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Consumers are increasingly navigating across sales channels to maximize the value of their purchase. The

existing retail practices of pricing channels either independently, or matching competitor prices, are unable

to achieve the desired profitable coordination between channels. We engaged with three major retailers

over two years and developed omnichannel pricing (OCP) solutions in partnership with IBM Commerce to

overcome these challenges. We implement an integrated data processing and machine learning framework that

enables estimation of location-specific cross-channel price elasticities and competitive effects. We develop an

integrated OCP optimization formulation to profitably coordinate prices for non-perishable products offered

across channels and store locations while satisfying practical constraints on volume and price. The resultant

optimization formulations for discrete choice demand models are non-convex and NP-hard, and we prescribe

practically efficient mixed-integer programs that can be used to recover (near) optimal solutions. An OCP

implementation in two categories for a major retail chain projected a 7% profit lift while preserving the

sales volume. This benefit was achieved by lowering online prices and optimally raising and lowering location

specific store prices. This integrated pricing approach allows the retailer to be competitive and preserve

market share without aggressively matching the low price of e-tail giants.

Key words : Omnichannel, pricing, multi-product, mixture, MNL demand, nested model, cross-channel,

elasticity, censored demand estimation, machine learning

1. Introduction

Omnichannel retailing is a recent trend sweeping companies across the industry (Brynjolfsson et al.

2013, Bell et al. 2014). It is revolutionizing how companies engage with consumers by creating a

seamless customer shopping experience across the retailer’s multiple sales channels (Kahn 2018).

This is because today’s consumers navigate across the channels with ease to make purchases.

Using smart phones, in-store shoppers can visit the mobile or web store of the same retailer or its

competitors to find better deals and finalize a purchase. Omnichannel retailing also includes the use

of advanced order fulfillment practices such as initiating ship-from-store fulfillment for e-commerce

orders and offering a buy-online-pick-up-in store fulfillment option to enhance the convenience of
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receiving a product. Traditional retailers require such capabilities to survive in a highly competitive

marketplace that is witnessing a fast pace of online sales growth (US Census Bureau 2017 reported

that online sales grew 14-16% compared to the previous year) and an ever-increasing market share

gain by e-tailers whose price-transparent product offerings eat into e-tail margins as well as store

sales (e.g. due to ‘showrooming’).

Many of today’s large retailers started as single channel retailers and their supply chain was

designed to ensure maximum efficiency and scale in that channel. These retailers subsequently

opened additional sales channels, and supported common and channel-specific assortments, to

increase their customer base. However, these channels largely operated independently of each other

in ‘silos’, with limited transparency and data integration even within the organization. From the

perspective of machine learning and optimization technologies, many retailers continue to rely on

demand forecasting, pricing optimization, and inventory management methods that are channel

specific. Such tools largely ignore the multi-channel shopping path of today’s customers, as well as

the potential efficiencies of omnichannel retailing.

As part of a joint partnership agreement with IBM Commerce, a leading provider of merchandiz-

ing solutions, we engaged with three major omnichannel retailers over a period of two years, who

faced many of these challenges. These retail chains primarily operated two sales channels, brick-

and-mortar stores, and online. Their existing retail practices were to price channels independently,

or simply match channel and competitor prices. These practices failed to achieve the degree of

coordination required between the channels in order to be profitable, achieve sales targets, satisfy

brand-price image goals for products within an assortment, etc., and remain competitive with large

e-tail giants. Given the increase in the number of digital channels (e.g., social, mobile) and the

dynamic nature of the marketplace, the scale and speed of executing pricing decisions were equally

critical. Our work focuses on developing an end-to-end unified commerce solution that overcomes

these challenges by integrating data, machine learning and price optimization across the different

sales channels, and keeping in mind the infrastructure and operational requirements of a deployable

solution. Given this context, the contributions of this paper are as follows:

1. Omnichannel machine learning framework to quantify cross-channel demand sub-

stitutions: We develop an integrated data-analytics framework that combines multiple data

streams to track concurrent channel-specific pricing variations over time, as well as relative price

variations across the products, and locations. We then employ machine learning techniques on

this integrated dataset to estimate own and cross-channel and cross-product price elasticity of

demand by location. This framework enables us to rapidly model omnichannel demand for a

large retail chains that manage many store locations. This scalability is achieved through a

dimensionality reduction of cross-location and cross-channel interaction variables.

http://www.ibm.com/commerce/us-en/
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2. Omnichannel price optimization: We study the omnichannel pricing (OCP) problem of

nonperishable products in the context of developing a regular (or baseline) pricing solution.

The OCP objective is to maximize near-term profit across all channels and locations while also

meeting critical long-term channel, volume, and price image goals.

(a) Single product pricing: We show that the attraction choice model-based OCP is non-convex

in the presence of certain simple linear pricing constraints that are employed in practice

and is NP-Hard. We employ specialized ratio transformations, along with relaxation and

linearization techniques (RLT), to derive an exact mixed integer program (MIP) reformu-

lation of the non-linear OCP that can be solved to optimality using standard commercial

solvers.

(b) Multi-product pricing: Using nested attraction demand models, we additionally manage

cross-product demand interactions within any channel. We exploit the concave structure of

the nest attraction function and likewise obtain a tractable MIP approximation that also

admits a variety of practical cross-product pricing constraints. We show that this MIP yields

an effective upper bound that is asymptotically exact and can be used to obtain (near-)

optimal solutions to the OCP problem.

