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Abstract— In this paper, we study the optimal storage in-
vestment problem faced by an owner of renewable generator

the purpose of which is to support a portion of a local

demand. The goal is to minimize the long-term average cost

of electric bills in the presence of dynamic pricing as well as

investment in storage, if any. Examples of this setting include

homeowners, industries, hospitals or utilities that own wind

turbines or solar panels and have their own demand that they

prefer to support with renewable generation. We formulate

the optimal storage investment problem and propose a simple

balancing control for operating storage. We show that this

policy is optimal for constant prices and some special cases of

price structures that restrict to at most two levels. Under this

policy, we provide structural results that help in evaluating the

optimal storage investment uniquely and efficiently. We then

characterize how the cost and efficiency of storage, dynamic

pricing and parameters that characterize the uncertainty in

generation and demand impact the size of optimal storage and

its gain. One surprising result we prove is that for storage to be

profitable under the balancing policy the ratio amortized cost

of storage to the peak price of energy should be less than
1
4 .

I. INTRODUCTION

The increasing demand for electricity coupled with en-
vironmental concerns have motivated the need for smart
grids that aim towards integrating vast amounts of renewable
energy with the grid. According to the US Department of
Energy, by 2030, 20% of the US electricity portfolio should
consist of wind energy [1], while the current levels contribute
to just around 2% [2]. Similar aggressive targets have been
set across the world for different forms of renewable energy.

Renewable energy sources are non-dispatchable sources
that are both uncertain and intermittent. For example, it is
not uncommon to see an 80-90% drop in generation in short
durations of time. Large scale integration of such sources can
lead to several issues including increased need for reserves,
large ramps and uncertainty leading to stability concerns
and costly upgrades in the transmission network [3]. Energy
storage technologies can address all these concerns because
they decouple the time of generation and consumption. But
the high capital costs continue to be the main barrier in this
direction. However, there are significant on-going efforts to
create economical energy storage technologies such as bat-
teries, flywheels, compressed air energy storage, capacitors,
fuel cells, and biomass, in that, storage is bound to become
an integral part of the future grid.
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With millions of dollars in government subsides being
spent on renewable energy installation and integration and
several additional millions being spent on the development
of storage devices, it is crucial to understand the interaction
between storage and renewables and in particular, the trade-
off between the value that storage creates and its capital cost.
It is also important to understand the other factors that affect
the gain from storage and their impact.

Our work focuses on this interplay between storage and
renewables. We study the setting where a renewable genera-
tor aims to support a portion of a local (elastic) demand by
storing any excess generation in a storage device. Our goal is
to minimize the long term average expected cost of demand
that is not satisfied by renewable generation but satisfied by
energy from the electric grid and any cost associated with
investment in storage. We refer to this problem as the optimal

storage investment problem. Examples of this setting include
homeowners, industries, hospitals, game parks or utilities
who own renewable generation facilities, have their own
demand and prefer to use renewable generation to minimize
their cost using storage devices. These settings will get more
prevalent with city governments investing in microgrids,
homeowners getting subsidies for investing in solar panels,
utilities for renewable generation sites and so forth.

In this paper, we formulate the optimal storage invest-
ment problem as an average cost infinite horizon stochastic
dynamic programming problem. In the light of smart meters
that can price electricity at different times of day differently,
we assume that prices are exogenous and stochastic revealed
prior to consumption. We propose a simple storage man-
agement policy which we refer to as the balancing control.
It sequentially performs balancing which is satisfying the
demand with renewable generation and storing which is
storing the excess generation, in that order, at peak prices
and the reverse order at lower prices. We show that this
simple control is optimal under (a) constant prices and (b)
a special case of two level pricing scheme i.e., when the
lower price is zero. We then prove structural results under
this control policy that help in computing the unique optimal
storage size efficiently.

