1 through out the time
horizon. First note that using the same calculation, one can show that if until time ¢, we continue with only
recommending product 1, then the latent attribute estimate at time ¢ is given by
L lUQ th:1 Yy 0

to2 +¢2

Uy =

For any time ¢, we claim that the GBU policy continues to recommend the same product as before if the
utility realization at time ¢ is positive. That is, if Y;_; > 0 and the GBU policy offered product 1 in rounds
1,..t —1 then it will continue recommending product 1 in round ¢. We prove this claim using induction. Note
that the base case of t =2 was proved in the previous proof (reversing the argument in the second part of
Theorem 3 results in the base case) and we omit the details here. Now by induction hypothesis, we have
that the GBU policy offered product 1 at time ¢ — 1 because Y7,...Y,_o were all positive. Now consider time
t let Y,_; >0, Then we have that

1= 0
Ut—1 t0'2+£2 )

. [02 th_zll Yy

We will select product 1 if,

t—1

o? > f=1 Yy
t0'2 _|_ 62
t—2

o? Zf:l Yy oY, 4
to? + 52 to? + 52
But note that by induction hypothesis, the first term of the sum above is positive. Hence, GBU selects

>0

>0

o'zYt_l
to24¢2

product 1 at least when > 0 which proves the claim. Now note that for any time ¢, the probability Y;

being positive is independent across time periods. Furthermore,

02th1
P m>0 :]P)(K_1>O):]P)(u01+€t>0)

For any ¢, probability of not switching from the first product is at least

P(G))=1-P((G))=1- Y > P(E))

j=1..ti=1..n,izi*

=1- Z P (e, > —uo,) (6)

j=l.t
=1 7tp(€> *Uol)

Now for any ¢, if we consider all reallzations of ug such that P (e > —uo, ) < %7 then we have that the above

probability is always positive. Note that Product 1 was not optimal, hence, over these customers, the GBU

policy incurs linear regret which results in an expected linear regret. That is,
Euor [REPY(T, p,0,u0)] =C3-T = O(T).

The proof for the case when d > 2 follows similarly and we skip the details here for the sake of brevity. Note
that unlike Theorem 3, this argument was regardless of disengagement and used the fact that with positive
probability, the policy would get stuck on the same arm with which it started regardless of what the real

optimal is. [
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C. Upper Bound for Constrained Bandit

Proof of Theorem 5:  Consider any feasible p > 0 and let 4 be such that only a single product remains in
the constrained exploration set. Note that a feasible v that ensures that only a single product is chosen for
exploration is y < % Such a selection would ensure that OP(v) picks a single product (z) in the exploration

phase. Now let 7 = % and consider

T T
WA»:Y = {U/O : Vv; Ug > max -‘/i Uo} .
i—1,..,n,i#1

Then we have that Vuo € W, 5, customers are going to continue engaging with the platform since the
recommended product is the corresponding optimal product. Next, since the prior is a multivariate normal,
we have that P (W, ;) > 0. This holds because by assumption since V; is the i*" basis vector and wug is
multivariate normal with prior mean of 0 across all dimensions. So, the probability of sampling a uy such
that uo. > wuo,, Vj=1,..,d, j #1 has a positive measure under the prior assumption. We claim that for any
p, the regret incurred from this policy will be optimal. Consider two cases: (i) When p is such that their is
more than 1 product within the customer’s relevance threshold. That is, |S(ug,p)| > 1 (ii) When there is a
single product within the customer’s tolerance threshold, p. That is, |S(ug,p)| = 1. In both cases, 7, which
is the only product in the exploration phase, is contained in |S(ug,p)|. That is, Yug € W 5, i € S(ug, p).
Hence, there are no chances of customer disengagement if product i is offered to the customer. Furthermore,
regret over all such customers is infact 0 since the platform recommends their optimal product. This proves
the result. O

Proof of Theorem 6: We will prove the above result in three steps. In the first step we will lower bound
the probability that the constrained exploration set, =, contains the optimal product for an incoming vector.
In the second step we will lower bound the probability of customer engagement over the constrained set.
Finally, in the last step, we use the above lower bounds on probabilities to upper bound regret from the
Constrained Bandit algorithm.

Step 1 (Lower bounding the probability of not choosing the optimal product for an incoming customer in
the constrained set): Let, £,o—optimai, De the event that the optimal product, V, for the incoming user is
not contained in =. Also let ¢ = arg maXy ¢_q 1]d 4"V, denote the attributes of the prior optimal product.

Notice that V5 = since ||u||; = 1. Also recall that
V. =arg maxy_; yja up V,

denotes the current optimal product which is unknown because of unknown customer latent attributes. We
are interested in

P (gnofoptimal) =P (V.< g E) .