3. Implementation and business value assessment: We perform a business value assessment

as a part of our OCP implementation for one of the major retailers in the United States. For 100

products in the two product categories that we analyze, we benchmark the forecast accuracy of

our censored data machine learning approach, and find that the estimated cross-channel price

sensitivity to demand can be up to 50% of the own channel price elasticity. The OCP prices yield

a projected profit lift of 7% over the retailer’s legacy pricing system, while preserving the sales

volume and satisfying several other critical business and pricing goals. The positive feedback

from the retailer during this engagement and similar feedback from other retailers resulted in

IBM Commerce deploying a proprietary version that has been in production since 2014. This

solution was showcased in the smarter-commerce global summit, which included a presentation

on its capabilities by the retailer.

1.1. Literature Review

Modeling the consumer preferences in an omnichannel environment is a first step that can pave

the way for coordination of channel strategies. Recent papers in the marketing literature have

explored consumer dynamics in a multi-channel environment (Zhang et al. 2010), in particular,

consumer migration across sales channels such as web and catalog (Ansari et al. 2008) or online and

brick channels (Chintagunta et al. 2012) respectively. Goolsbee (2001) finds significant cross-price

elasticity between online sales and stores sales and concludes that channels cannot be treated as
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separate markets. Similar to the consideration in the above papers, we estimate consumer channel

preferences using discrete choice models. We propose using location-specific demands models, as

price elasticity can depend on an area’s household income, demography, etc (Mulhern et al. 1998).

From an operational perspective, there is substantial academic literature on single and multi-

product pricing problems (for example, see the survey papers by Bitran and Caldentey 2003,

Elmaghraby and Keskinocak 2003, Chen and Simchi-Levi 2012) but to the best of our knowledge,

the focus has been on single channel pricing. In contrast, the focus of this paper is on an integrated

multi-channel multi-location pricing problem in the presence of cross-channel and cross-product

demand interactions and important operational considerations.

From the perspective of price optimization using customer choice models, several papers in the

literature have analyzed a variety of parametric and non-parametric approaches in the context

of cross-product demand substitution. Discrete choice demand models are one of the commonly

used demand functions to model consumer choice in marketing, economics, and more recently,

in the revenue management literature (McFadden 1974, Urban 1969). Some of its well-known

examples include the multinomial logit (MNL) and the multiplicative competitive interaction (MCI)

demand models. For the MNL demand model, Hanson and Martin (1996) show that the profit

as a function of the prices is not quasi-concave. Aydin and Porteus (2008), Akçay et al. (2010)

explored this problem further and show that the resultant profit function is unimodal in the price

space. Meanwhile, Song and Xue (2007), Dong et al. (2009) proposed a market share variable

transformation to recover an equivalent objective function that is concave in the space of the

market share variables. This transformation idea for MNL demand models was later extended to

a general class of attraction models by Schön (2010), and Keller et al. (2014). However, these

papers ignore certain practical linear pricing restrictions that are critical to real-life applications. In

Proposition 1, we demonstrate that this transformation even for a simple linear price monotonicity

constraint yields a non-convex and non-linear formulation in the market share space.

Our work on single product pricing relates to the price optimization problem using a mixture

of attraction demand models. Keller et al. (2014) recognize this as an open problem and develop

a local optimal heuristic solution by employing a convex approximation of the demand model. Li

et al. (2017) characterize the objective as a sum of quasi-concave functions and present alternative

efficient methods that converge to a stationary point. On the other hand, by exploiting the sparse

multi-location structure and the discrete nature of prices, we propose specialized transformations

and tractable global optimization methods to solve large-scale problem instances that arise in

practical omnichannel operations. Bront et al. (2009) propose a related assortment optimization

formulation in the context of network revenue management for the mixed-MNL demand model,

which can be viewed as a special case of the discrete pricing problem we study here. Furthermore,
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our proposed formulation relies on certain specialized cuts (applicable to pricing problems), result-

ing in two orders of magnitude improvement in run times even for medium-sized problem instances

(see Section 4.2 for details).

A few papers have explored the use of other parametric demand models in the context of multi-

product pricing to maximize expected profit. Li and Huh (2011) extend the concavity result of

MNL to nested MNL models when the price sensitivities are constant within a nest. Gallego and

Wang (2014) relax this assumption and provide conditions under which the objective function is

unimodal. Rayfield et al. (2015) provide an approximation method when prices are bounded by

discretizing the intrinsic value of a nest. Davis et al. (2016) study this problem in a discrete price

setting assuming a specific quality price ordering of products. They show that the number of feasible

price vectors in a given nest is polynomial in the number of choices and price levels and derive an

exact solution. In the multi-product OCP problem that we study, we use a similar nested attraction

function. We extend the problem to a multi-location setting and optimize a mixture of nested

attraction demand models. Unlike prior works, we develop a multi-objective MIP formulation that

satisfies a variety of practical pricing constraints and yields effective upper and lower bounds that

asymptotically converge and can be solved to achieve (near) global optimal solutions.

Subramanian and Sherali (2010) studies a multi-product pricing using a hybrid MNL demand

model, and provide a piecewise linear approximation of market size, while managing a variety of

practical business rules. Non-parametric approaches to multi-product pricing have been explored

by Rusmevichientong et al. (2006) and Aggarwal et al. (2004) using heuristic approaches and

approximation algorithms, and Ferreira et al. (2015) using reference price effects.