In the remaining part of the paper, we explore the tradeoffs
and impact of the different factors that govern the size
of optimal storage and its gain. First, we prove a rather
interesting result that shows that under the balancing policy it
is imperative for the ratio of the per-period amortized cost of
storage to the peak price of energy be less than 1

4 for storage
to be a profitable investment. To the best of our knowledge,
this is the first theoretical tight upper bound on the cost of
storage independent of any assumptions on the distribution of
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uncertainties. Next, for a specific distribution of the net gap
between renewable generation and demand (independent and
identically distributed (i.i.d) uniform), we study the impact of
the following factors on optimal storage: (a) the statistics of
the uncertainties that characterize the renewable generation
and demand; (b) the cost and efficiency of storage; and (c)
dynamic pricing and any uncertainties associated with the
prices themselves.

The remainder of the paper is organized as follows. In
section 2 we provide a brief literature review of related work.
In section 3, describe our model. In section 4 we propose the
balancing policy, discuss its performance guarantees and then
prove structural results that help towards the computation of
the optimal storage investment. In section 5, we focus on
tradeoffs and impact of different factors on optimal storage
and conclude in section 6.

II. RELATED WORK

Interaction between renewable energy and storage has
been the subject of many papers. Prior work has mostly
focused on the setting where renewable generators participate
in conventional electricity markets by bidding and entering
into forward contracts that have associated penalties if con-
tracts are breached [4], [5], [6], [7], [8]. Researchers show
that using storage can increase the economic value of these
operations. With the exception of Kim and Powell [7] and
Bitar et al. [8] who use dynamic programming techniques,
the methodology used is to solve a deterministic version of
the problem over a sample path and then take an average of
the revenue over different sample paths. However, as pointed
by [7], this approach does not produce an admissible policy
as the decision depends on the sample path.

Our setting differs from the above in that we consider
renewable generators that directly face demand and use
storage to reduce the amount of conventional generation
used. Authors Brown, Lopes and Matos in [9] consider a
similar setting which also aims to find the optimal storage
size but our work is different from theirs partly in the setting
and very much in the methodology: first, their setting is that
of an isolated power system but ours is not, in particular,
because we allow demand to draw electricity from the grid
at prices that maybe stochastic in nature; and, second, they
use the sample path approach discussed above and we use
that of dynamic programming.

In all above papers including ours, authors assume that
market prices are independent of the renewable generation
but Sioshansi’s work shows that high wind energy pene-
tration can suppress the prices of energy and in particular,
storage can help mitigating this effect [10].

We would like to point the readers that the models that we
consider and those by [7], [8] have a very similar structure
to the problems in classical inventory theory including the
well-known newsboy problem [11]. The main differences
though are that storage is limited in size, has associated
ramp constraints and conversion losses. In addition, in the
energy setting there are a lot more uncertain quantities such
as renewable generation, demand and price. These result in

different dynamics and newer challenges. A key question
that has not be tackled in inventory theory literature is what
factors affect the size of optimal storage investment and how.
This is the focus of our study.

III. MODEL

Consider a renewable generator the purpose of which is to
satisfy a local demand. Any excess generation is assumed to
be lost unless stored in a storage device and that any excess
demand that is not satisfied from renewable generation is
supported by other generators connected to the electric grid
at prices which are revealed before consumption. Our goal
is to identify the optimal size of storage to invest in so as to
minimize the long term average cost of electric bills along
with any cost related to storage investment. We refer to this
problem as the optimal storage investment problem. Below
we state our assumptions, describe the way we model storage
and then formulate the investment problem.

We assume the renewable generation and price are known
exogenous stochastic processes that are independent of each
other denoted by Wt and pt. We assume that demand is
also an exogenous stochastic process that may be elastic in
which case it depends on the price. We denote it by Dt(pt).
We assume that the purpose of storage is to store renewable
generation only and not store energy from the electric grid.
This is because we already account for elastic demand.