In order to characterize the above probability, we focus on the structure of the constrained set, =. Recall
that = is the outcome of Step 1 of Constrained Bandit (Algorithm 2) and uses OP(y) to restrict the
exploration space. It is easy to observe that = in the continuous feature space case would be centred around
the prior optimal product vector () and will contain all products that are at most v away from each other.

Figure 6 plots the constrained set under consideration. We are interested in characterizing the probability
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of the event that wg & [4;,@,] where 4; and @, denote the attributes of the farthest products inside a ~y
constrained sphere. Furthermore, %, and @, are divided in two equal halves of length by a perpendicular

line segment between @ and the origin due to the symmetry of the constrained set. Simple geometric analysis

yields that @ and u, are /2 (1 — (1 — Zf)) apart. The distance between @ and u, follows symmetrically.

Figure 6  Analyzing the probability of &,,_optimai. Note that we are interested in characterizing the length of

line segments (%, @) and (4, @)

Having calculated the distance between @ and #,;, we are now in a position to characterize the probability

Of gnofoptimal .

2
IP)(5710—opti'mal):]P)(‘/:« ¢E):]P) ||U0*'l_1,||22 2 <1 <11>>

Note by Holder’s inequality that,

72
2 (1= /(1= T ) ) < o~ ke < o .
which implies that,

,YQ 72
]P)(gno—optimal):]P) ||U0*’EL||2 Z 2 ]-* (14> §]P’ ||u07ﬂ||1 Z 2 1* (14)

Note that ug ~ N (1, Z—;Id). Hence, using Lemma 2 in Appendix E, we have that,

2
72 1- (1_%)
P flup—afs <4|2(1- (1—) >1—2dexp | - | ————=

4

Hence,

P (gno—optimal) S 2deXp —

Step 2 (Lower bounding the probability of customer disengagement due to relevance of the recommendation):
Recall that customer disengagement decision is driven by the relevance of the recommendation and the

tolerance threshold of the customer. Hence,

P(ug V. —ug Vi < p) = P(ug uo — ug u; < plug, u; € Z)
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=P(ug (uo — w;) < plug,u; € )

P(|u0||2<p|u0,ui65>
v

B_ .
> | 1—2dexp —<”—

where the last inequality follows by Lemma 2. This in-turn shows that with probability at least

. 2
L_yi=da, . .
(1 — 2dexp (— (”Zﬂ) , customers will not leave the platform because of irrelevant product rec-

ommendations. We let such latent attribute realizations be denoted by the event &, cicoant-

Step 3 (Sub-linearity of Regret): Recall that

ug Vi if dy=1 forany t' <t,
(p b, uO) = T T .
ug Vi —uga,  otherwise.

In other words,

(PP, uo) = (ugV* - ugat)]l{Lt,p,p =1} + ugv*]l{Lt,p,p =0}.
Nevertheless,

P pauo ugv* _ugat H{Lt,pyp: 1}+ (UJV*)]I{LLP,Z,ZO}

= (ug Vi —ug ar) I, 1{d, = 0} + (ug V) (1 — IT,_, 1{d, = 0})
= (ug Vi —ug a,) I, 1{dt = 0} + (ug V. +ug a, —ud a,)(1 — I, 1{d, = 0})
= (ug )

o Vi —ugay) +ug a, (1 —11_, 1{d, = 0}).

Note that the first part in the above expression is related to the regret of the classical bandit setting where
the customer does not disengage while the second part is associated with the regret when the customer
disengages from the platform and the platform incurs maximum regret.

Next, focusing on cumulative regret and taking expectation over the random customer response on quality

feedback (ratings), we have that,

N
Eyy~r [ROP(T, p,p,u0)] = Eyygmp [Zn P, D; Uo ] <E [Z —ug ay) +ug a (1 -1, 1{d, = 0})

=ZE[(ugV*—ugat)] +E [ua, (1 -11_,1{d, =0})].

Note that conditional on fraction w of customers, we have that these customers would never disengage

from the platform due to irrelevant personalized recommendations. Hence,
1-1I_,1{d, =0} =0,

since there is no probability of leaving when a product within the constraint set is recommended and meets

the tolerance threshold (w, analyzed in the previous step). Hence,

T
RCB()\,’Y) (T7 P, D, U/O'u() € grelevant) = Z (U(TV* - Ug%)-

t=1
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Now notice that for any realization of ug, Lemma 3 of Appendix E shows that

TL 1 TL
RCB(A,’Y) (T? PP, UQ|U0 € grele'ua’nt) S 4\/Td 1Og ()\+ d) <\/XS+§\/210g6 +d10g (1 + )\d)) .

with probability at least 1-¢ if [lugll2 < S. From Step 2, we have that all w fraction of customers have

[uoll2 < 2. Hence first we replace S with £. Finally, letting 0 = %, we get that

TL p TL 1
CB(\7) ) < i = — —
R (T, p, p, uo|to € Eretevant) _4\/Tdbg </\+ y ) <ﬁ7 +§\/log(T)+dlog <1+ Ad)) + .TT
=0 (\/T) .