We briefly mention a few related papers on price optimization for a single channel. Caro and

Gallien (2012) discuss an end-to-end development and implementation for clearance pricing at the

physical stores of the fast-fashion retailer Zara. Fisher et al. (2017) study the competition-based

dynamic pricing for a pure online retailer involving censored data estimation in the presence of

competitor prices and stock-out situations. Lei et al. (2018) study the joint dynamic pricing and

fulfillment problem for a pure e-commerce retailer.

Finally, there is emerging literature related to other important aspects of omnichannel retailing

beyond pricing, such as inventory operations which include managing e-commerce ship-from-store

fulfillments decisions (Zhu et al. 2017, Jalilipour Alishah et al. 2015, Govindarajan et al. 2018)

and understanding the impact of buy-online-pickup-in-store implementations (Gallino and Moreno

2014, Gao and Su 2016).

2. Data framework to quantify cross-channel demand substitution

In an omnichannel environment, customers navigate across channels and retailers to finalize a

purchase that maximizes their own benefit. Therefore, a fundamental aspect that omnichannel
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demand models must capture is the channel switching behavior of consumers, i.e., the cross-channel

substitution effects. For illustration purposes, let the set J denote the brick price zones of a retailer,

which are geographical clusters of brick stores that offer the same price in order to avoid competitive

shopping patterns across stores1.We simply refer to them as brick store locations. Assuming price

is the only driver of demand,

DBj :=DBj (pBj , pO) ∀j ∈ J, DO :=DO(pO, pB1
, pB2

, ...) (2.1)

where DBj ,DO and pBj , pO are the demands and prices for brick-store location Bj and the online

channel O respectively. Here, store demand is a function of its own store price and the online price,

and because of non-competitive nature of price zones, it is assumed to be independent of other

store prices. Online channel demand, on the other hand, is a function of the online price and all the

brick-and-mortar store prices because the online channel virtually connects all the physical stores.

Legacy forecasting systems for pricing treat the online channel just as an additional independent

store location (from a data preprocessing standpoint and hence for all downstream operations).

This prevents the modeling of cross-channel effects. While the legacy systems can estimate the

impact of online causals on any store demand by including the online causals as modeling features

(see Eq. 2.1), they fail to accurately quantify the interactions in the reverse direction. This is

because the sheer number of physical store locations (ranging up to a few thousand), and the usage

of location-specific pricing considerably increases the dimensionality and makes this task impracti-

cal. It also precludes an accurate quantification of location-specific impact of store causals on the

online demand. Note that besides price, there are a variety of other location-specific demand influ-

encers such as store promotions, competitors and local events, whose cross effects are additionally

important to capture in an omnichannel demand model.

We overcome this challenge by employing a geographical partitioning of the online store (trans-

actions of which originate from a continuum of customer zip-codes) into discrete virtual online

store locations (virtual stores, for brevity) using brick store locations J . Next, we assume that

the customers within the zip-codes associated with any virtual store, choose to purchase from this

virtual store or the physical store(s) in that location and are not influenced by the prices (and

other causals) in other physical store locations, i.e.,

DO(pO, pB1
, pB2

, ...) =
∑
j∈J

DOj (pO, pB1
, pB2

, ...) =
∑
j∈J

DOj (pO, pBj ). (2.2)

This is a reasonable assumption because customers from one location typically do not have prior

visibility into the prices offered by stores farther away2. By gainfully localizing online demand

1 This method of clustering is commonly employed by retailers prior to price optimization (e.g., retail trade analysis).

2 The assumption was empirically verified. Adding other location prices as features did not improve the out-of-sample
forecast accuracy for either channel using the data and method described in Section 6.
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using geographical partitions, we reduce the dimensionality of the price effects to be estimated

from O(|J |) to a distributed O(1) across J locations, enabling us to reliably and tractably estimate

location-specific cross-channel effects (here |.| refers to cardinality of a set).

While partitioning online transactions to their respective virtual stores, it is important to track

the final fulfillment destination of a sale because omnichannel retailers offer buy-online-pickup-

instore options and execute ship-from-store fulfillments, and often, the legacy point-of-sales do not

always record the differences in customer purchase, product sourcing, and delivery locations.

The proposed virtual stores can be created using appropriate geographical clustering tools (e.g.,

retail trade analysis). We now describe our approach for a retailer with a strong physical presence.

First we cluster the omnichannel retailer’s stores into zones using a k-means clustering algorithm

based on the latitude-longitude coordinates of the stores. A volume weighted clustering will yield

similar results as store counts in a region are correlated with volume of sales. We map each online

store transaction to the zone whose centroid is nearest to its fulfilment destination zip code, thereby

merging the spatial continuum of online transactions into discrete virtual stores. Next, this zone-

tagged transaction data is aggregated by purchase channel and zone. The data at this granularity

allows us to simultaneously track channel-specific pricing variations across time, as well as relative

price variations across the substitutable products, sales channels and locations. We use this zone-

tagged data to calibrate zone level cross-channel demand models described in the following section.

In Fig. 1 we provide a data-visualization example of the geo-spatial clustering a retailer’s brick-

and-mortar stores (more than 1500) into 50 zones. The figure also shows the zonal distribution of

the sales (the volume is proportional to the pie size) and channel share between brick (red) and

online (blue) for one product category. Observe the heterogeneity of the online channel share across

zones (e.g., 4% to 11%). We find a geographically consistent channel preference pattern for other

product categories as well.

2.1. Choice of demand models and its impact on price optimization solutions

There are a variety of demand model options that capture cross-channel effects including paramet-

ric vs. non-parametric models, and black-box machine learning methods versus more specialized

methods. Each option has its own impact on the performance of the forecasting and optimization

modules in the solution, in terms of accuracy, tractability, (near) optimality, and user experience.