Any storage can be characterized using the following
parameters: energy rating, power rating, efficiency and total
ownership cost of storage. Energy rating is the net capacity
or size of storage represented by S. Power rating specifies the
rate at which storage can be charged or discharged. This can
be the same or different for charging and discharging cycles.
We denote it by Ri and Ro for each respectively. Efficiency

primarily consists of the conversion losses and are typically
much higher than any dissipation losses. We denote it by ρ.
This is also commonly referred to as the roundtrip efficiency
because it is the product of two conversion losses: converting
renewable energy to its stored form and the reverse. And fi-
nally, the total ownership costs is the amortized per unit cost
of capital and may include any operational and maintenance
charges denoted by c. This is a general model of storage and
our goal is to find the optimal S given the other parameters.

Below in our formulation, we model S as the maximum
amount of useful energy that can be stored in storage and c

as the amortized cost of useful storage of size S. The reason
we do this is to explicitly avoid using two conversion losses.
These parameters can always be modified by scaling without
affecting the structure of the results in this paper.

We will now formulate the storage sizing problem as
a discrete-time average-cost infinite horizon stochastic dy-
namic programming problem. We consider the time dis-
cretization to be in the order of hours. Although our model
can be written at a finer granularity, making meaningful
predictions at a finer grain may not be possible when one
solves the storage investment problem several months in
advance. Since the granularity of these discretizations are
relatively small compared to the life-cycle of storage devices,
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we formulate the problem as an infinite horizon problem
that amortizes the storage cost over several periods. Finally,
we average the costs because between consecutive time
discretizations the discount factors are close to 1.

Let Xt denote the level of useful energy in the storage at
time t. We assume the following sequence of events in each
period: at the beginning of period t, we are revealed exanté
the value of the generation Wt, the price pt and then the
demand Dt(pt). Next, the decision, ut, the amount to store is
made. We allow this to be negative as we can extract energy
from storage as well. We do not explicitly characterize the
prediction models for Wt, pt and Dt(pt). The components
of such prediction models as well as their revealed exanté
values at time t form the state of the system along with Xt.
We assume that any uncertainty after the predictions are i.i.d.
We now formulate the investment problem below:

min
S≥0,ut

lim
T→∞

1

T
Ep,D,W

T�

t=1

pt [Dt(pt)−Wt + ut]
+ + cS

ut ≤ min{Wt,
1

ρ
(S −Xt), Ri} (1a)

ut ≥ −min{Dt(pt), Xt, Ro} (1b)
Xt+1 = Xt + βtut, (1c)

where βt = ρ if ut ≥ 0 and 1 otherwise. The amount to
store, ut, is by definition restricted by the size of storage,
the wind, the demand and the ramp constraints as written
in constraints (1a-1b). Constraint (1c) is the state update
equation for the storage level which increments the current
state by the amount of useful energy that can be stored which
is βtut. The first term in the objective is the penalty or the
expenditure proportional to the unsatisfied demand in each
period. The second term is the amortized cost which we
assume has a linear form. Our goal is to identify the structure
of the optimal policy given S and then optimize for S.

We assume that the renewable generation, demand and
prices are stationary processes. Under a stationary control,
the system evolves as a Markov Chain. Assuming that the
Markov Chain has only one recurrent class and is aperiodic,
the steady state distribution of the system exists and hence
the limit. We refer the reader to Section 5.6 in book [12] for
details on the continuous state Markov Chains.

IV. MAIN RESULTS: BALANCING CONTROL AND
STORAGE SIZE

In this section, we first propose the balancing control.
Next, we discuss pricing schemes under which this control
is optimal. And finally, we provide structural results under
this control that allows one to compute the optimal storage
size uniquely and efficiently.

A. Balancing Control

Consider the following stationary control policy that we
refer to as the balancing control

• When the price is high, first satisfy the demand as much
as possible using the renewable energy generated in
the current period and then that available from storage.

Next, store the excess generation, if any. In case of
constant prices, we restrict to just this control.