Recall that £ is the error sub-Gaussian parameter and A is the L2 regularization parameter. Rearranging the

terms above gives the final answer. [
D. Selecting set diameter

In the previous section, we proved that the Constrained Bandit algorithm achieves sublinear regret for a
large fraction of customers. This fraction depends on the constrained threshold tuning parameter v and other
problem parameters (see Theorem 6). In this section, we explore this dependence in more detail and provide
intuition on the selection of v that maximizes this .

Recall, from Theorem 6, that the fraction of customers who remain engaged with the platform is lower

bounded by,

2
-y (%) R YUY
w = 1—2dexp| ——— 1—2dexp | — [ Z—"F——
g g

1 (kﬁ)

o

This fraction comprises of two parts. The first part, (1 — 2dexp (— , denotes the fraction of

customers for which the corresponding optimal product is contained in the constrained exploration set, =.
Notice that the fraction of customers for which the optimal product is contained in the constrained set
increases as the constraint threshold, ~, increases. This follows since a larger v implies a larger exploration
set and more customer that can b62 served with their most relevant recommendation. Similarly, the second
part, [ 1 —2dexp (— (W) )), denotes the fraction of customers who will not disengage from the
platform due to irrelevant recommendations in the learning phase. Contrary to the previous case, as the
constraint threshold v increases, the fraction of customers guaranteed to engage decreases. Intuitively, as
the exploration set becomes larger, there is wider range of offerings with more variability in the relevance
of the recommendations for a particular customer. This wider relevance in turn leads to a decrease in the
probability of engagement of a customer. Hence, v can either increase or decrease the fraction of engaged
customers based on the other problem parameters.

In Figure 7, we plot the fraction of customers who will remain engaged with the platform as a function of
the set diameter, v, for different values of tolerance threshold, p. As noted earlier, the fraction of engaged

customers is not monotonically increasing in 7. When ~ is small, the constrained set for exploration (from
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Step 1 of Algorithm 2) is over constrained. Hence, increasing -y leads to an increase in the fraction of engaged
customers. Nevertheless, increasing it above a threshold implies that customers are more likely to disengage
from the platform due to irrelevant recommendations. Hence, increasing ~ further leads to a decrease in the
fraction of engaged customers. We also note that as customers become less quality concious (small p), the
fraction of engaged customers increases for any chosen value of «. This again follows from the fact that a
higher value of p implies a higher probability of customer engagement in the learning phase. This increase in

engagement probability during the learning phase encourages less conservative exploration (larger 7). The

10f e
[ — ]
E OB| / — -
'E- e ] — p=.4
= o
|'_" - -
g O6r : p=5
7 ]
Z ] p=1
w 04| -
E-] ] .
5 i 1« Optimal y»
T o2f -
E L 1 .
2 { « Estimated y»
ool :
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.0 05 1.0 15 2.0
¥

Figure 7 Fraction of engaged customer as a function of the set diameter ~ for different values of tolerance
threshold, p. A higher p implies that the customer is less quality concious. Hence, for any +, this ensures higher
chance of engagement. We also plot the optimal v that ensures maximum engagement and an approximated

that can be easily approximated. The approximated ~ is considerably close to the optimal v and ensures high level

of engagement.

above discussion alludes to the fact that the optimal v that maximizes the fraction of engaged customers

is a function of different problem parameters and is hard to optimize in general. Nevertheless, consider the

following:
1— /(1= ﬁ) by imd -\ 2
4 ~ 21:1 U;
w= |1-2dexp| ———W——— 1—2dexp —<7 )
o o
1-— 1-— ﬁ i=d _ 2
4 £— Zz:l U;
= 1—2dexp | — —2dexp | — | =2 +
o
1- (1 - ”z) o _ymimd g \ 2
4d? exp exp | — (“’ 2o Z)
o o
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_ _ 22 i=d _ 2

11 1 (1 4) 1 D 1P

N — — —ex —_— | ——ex -
202~ 24P o 24 P

Hence, in order to maximize w, we have to solve the following minimization problem:
72

1-— 1-24 o i=d _ \ 2
4 = — .1 Uy
min exp —¥ +exp | — (72:11> . (7
o

v o
While Problem (7) has no closed form solution, we consider the following problem:

1 ok P
o (1 B 4) T 202 ®)

Note that (8) is an approximation of (7) based on the Taylor series expansion of the exponent function
and assuming that the joint term in the second exponent will be sufficiently small. Solving (8) using FOC
conditions, a suitable choice of «y yields the following:

_ Vot

and >0}.
2(4—~2)"" !