For example, choosing a blackbox demand prediction model (e.g., regression trees, ensemble

methods) has obvious benefits including readily available software packages, public benchmarks,

and stable implementations, and potentially improved forecast accuracy. But consider the case

where the feature set employed within the blackbox model includes a vector of channel prices that

can each take any one of values from the set I. In an omnichannel system, the channel demands
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Figure 1 Distribution of sales over 50 zones for a product category. Sales volume is proportional to the pie size.

The pie in each zone shows the relative frequency of brick-and-mortar sales and online sales.

are correlated. This means we require all channel price values to be specified in order to generate a

single blackbox demand prediction for all channels (or even a single channel’s demand). Therefore,

assuming M denotes the set of channels, fully specifying the omnichannel demand (at all chan-

nel price vectors) requires generating |I||M | predictions using the calibrated demand model, unless

specialized constraints are added to limit this combinatorial explosion (e.g., see Ferreira et al. 2015

for the use of a reference anchor price). On the forecasting side, when the underlying estimation

problem is non-convex (e.g., as with deep learning) and solved heuristically (e.g. using stochas-

tic gradient methods), the prediction model can change whenever it is retrained. The resultant

omnichannel demand solution can recommend drastically different channel prices (even with a near

identical dataset), which can be viewed by the user as an erratic response from the application.

The use of simpler parametric models that limit the combinatorial explosion (by way of speci-

fication) and adopt simple convex estimation methods (e.g., log-log, hybrid MNL models wherein

total sales are spread down to channel choice) can also adversely impact downstream optimization

and model tractability, making it difficult to find (near) optimal prices. The ability to find optimal

solutions is not only of theoretical importance. In practice, heuristic approaches can induce an

inconsistent pricing response from the application (e.g., profit increases after a constraint is added)

resulting in unsatisfactory user experience and loss in credibility. We show using an actual OCP

price-matching application in Appendix E that this capability directly influences user-experience,

which in turn can decide whether the deployed application will be accepted or rejected by users.

Our proposed optimization approaches to demand estimation and pricing take into account these

requirements, while matching the forecast accuracy achieved by alternative methods.

3. Omnichannel demand model for a non-perishable product

In the next two sections, we focus on analytical models for a single non-perishable product and

then in Section 5 we extend the models to the multi-product setting.
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Consider an omnichannel retailer selling a single non-perishable product using M sales channels

to customers in J locations. Let V ⊂M be the set of virtual channels like website, mobile, social,

which are partitioned into virtual stores by location j ∈ J . Let pjm be the price of the product sold

in channel m ∈M and location j ∈ J and pj be the corresponding vector of prices in all channels

at location j. Note that pjm is the same across j ∈ J for virtual channels m∈ V . Let Dj(pj) be the

vector of demands originating from location j ∈ J in all the channels. As motivated in Section 2,

we assume that the demand in a specific channel and location depends on the attributes of all

channels at that location. We refer to this representation as the omnichannel demand model.

We use discrete choice demand functions to model consumer channel demand in an omnichannel

environment as a product of market size and the channel choice probability as follows:

Dmj(pj) = τj
fmj(pmj)

1 +
∑

m′∈M fm′j(pm′j)
m∈M,j ∈ J. (3.1)

Here τj is the market size of location j and fmj(pmj) is the attraction function of customers in

location j to channel m. The market size term represents the measure of consumers interested

in the product and the channel choice probability term represents the relative attractiveness of a

channel-choice over all choices that includes the no-purchase option, whose attractiveness without

loss of generality is normalized to 1. If the attractiveness of a channel drops (for example, due to

a channel price increase) then that channel share of the product reduces, and it get distributed

among the other channels. This attraction structure models the cross-channel substitution (i.e.,

switching) behavior of consumers across the M sales channels and the no purchase option.

Examples of the attraction function for demand models include the MNL demand model where

fmj(pmj) = eamj+bmjpmj , the MCI demand model where fmj(pmj) = amjp
bmj
mj , and the linear attrac-

tion demand model where fmj(pmj) = amj + bmjpmj. Here, amj, bmj are constants that ensure the

negative price elasticity of demand.

A discrete choice function is operationally convenient because of its parsimony in the number

of coefficients to be estimated. The number of coefficients in the discrete choice demand model is

O(|M |) for purchasing choices in set M (this models O(|M |2) cross-channel interactions).

The standard methods to estimate discrete choice models require at least some historical informa-

tion about every choice, which in our setting, would also include the no purchase option (Domencich

and McFadden 1975, Berkson 1953). Omnichannel retailers rarely have complete information about

lost sales and must calibrate their demand models using incomplete data. We employ an integrated

MIP based loss-minimization method proposed by Subramanian and Harsha (2017) to jointly cal-

ibrate the market size and choice probability parameters when the lost sales data is censored.

Their method performs imputations endogenously in the MIP by estimating optimal values for the
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probabilities of the unobserved censored choice. This is a computationally fast single-step method.

Compared to its MLE (maximum likelihood estimator) based counterparts like the Expectation

Maximization (EM) method (Talluri and Van Ryzin 2004), this method can simultaneously cali-

brate market-size covariates (e.g., τj dependent on temporal causals) besides attraction functionxs,

a critical feature with real data. We incorporated model enhancements such as variable selec-

tion using LASSO penalties, and sign constraints on coefficients to enable an automated machine

learning environment that is required for operational deployment.