• When the price is not high, first store all that is possible
and then satisfy the demand with the excess generation.

Let pH denote the highest price and let DH

t
denote the

corresponding demand at the high price. Mathematically, the
control, uB

t
, is as follows (the superscript B refers to the

balancing control):

Let wB

t
=

�
(Xt +Wt −DH

t
)+ −Xt if pt = pH

Wt otherwise.

In the absence of ramp constraints,

u
B

t
= min

�
1

ρ
(S −Xt), w

B

t

�
, (2)

and incorporating ramp constraints, we get

u
B

t
= min

�
Ri,

1

ρ
(S −Xt),max{wB

t
,−Ro}

�
. (3)

B. Optimality of the balancing control under special pricing

schemes

Constant prices: For the case of constant prices, we choose
the control that corresponds to the high price, pH . The
balancing control is optimal because there is no gain in
storing any energy if you can satisfy demand now because in
the future one can only sell it at the same price. In fact, the
quantity of energy that can be sold decreases in the presence
of conversion losses.

Two level pricing with lower level price equal to 0: At
the high price, the balancing control is optimal for the same
reason as the case of constant prices. (Note that this argument
holds even if there are multiple price levels.) The control is
optimal at the lower price which equal 0 because first there is
no penalty of following any control at that price and second
it is always in the best interest to have a higher level of
storage to be prepared in the event of a high price.

Note that a low price of 0 may seem unrealistic at the but
one can argue this as a special case of critical-peak-pricing
(CPP) schemes when the peak price is much higher than the
off-peak price in that the off-peak price can be ignored with
regard to any investment decisions in storage.

Extending the balancing policy to account for multiple
prices levels is a part of our future work that we pursuing.
An interesting point to note in this case is that it suffices
to study the case discrete set of price points because of the
presence of conversion losses.

C. Optimal storage under the balancing policy

In this section, we restrict to the balancing policy and
aim to find the optimal storage under this policy. We do not
restrict the number of price levels but keep in mind that the
balancing policy is optimal only under special cases.

Let ZB(S) be the first term in the objective function that
corresponds to the cost of demand that is not satisfied by
renewable generation under the balancing policy for a storage
of size S. Below we show that ZB(S) is non-increasing
and convex in S. In order to do so, we simplify the state
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Xt and the objective ZB(S) under the balancing policy. For
simplicity of exposition, we restrict to the case in the absence
of ramp constraints but the proofs continue to hold even in
their presence.

Xt+1 = Xt + βtu
B

t

=

�
min{S,

�
Xt + βt(Wt −DH

t
)
�+} if pt = pH

min{S,Xt + βtWt} otherwise.
(substituting Eq. (2)) (4)

Z
B

t
(S) = pt [Dt(pt)−Wt + ut]

+

=






pH

�
DH

t
−Wt −Xt

�+ if pt = pH

pt

�
Dt(pt)−

�
Wt − (S−Xt)

ρ

�+
�

otherwise.

(substituting Eq. (2)) (5)

Theorem 4.1: ZB

t
(S) is non-increasing in S ∀t.

Proof: In the interest of limited space, we just outline
the proof. Consider two storage facilities of sizes S and S�

respectively where S ≥ S�. At time 0, we assume without
loss of generality that the storage facilities are both empty.
From Eq. (4) and a simple induction argument in the time
dimension it is easy to observe that

0 ≤ X
S

t
−X

S
�

t
≤ S − S

� ∀t.

We use the LHS of the above inequality when pt = pH

and the RHS of the inequality when pt �= pH to obtain that
ZB

t
(S) ≤ ZB

t
(S�).