7*6{75P:

While ~* is not optimal, it provides directional insights to managers on suitable choices of «. For example,
as p increases the estimated optimal v also increases. Furthermore, it decreases with the prior variance,
0. A lower variance yields better understanding of the unknown customer and leads to lower size of the
optimal exploration set. Similarly, as the latent vector dimension, d, increases, there are higher chances of not
satisfying customer relevance thresholds in the learning phase. This leads to a more constrained exploration.

In order to analyze the estimated optimal +, we compare the estimated optimal 4 with the numerically
calculated optimal v for different values of p, the customer tolerance threshold. In Table 3, we show the gap
in the lower bound of engaged customers from choosing the optimal v vs the estimated . Note that the
approximated optimal v performs well in terms of the fraction of engaged customers. More specifically, the

estimated v loses at most 1% customers because of the approximation.

Tolerance Threshold (p)|Optimal ~*|Estimated v*|% Gap in Engagement
0.4 1.31 1.25 1.1%
0.5 1.47 1.37 1.1%
1.0 1.93 1.76 0.07%

Table 3 Optimal vs. estimated + threshold for different values of customer tolerance threshold, p. Note that
the % gap between the lower bound on engaged customers is below 1.1% showing that the estimated ~ is near

optimal.

We note that this optimal selection of « is based on the model setting of Theorem 6. In Section 6, we

discuss the selection of « for more general settings.
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E. Supplementary Results

LEMMA 2. Let X € R¢ NN(u, o21) be a multivariate normal random variable with mean vector p € R?.
Let S € R? be such that S >3"\—% u;. Then,

P(IX | <) > 1—2dexp | (5 S-Tiin 1uz>

Proof:  First note that,

||X||1—Z|X|—Z (M)<§O<|X il f)

=1
Then, we have that

P(||X||1>S)SP<§G<W+Z>Z >S (ZX “1| S=3iZ 1Mz>
gp<§|z|25_2ff/~“>§d P<|Z|25 %Ulmz))

where Z € R ~ A(0,1) and the first set of inequalities follow by the pigeon-hole principle and the union
bound. The last inequality follows by the tail probability of standard normal random variables. The result

follows easily. [

LEMMA 3 (Theorem 2 in Abbasi-Yadkori et al. (2011)). Let F,—o be a filtration. Let n2, be a real-
valued stochastic process such that n, is F; measurable and n, is conditionally R-sub-Gaussian for some R >

0 e.

2 p2
VA ER, E[e*|F,_1] <exp <)\ 2R )

Let X!Z° be an R? walued stochastic process such that X, is F,_1-measurable. Assume that V is a d X d

positive definite matriz. For any t >0, define

s=T s=t
Vi=V+) XX[.8=) nX
s=1 s=1

Then for any § >0, the following holds with probability at least 1-0 for all t > 0.

det(V)Y/2det(\I)~1/?
: ) ©

Nowlet V.=1I\, A>0, define Y, = X 0+n, and assume that ||0. |2 < S. Then, for any & > 0, with probability
at least 1 — 9, for allt >0, 0* lies in the set

. 2
Cy: {HGRd 0 =0, < (R dlog (1+§tL ) +\/XS> } (10)

[Sellg-1 < 2R?log (
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LEMMA 4 (Lemma 5 in Lattimore and Szepesvari (2016)). Let P and P’ be measures on the same

measurable space (Q, F). Then for any event A€ F,

where A€ is the complementer event of A (A°= \A) and KL(P,’) is the relative entropy between P

and .

LEMMA 5 (Lemma 6 in Lattimore and Szepesvari (2016)). Let P and P’ be probability measures on
(a1,Y1,...a,,Y,) €, for a fized bandit policy 7 interacting with a linear bandit with standard Gaussian

noise and parameter uy and uy respectively. Under these conditions, the KL divergence of P and P’ can be

computed exactly and is given by

P(A) + P/(4%) > L exp (~KL(P,P))

KLE,P) =2 S EIT0] (V] (w0 —up)°

where

T

i(n) is the total number of times the j'" product is offered until time T under policy .