In the next two sections, we use discrete choice demand models to analyze certain omnichannel

retail price optimization problems. We return to demand forecasting in Section 6.1 where we

present the specific censored-data parameter estimation formulation employed to calibrate an MNL

omnichannel demand model using historical sales data, incorporating features such as promotions,

temporal effects (seasonalities and holidays) and competitor prices besides channel prices.

4. Omnichannel price optimization (OCP) for a non-perishable
product

In this section, we formulate the multi-objective OCP model for a non-perishable product in order

to identify the most profitable prices in all channels and locations, subject to various retailer’s

product category goals, channel strategy, sales targets and practical business rules.

We assume that there are well established replenishment policies, and that out-of-stock inventory

effects are negligible. This is a reasonable assumption for non-perishable goods (e.g., basic items

such as office stationery, printer supplies, etc.). Mathematically, it allows one to view the integrated

pricing problem across the retail chain as a single period pricing problem without inventory effects.

Let cj denote the selling cost vector at location j across all the channels. Along with the notation

introduced earlier in Section 3, we formulate the general non-linear omnichannel price optimization

problem denoted by OCP as follows:

OCP: max
pj

∑
j∈J

(pj − cj)
TDj(pj) (4.1)∑

j

AkjDj(pj)≥ uk ∀ k= 1, ...,K (4.2)∑
j

Bljpj ≤ vl ∀ l= 1, ...,L (4.3)

pm,j = pm,j′ ∀ m∈ V, j, j′ ∈ J (4.4)

pmj ∈Ωmj ∀ m∈M, j ∈ J. (4.5)

The decision variables in the above OCP formulation are the prices in all locations and channels,

and the objective is to maximize the total profitability of the retailer across the retail chain.
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Constraints (4.2–4.3) are generic polyhedral constraints on demands and prices defined with known

matrices Ak,Bl ∈ R|M |×|J| and vectors u ∈ RK ,v ∈ RL. These generic constraints encapsulate the

retailer’s goals and critical pricing business rules that are required for operations. We provide

examples of these constraints in this section below. Constraint (4.4) ensures the same price across

all the virtual stores. This constraint is particularly relevant within our omnichannel framework

because we explicitly partitioned the virtual channels by location in order to model cross-channel

effects, and this constraint binds them back together from the view of the customer. Discrete

pricing constraints, which are typical in retail operations, are encapsulated in constraint (4.5).

Some examples of the generic business rules used in practice are as follows:

Volume (or sales goal) constraints ∑
m∈Mk,j∈Jk

Dmj(pj)≥ uk, (4.6)

where Mk ⊂ M and Jk ⊂ J and depending on the choice of Mk, Jk these constraints can be

employed to support a retailer’s global or channel and location-specific sales goals. For exam-

ple, constraint (4.6) can ensure that the total sales volume by channel does not drop below a

user-specified threshold, uk, thereby balancing profitability and market share objectives. Such con-

straints act as a practical safeguard to prevent the drastic price increases that can occur while

optimizing prices for weakly elastic products (products with elasticity between -1 and 0, typical

for basic items). Raising prices for basic products results in a market share erosion over time and

is clearly undesirable in the longer term.

Generalized price monotonicity constraints

pmj ≤ γmm′pm′j + δmm′j ∀j ∈ J and for some m,m′ ∈M. (4.7)

Constraints (4.7) enforces business rules related to multi-choice retail pricing. It can be used to

ensure that prices in certain channels are cheaper than others by a specified percentage γmm′ and/or

a constant δmm′j. This constraint can also account for the variation in unit-cost across channels,

i.e., the overhead cost of operating a physical store. An extension of constraint (4.7) is the price-

matching constraint across the retail chain where the inequality is replaced by an equality and

setting γmm′j = 1, δmm′j = 0. Here, consumers can buy the same product anywhere in the retail

chain at the same price. Inequalities (4.7) can also be used to impose a volume measure constraint,

which is also critical in retail pricing. For example, a 24-pack bulk case of white board markers

sold online versus a 6-pack case of markers sold in-store. Here, γmm′ is a scaling factor between

channels that is employed to achieve price parity per unit measure.

Price bounds

µ
mj
≤ pmj ≤ µmj ∀j ∈ J, m∈M. (4.8)
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Here, µ
mj

and µmj are upper and lower bounds that are often imposed as a percentage of historically

offered prices or as a percentage of competitor prices to ensure the competitiveness of the retailer.

Discrete prices

pmj ∈Ωmj ∀j ∈ J, m∈M. (4.9)

Ticket prices are naturally discrete (e.g., dollars and cents). Often ‘magic number’ endings (e.g.,

ending with ‘9’) are important to a retailer and are encoded as a business rule. Furthermore,

constraint (4.9) can be employed to generate a price ladder that proactively excludes trivial in-store

price changes to minimize the substantial labor cost incurred in changing the sticker prices.

In general, we classify all location-specific business rules as inter-channel constraints and the

rest as inter-location constraints. Because of our data framework (2.2), inter-channel constraints

only have location-specific variables. This contributes to a sparse block-diagonal structure of the

multi-location optimization problem.

4.1. Continuous relaxation of OCP and its non-convexity

Consider the OCP problem with the discrete pricing restrictions relaxed. If this continuous relax-

ation is convex then the solution of a simple gradient-based method yields a true upper bound,

which in turn serves as a certificate of the solution quality for the post-facto rounded solution (with

minor violations of constraints such as volume goals). We show that the continuous relaxation of

the OCP problem is non-convex. Consequently, simple gradient-based rounding schemes cannot

offer a reliable quality guarantee.