Since ZB

t
(S) is non-increasing in S ∀t, ZB(S) is also non-

increasing in S

Theorem 4.2: ZB(S) is convex in S.
Proof: Consider three storage facilities of sizes S1,

S2 = λS1+(1−λ)S3 and S3 respectively where S1 ≥ S3 and
λ ∈ [0, 1]. Let ω be any instance of the sequence Yt where
Yt = (Wt, pt, Dt(pt)) for t = 1, 2, .... We assume without
loss of generality that the storage facilities are all empty
to begin with. We call this time, time 0. Let t1 be the first
instance of time when storage levels of the three facilities are
different. Note that when the levels are different, it should
be the case that XS3

t1
= S3, X

S2
t1

= S2 and X
S1
t1

> S2. Let
t2 be the first time after t1 when the storage levels are the
same again (t2 is the beginning of the next epoch after time
0). Note that when this happens X

S1
t2

= X
S2
t2

= X
S3
t2

= 0.
Also, since the storage level dropped it must be the case that
pt2 = pH

By monotonicity of Xt with storage sizes (Theorem 4.1),
t2 is also the first time after t1 when X

S1
t

= 0. This means
during the periods, t such t1 ≤ t < t2, XS1

t
> X

S2
t

i.e.,
they never meet. But this need not be the case between
X

S2
t

and X
S3
t

. They surely meet once before t2 because
of monotonicity of the storage levels and maybe more. With
this we can now bound the gain of facility S1 over S2 and
S2 over S3 in the periods between 0 to t2 − 1 as follows:

Z
B

[1,t1−1](S1)− Z
B

[1,t1−1](S2) = 0,

Z
B

[t1,t2](S1)− Z
B

[t1,t2](S2) ≥ pH(S2 − S1),

Z
B

[1,t2](S2)− Z
B

[1,t2](S3) ≤ pH(S3 − S2).

Here, the subscript for ZB represents the time interval over
which the unsatisfied demand is computed. Multiplying the
first two equations by λ and the last by (1− λ) and adding
all of them we get

λZ
B

[1,t2](S1) + (1− λ)ZB

[1,t2](S3) ≥ Z
B

[1,t2](S2).

Similarly, we can prove convexity for every epoch. This
implies that the result holds in expectation and on average
when T is chosen to be end of an epoch. But allowing T to
∞ allows the result to hold independent of the choice of T .
Hence the theorem.

We have shown that ZB(S) is both non-increasing and
convex. Along with a strictly convex amortized capital cost
function for storage the objective of the optimal sizing
problem is strictly convex. This means there exists a unique
optimum S∗ and this can be evaluated efficiently using gra-
dient descent optimization. Some may argue that it appears
to be futile to prove these results because the problem is a
single variable optimization since we fixed the control. But
the complexity comes from solving the steady state matrix
equations for each value of S which is non-trivial task for
state-spaces of large sizes.

V. MAIN RESULTS: TRADEOFFS OF STORAGE SIZE WITH
SYSTEM PARAMETERS

In this section, we focus on understanding the fundamental
limits and tradeoffs of storage investment with the parameters
of the problem under the balancing policy. We ignore the
ramp constraints for simplicity of our analysis but our results
continue to hold in their presence as well.

A. Storage size versus cost under the balancing control

Theorem 5.1: If storage is a profitable investment under
the balancing policy then c

pH

≤ 1
4 .

Proof: Consider a storage of size S. Let VD(S) refer
to the total cost (i.e., objective) for some distribution D of
the state space. Storage is a profitable investment only if

VD(S)− VD(0) ≤ 0

=⇒ VD(S
∗
D)− VD(0) ≤ 0 where S

∗
D = argminSVD(S)

=⇒ min
{ �D|S∗

�D
=S∗

D}
V �D(S

∗
�D)− V �D(0) ≤ 0.

In the last equation, the maximum is over all distributions
s.t. S∗

�D = S∗
D. This means that it suffices to focus on set of

all distributions for which the optimal storage size is fixed
(hereon referred by just S). We want to show

min
{D|S∗

D=S}
VD(S)− VD(0) ≤ 0 =⇒ c

pH
≤ 1

4
. (8)

The proof will be constructive in the sense that we will first
construct a distribution, D∗ that minimizes the total cost for
a storage of size S and then prove the result.

We expand the term VD(S)−VD(0) below. For the purpose
of simplicity of illustration, we expand assuming the random
variables Wt, pt, Dt(pt) are i.i.d random variables in the time
dimension. Note that our proof in no way relies on the fact
that random variables are in fact i.i.d. Let Y = DH − W .
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Assume that the prices are in discrete increments and the
probability of the highest price be qH .

VD(S)−VD(0) = cS

−
�

X

fX(x)dx

��

Y

pH

�
y
+ − (y − x)+

�
qHfY (y)dy

+
�

pt �=pH

�

W

pt

�
w −

�
w − S − x

ρ

�+
�
P (p = pt)fW (w)dw

�
.

Rewriting the second term and eliminate the third term,

VD(S)−VD(0) ≥ cS−
�

X

�
x

0
qHpHP (Y ≥ y)dy gX(x)dx,

where fX(x) = P (X = 0) δ(x) + gX(x) I(0 < x ≤ S).
Here, δ(x) equals 1 if x = 0 and 0 otherwise and I(0 < x ≤
S) equals 1 if 0 < x ≤ S and 0 otherwise.

Observe that
�
x

0 P (Y ≥ y)dy ≤
�
S

0 P (Y ≥ y)dy ∀ D.
Substituting this we get,

VD(S)−VD(0) ≥ cS−qHpH

�
S

0
gX(x)dx

�
S

0
P (Y ≥ y)dy

= VD∗(S)− VD∗(0).

where D∗ has the following structure:
• pt is i.i.d and is pH with probability qH and 0 otherwise.
• Yt is i.i.d and is S with probability α and −S

ρ
otherwise.

• Wt is i.i.d and is greater than or equal to S in all periods.
These three assumptions implies that the steady state distri-
bution of X is αqH when X = 0 and 1−αqH when X = S.
Substituting this we get,

VD∗(S)− VD∗(0) = cS − pH qH(1− qHα) αS

≥ cS − pH

4
S

�
when qHα =

1

2

�

So, we have identified a distribution D∗ with qHα = 1
2 that

minimizes VD(S)− VD(0) i.e.,

min
{D|S∗

D=S}
VD(S)− VD(0) = cS − pH

4
S.

Substituting this in Eq. (8), proves the theorem.
This theorem shows that under the balancing policy any

investment in storage is profitable only if the ratio of the
amortized capital cost of storage to the highest price of
energy is less than 1

4 . This is the first theoretical (tight)
upper bound on the cost of storage and is independent of
any assumptions on the distribution of uncertainties, even
for constant prices.

We do a rough back of the envelop calculation to under-
stand typical values of c

p
ratio for existing storage technolo-

gies. Capital cost of different storage technologies is roughly
$100-500/kWh depending on the type of technology with a
lifecycle of about 2000-10,000 cycles respectively [13],[14].
Suppose the efficiency of storage is about 75%. Then the per-
cycle cost of useful storage is in the order of 6.7 cents/kWh.
Price of electricity is in the order of 10-20 cents/kWh. Then
the c

p
ratio corresponds to about 0.17-0.33 (assuming that

every period corresponds to at most half a cycle). This
indicates that we are close to the break-even point for many
technologies. This independently proves that our 0.25 bound
is not necessary a loose bound.