Market share transformations are commonly used for discrete choice models to achieve convexity

in the continuous pricing problem (see Section 1.1 for related references). The market share variables

are defined as follows for each j ∈ J :

θmj =
fmj(pmj)

1 +
∑

m′∈M fm′j(pm′j)
∀m∈M, and (4.10)

θ̄j = 1−
∑
m

θmj, (4.11)

with a one-to-one transformation to the price variables, given by pmj = f−1
mj

(
θmj
θ̄j

)
. In the following

proposition, we show that the market share transformations are not sufficient for proving convexity

of the continuous pricing OCP problem discussed above.

Proposition 1. Under the market share transformations, the resultant price monotonicity (or

a volume measure) constraints (4.7) are non-linear and non-convex.

We provide an example to prove the above proposition in Appendix A.

Furthermore, even in the absence of these constraints, the objective function of the continuous

multi-location OCP problem is not unimodel in the price space and convex in the market-share
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space (unlike the single-location multi-choice setting, see Section 1.1). In Fig. 2 we plot the values

of the objective function Eq. (4.1) for an OCP instance having a single virtual channel, say online,

and two locations, with constraint (4.4) ensuring that the online price across locations is the same.

We observe from the figure that the objective function in this example is non-convex and has

multiple peaks. Constraint (4.4) is similar to the price monotonicity constraint (4.7), except that

it is across locations and not choices (see Proposition 1).
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Figure 2 Example of a OCP objective for a single virtual channel and two locations as a function of the virtual

channel price for an MNL demand model with a11 = 10, a12 = 1, b11 = 1, b12 = 1, τ1 = 1 and τ2 = 10.

Recognizing the apparent non-convexity and non-linearity of the OCP problem in the price and

market share space, a relevant question is if there are alternative transformations that recover a

convex continuous relaxation of the OCP problem having a limited number of channels (e.g., with

one virtual channel and one physical channel). While this remains an open question, we prove the

following proposition in Appendix B.

Proposition 2. OCP with multiple virtual channels and at least two locations is NP-hard for

general attraction functions that satisfy the following mild regularity condition:

lim
pm→∞

pm
fmj(pm)

1 + fmj(pm)
= 0 ∀m∈ V, j ∈ J. (4.12)

4.2. An exact mixed-integer programming approach for OCP

We present an empirically tractable global optimization approach using mixed-integer program-

ming (MIP) for the OCP problem. Unlike the discrete choice optimization models in the literature,

the proposed method gainfully operates both in the price and the market share space to address

the non-linearity concerns discussed above.

Let the set Imj denote the index set of the feasible discrete prices for channel m∈M and location

j ∈ J . We denote the corresponding prices by p̄mji for i ∈ Imj,m ∈M,j ∈ J . Let zmji be a binary

variable which is nonzero only if the price in channel m∈M at location j ∈ J is p̄mji. Note that for
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a virtual channel v ∈ V the prices across all locations are the same. Therefore, the corresponding

prices p̄vi, the price index set Iv and binary variable zvi are location independent, and p̄vji = p̄vi,

Ivj = Iv and zvji = zvi.

Using these definitions, the key term to linearize in the OCP problem is the demand function

Dmj(pj) which depends on prices in all the channels. A naive way of linearizing this function

requires the introduction of |I||M | additional binary variables when Imj = I ∀m ∈M (note that

there are already |I||M | binary variables due to discrete prices). This results in a MIP that explodes

in size very quickly making it impractical to solve. We present an exact alternative linearization

that exploits the special structure of the discrete choice model and does not require any additional

binary variables, resulting in a computational tractable MIP.

Proposition 3. Let qmji = τj(p̄mji − cmj)fmj(p̄mji), rmji = fmj(p̄mji), αkmji = Akmjτjrmji and

βkmji =Blmj p̄mji. Then, the OCP problem can be reformulated, and is equivalent, to the following

MIP formulation.

max
z,y,x

∑
j∈J

∑
m∈M

∑
i∈Imj

qmjixmji (4.13)

∑
j∈J

∑
m∈M

∑
i∈Imj

αkmjixmji ≥ uk ∀ k ∈K (4.14)

∑
j∈J

∑
m∈M

∑
i∈Imj

βlmjizmji ≤ vl ∀ l ∈L (4.15)

yj +
∑
m∈M

∑
i∈Imj

rmjixmji = 1 ∀ j ∈ J (4.16)

xmji ≤ zmji ∀ i∈ Imj,m∈M, j ∈ J (4.17)∑
i∈Imj

xmji = yj ∀ m∈M, j ∈ J (4.18)

∑
i∈Imj

zmji = 1 ∀ j ∈ J,m∈M (4.19)

zvi = zvji ∀ j ∈ J, v ∈ V (4.20)

zmji ∈ {0,1} ∀ i∈ Imj,m∈M,j ∈ J (4.21)

yj, xmji ≥ 0 ∀ i∈ Imj,m∈M, j ∈ J (4.22)

Proof: In the above MIP formulation, constraints (4.19) and (4.21) model the discrete nature

of channel prices as in (4.5) using the binary variables zmji. The general business rules on prices

and the uniform virtual price constraint of the OCP problem given by constraints (4.3–4.4) can be

re-written with the new notation as constraints (4.15) and (4.20) respectively. The objective and

constraint (4.2) of the OCP problem can be rewritten as

max
zmji,zvi

∑
j∈J

∑
m∈M

∑
i∈Imj

qmjizmji

1 +
∑

m∈M
∑

i∈Imj
rmjizmji

,and (4.23)
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j∈J

∑
m∈M

∑
i∈Imj

αkmjizmji
1 +

∑
m∈M

∑
i∈Imj

rmjizmji
≥ uk ∀ k ∈K. (4.24)

We use the fractional programming transformations proposed by Charnes and Cooper (1962) to

overcome the non-linearity arising from the ratio terms. Let

yj =
1

1 +
∑

m∈M
∑

i∈Imj
rmjizmji

∀ j ∈ J. (4.25)

Because zmji are binary variables and rmji are non-negative constants, 0≤ yj ≤ 1 ∀j ∈ J . We define

xmji = yjzmji. (4.26)

A direct outcome of this transformation is that the objective function (4.1) and constraints (4.2)

can be re-written as (4.13) and (4.24) respectively, wherein Eq. (4.25) is expressed as (4.16).

Next, we use the reformulation and linearization technique (RLT) proposed by Sherali and Adams

(1999) to eliminate the non-linearities in Eq. (4.26) and linearize it exactly (in the integer sense)

using constraints (4.17–4.18). First, it is easy to see that 0 ≤ xmji ≤ 1 ∀m ∈M,i ∈ Imj. Next, if

zmji = 0, constraint (4.17), along with xmji ≥ 0 ensures xmji = 0, and if zmji = 1, constraint (4.18)

together with constraint (4.19) ensure xmji = yj, which is feasible to constraint (4.17). �

Observe that the transformed OCP formulation can incorporate a variety of important and

complex business rules that are employed in practice. The above formulation is a linear MIP and

a commercial optimization software package can be used to solve this problem to optimality.

In our numerical computations, we observed that the addition of RLT constraints (4.18), which

are known for providing tighter relaxation structures (Sherali and Adams 1999), yielded a consid-

erable improvement in the computational performance over alternative methods. For example, a

commonly used approach is to use constraints yj − xmji ≤ 1− zmji and xmji ≤ yj ∀i ∈ Imj,m ∈

M,j ∈ J instead of the RLT constraint (4.18) that can be gainfully used in the pricing context for

linearization (see for example Bront et al. 2009’s approach for an assortment problem.). This results

in 2|Imj| − 1 more constraints for each m ∈M and j ∈ J . A simulation using synthetic data over

100 instances having uniformly random chosen intercept and price coefficients for an MNL demand

model with 2 channels, 20 locations and 20 price levels uniformly discretized between 60 and 140,

a global volume constraint and default CPLEX solver settings results in a run time reduction from

12.7 seconds to 0.22 seconds using the RLT constraint, a factor of 57 in improvement.

In Fig. 3, we plot the average run time of the proposed MIP (with 1% optimality tolerance) as

function of the number of locations for different combinations of virtual and physical channels. We

observe the runtime increase is non-linear in the number of locations and in the number channels.

The largest MIP instance (2 channels, 512 locations) required more than 10,000 binary variables.

It takes less than 5 seconds to solve the MIP when the number of locations is as large as 512,

128 and 16 in the following three cases respectively: (1) single virtual channel, (2) single virtual



Harsha, Subramanian and Ettl: Omnichannel demand modeling and price optimization
16 Article submitted to INFORMS Journal on Optimization; manuscript no. (Please, provide the manuscript number!)

with one physical channel and (3) 4 virtual with one physical channel, while the toughest problem

instance (5 channels, 128 locations) solves within 21 minutes on average (10 seconds per location).

In Section 6 we report that solving practical OCP instances take no more than 3 seconds. These

large instances remain tractable due to the sparse nature of constraints (4.16–4.19) (see Crowder

et al. 1983 for reasons on MIP sparsity aiding tractability). For larger instances, with many channels

and locations, decomposition methods that exploit the block diagonal structure of the problem

maybe viable.
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Figure 3 Average run times of the OCP MIP over 30 simulated instances.

5. Omnichannel multi-product pricing problem

This far we analyzed omnichannel models in the setting of a single non-perishable product. Retailers

usually offer product assortments consisting of differentiated non-perishable product alternatives.

In this case, the consumer choices are the substitutable channel-product pairs. This setting can be

modeled using the same demand model described in Eq. (3.1), by extending the set M to include

all channel-product pairs. However, this choice model suffers from the independence from irrelevant

alternatives (IIA) property. The implied proportional substitution across alternatives (Train 2009)

can lead to unrealistic demand predictions in certain settings. In this section, we consider the

nested attraction demand model, which extends the choice model in Eq. (3.1) and overcomes the

IIA limitation.

The nested model is a hierarchical discrete choice model where the assumption is that consumers

first select a nest and then the choices within the nest. Suppose M denotes the set of nests and

Nm the choices in each nest, the demand for a choice n in a nest m has the form:

Dn
m(p) = τ

Uγm
m

1 +
∑

m′∈M U
γm′
m′

fnm(pnm)∑
n′∈Nm f

n′
m (pn′m)

, (5.1)

where Um =
∑
n′∈Nm

fn
′

m

(
pn
′

m

)
, n∈Nm, m∈M.

Here Um is referred to as the intrinsic value of a nest and is the total attractiveness of a nest, while

the parameter γm ∈ (0,1] is a nest coefficient that measures the degree of inter-nest heterogeneity.
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When γm = 1, the nested model reduces to the choice model in Eq. (3.1) and therefore here we

focus on the case when γm < 1 that is relevant to our omnichannel setting.