B. Tradeoffs of optimal storage size and gain with system

parameters

In this section, we are interested in studying the impact
of pricing, cost and efficiency of storage and distributional
parameters that characterize the uncertainty in demand and
wind on the optimal storage size and its gain. Our focus will
be on understanding the nature of the trend and its relative
impact. So, for simplicity of our study we assume that the
net uncertainty, Yt = DH

t
−Wt, is a uniform i.i.d distribution

with mean m and width u (i.e., variance is u
2

12 ). Although the
uniform and i.i.d assumption may seem restrictive, it is an
assumption on the net-gap or error in the system and hence
not too bad. All our results extend to the case of the i.i.d
Gaussian random variable with 0 mean using certain scaling
arguments with an application of the central limit theorem.
In the interest of limited space, we do not expand on the
details of this analysis

We consider a base case with constant prices and no
conversion losses of storage where we derive the optimal
storage and the percentage gain in closed form. We then
study extensions of the base case to see the impact of pricing
and the effect of conversion losses. Unfortunately, in both
these extensions, it is not easy to derive the optimal storage
in closed form but computationally these steps are easy to
replicate and we use MATLAB to do so. For our study, we
only restrict to the case when the balancing policy is optimal.

a) Constant prices and no conversion losses (base

case): Consider the case of constant prices for electricity
and no conversion losses i.e., ρ = 1. We only outline the
approach of finding the optimal storage in the interest of
limited space. Under the balancing policy, we first derive
the steady state distribution, fX(x), for storage of size S

using the following equation:
�

S

0
fX(y) [(1− FY (y))δ(x) + fY (y − x)I(0 < x < S)

+FY (y − S)δ(x− S)] dy = fX(x),

where δ(x) is a dirac-delta function that is 1 when the x = 0
and 0 otherwise and I(0 < x < S) is the unit function which
is 1 if 0 < x < S and 0 otherwise. Since Y has a uniform
distribution, FY (y) =

y−m+u

2
u

∀ m − u

2 ≤ y ≤ m + u

2 .
Substituting x = 0, x = S and x s.t 0 < x < S, in the
integral equation, we get fX(x) as follows:

fX(x) =
m+ u

2 − E[X]

u
δ(x) +

1

u
I(0 < x < S)

+
E[X]− (S +m− u

2 )

u
δ(x− S),

where E[X] = −S(S+2m−u)
2(u−S) . We use this to estimate the

objective function V (S) as follows:

p

4u2

�
−S3

3
− uS(u− S) +

4m2uS

u− S
+ (2m+ u)2

u

2

�
+ cS.
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Fig. 1: Percentage decrease in cost with optimal storage investment: trends with respect to mean and standard deviation.

A solution such that V �(S) = 0 and V ��(S) < 0 is the
optimal storage, S∗, to the problem. We get,

S
∗ = max




0, u



1−

����2c

p

�
1 +

�
1 +

m2p2

u2c2

�






 .

We can immediately make the following observation about
the size of optimal storage

Observation 5.2: S∗ > 0 if and only if c

p
<

1
4 −

�
m

u

�2
.

This observation strengthens the result of Theorem 5.1 for
the case of the uniform distribution in the following ways: (a)
the uniform distribution with 0 mean is a class of distribution
for which the 1

4 bound is tight; (b) the bound is smaller for
larger m

u
values; and, (c) it proves converse of the theorem

as well.
Observation 5.3: For a given u and c

p
, S∗ is maximum at

0 mean decreases in the O(
√
m) symmetrically around 0.

Observation 5.4: For a given m and u with m << u, S∗

decreases in the O

��
c

p

�
.

Observation 5.5: For a given m and c

p
ratio with m <<

u, S∗ increases linearly with respect to u, the standard
deviation whenever S∗ > 0.
In the above observations we restrict to the region when
m << u, i.e., m much smaller than u. In many situations
this is exactly the region of interest as the net gap, Yt, can
be viewed as the net error in balancing which usually has a
small mean but a larger standard deviation.

For understanding the variations of gain from the optimal
storage size S∗, we plot the percentage decrease in cost,
V (0)−V (S∗)

V (0) with respect to m and u for different values of
c

p
in Fig. 1. With respect to m and c

p
, we observe that the

gain from storage decreases rapidly (has a square effect) for
larger values of |m| and c

p
. Note that the peak gain is not at 0

mean because we are plotting the percentage gain and not the
absolute gain. The absolute gain peaks at 0 mean. The gain is
non-decreasing in the standard deviation and asymptotically
approaches the gain at 0 mean.

b) Impact of peak and off-peak pricing: In this part,
we want to study if and how differential pricing impacts
optimal storage size and its gain and whether uncertainty
in the differential pricing plays a role and how. In order
to answer these questions, we consider two types of simple
pricing schemes for our analysis. In the first scheme, prices
are i.i.d with peak price pH with probability q and off-peak
price pL = 0 with probability (1−q). In the second scheme,
the peak price is always followed by the off-peak price. The
schemes differ in the uncertainty associated with the next
period price and can be compared at q = 0.5. We refer to
the latter scheme as the time-of-use (TOU) pricing scheme.

For this analysis, we need to make assumptions on the
distribution of Wt. For simplicity, we assume that DH

t
is a

constant so that W continues to be i.i.d uniform. We make
no assumption on the DL

t
and hence demand may very well

be elastic.
In Fig. 2, we plot the optimal storage size and its gain

with respect to the probability of the high price, q, for the
i.i.d pricing scheme. In the same plot we also mark the
corresponding values for TOU pricing scheme when q = 0.5.
First, comparing q = 1 and any other value of q for the
i.i.d pricing scheme, we observe that differential pricing can
sometimes increase the value from storage but not always.
This is because of the tradeoff between how much energy
is actually needed at the peak price on average to support
excess demand but also how often it can be obtained at the
lower price. This tradeoff results in a unique probability
above and below which the value from optimal storage
decreases for a fixed price differential.

Next, comparing the two pricing schemes when q = 0.5,
we observe that even though the optimal storage size from
TOU pricing is larger than i.i.d pricing the gain from their
respective optimal storage sizes is higher for i.i.d pricing over
the TOU pricing. The larger storage size for TOU pricing
is natural because uncertainty results in stocking less on
average. And since the optimal storage sizes are not very
different from each other, there is a gain from uncertainty in
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Fig. 2: Impact of uncertainty in i.i.d pricing on optimal
storage size and gain. For q = 0.5, we plot the corresponding
values for TOU pricing. E[Y ] = 0, σY = 40, c

p
= 0.1.
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Fig. 3: Variation in the optimal storage size and gain with
the efficiency of storage. E[Y ] = 0, σY = 40, c

p
= 0.1.

differential pricing.
c) Impact of conversion losses: To study the impact of

conversion losses, we incorporate this to the base model. In
Fig. 3, we plot the variation in optimal storage size and the
percentage gain with efficiency. Note that in our experiments
we have the same amortized cost of storage at all efficiency
levels. This is because we defined S as the size of useful
storage and hence the amortized cost corresponds to cost
of useful storage and hence it is already normalized between
two storage devices of different efficiencies. Observe that the
optimal storage size as well as the percentage gain increases
with efficiency. This should not be surprising because for two
storages of the same size, conversion losses only decrease the
value of storage. And since, both scenarios have the same
cost, the optimal storage size and its value decrease.

VI. CONCLUSIONS

In our work, we formulate the optimal storage investment
problem for a renewable generator that aims to satisfy a
local demand. We propose a balancing control to manage
storage and find the optimal storage size under this control.

We show that this control is optimal under simple pricing
schemes. We also provide a theoretical tight upper bound
of 1

4 on the cost of storage to the price of energy for the
storage to be profitable. For a uniform i.i.d distribution of
the net gap between demand and renewable generation, we
show that the optimal storage size and gain increases with
variance, storage efficiency and level of differential pricing
and decreases with the absolute value of the mean. We also
see that uncertainty in differential pricing can increase the
gain from storage depending on the level of uncertainty.

In our current and future work we will investigate the
optimal management and investment in storage under more
general pricing schemes with elastic demand. We are also
working on real-world data from renewable generators and
specific storage technologies to study the true cost benefit
analysis of storage investment.
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