The groups of channel-product pairs that form nests depend on channel attributes (e.g. ease

of purchase, user experience, product variety) as well as product attributes (e.g., brand, quality,

etc.). To fix ideas in the paper, we let the upper-level nests M correspond to channels and the

no-purchase option, and Nm correspond to the differentiated products within the channel assort-

ment (for example, the ‘endless aisle’ in the online channel and the space-limited assortments in

stores). This nested model structure allows us to quantify cross-product demand interactions using

the purchase probability of the products within each channel (lower level), as well as the cross-

channel effects using channel purchase probability of demand (upper level), wherein the channel

attractiveness depends on the total attractiveness of the channel-specific assortment.

To calibrate uncensored nested attraction models, we refer the reader to Train (2009) for (1) a

joint upper and lower level MLE estimator (preferred) and (2) two-step bottom-up estimator that

exploits the fact that the choice probabilities can be decomposed into marginal and conditional

probabilities, resulting in an estimator that is consistent but not efficient. We are not aware of any

estimation method for the censored nested attraction model. We can adapt and extend the two-step

bottom-up method to the censored data setting as follows. First the parameters for each nest at

the lower level are independently estimated from historical sales data using an MLE method (as

in the uncensored case). Next using the resultant estimated intrinsic values for all the nests, the

upper level parameters are estimated using the procedure described and detailed in Sections 3 and

6.1 respectively (in lieu of MLE in uncensored case), where the inclusive value terms are treated

as explanatory variables and the no-purchase choice is censored.

5.1. A mixed-integer programming approach for the nested attraction model

The canonical formulation of the OCP problem using the nested attraction demand model is similar

to the single item case presented in Section 4 except that the decision variables now include prices

of all the products. Additional important business constraints such as volume goals at the product

and channel level, as well as inter-product price constraints due to brand and volume differences

(which have a form similar to constraint 4.7) that are equally relevant in the multi-product setting.

For brevity, we only present the linear transformations of the objective function for the single

location case. Incorporating all the business rules required for operations, and an extension to

the multi-location case are relatively simple after this transformation, and we follow the steps in

Section 4.2 with appropriate changes.

Let the set Imn denote the index set of feasible discrete prices for choice n ∈ Nm within nest

m ∈M . We denote corresponding feasible prices by p̄mni for i ∈ Imn, n ∈ Nm,m ∈M . Let zmni
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be a binary variable which is nonzero only if the price in nest m ∈ M and choice n ∈ Nm is

p̄mni. Assuming qmni = τ(p̄mni− cmn)fmn(p̄mni) and rmni = fmn(p̄mni), the single location objective

function of the OCP problem with the nested model can be written as:

OCPN: max
z∈{0,1}

∑
m∈M

Uγm
m

1 +
∑

m∈M Umγm

∑
n∈Nm

∑
i∈Imn qmnizmni∑

n∈Nm

∑
i∈Imn rmnizmni

(5.2)

where Um =
∑
n∈Nm

∑
i∈Imn

rmnizmni (5.3)

Linearizing OCPN is especially challenging given the two-levels of variables (channel-level and

product-level). We employ multiple ideas to derive two different global optimal approximations to

this difficult problem that we allude to in this paragraph and detail further below with propositions.

First, we introduce channel and product level market share variables and use RLT to partially

linearize Eq. (5.2). Second, we define ηm as the normalized intrinsic value of nest m between (0,1]

(recall that Um refers to the intrinsic value). We discretize this quantity and refer to the discrete

samples as knots. Third, using Special-Ordered-Set Type 2 (SOS2) variables we rewrite ηm exactly

as a convex combination of sampled knots in [0,1] and ‘transfer’ this value from the lower level

(Um) to the upper level model (Uγm
m ). The resultant linearized problem with these three ideas

approximates OCPN and is asymptotically optimal as the number of knots used increases (see

Proposition 4 below).

We enhance this formulation further with the knowledge that the upper level intrinsic value

(Uγm
m ) is a concave function and therefore a piecewise linear approximation provides a lower bound,

while the tangents to the curve yield an upper bound. We show that the resultant problem, with

these cuts in lieu of a value transfer, is a relaxation of OCPN problem that is also asymptotically

optimal as the number of knots used increases (see Proposition 5 below). The benefit of this

formulation (despite having more constraints) is that it yields an upper bound to the original

OCPN’s optimal objective function value, besides performing better computationally. We now

provide the reformulations and the propositions.

Proposition 4. OCPN-PWL approximates OCPN using a piecewise linear approximation of

the normalized intrinsic value and is asymptotically exact as the number of knots increases.

OCPN-PWL: max
z∈{0,1},x,y,θ

∑
m∈M

∑
n∈Nm

∑
i∈Imn

qmnixmni (5.4)∑
m

θm + θ̄= 1 (5.5)∑
n∈Nm

∑
i∈Imn

rmnixmni = θm ∀m∈M (5.6)

Y min
m ≤ ym ≤ Y max

m ∀m∈M (5.7)
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i∈Imn

xmni = ym ∀n∈Nm,m∈M (5.8)

Y min
m zmni ≤ xmni ≤ Y max

m zmni ∀i∈ Imn, n∈Nm,m∈M (5.9)

θm, θ̄, xmni ≥ 0 ∀i∈ Imn, n∈Nm,m∈M (5.10)∑
n∈Nm

∑
i∈Imn

rmnizmni =
∑
s∈S

Ūmswms ∀m∈M (5.11)∑
s∈S

R̄msρms = θm ∀m∈M (5.12)∑
s∈S

ρms = θ̄ ∀m∈M (5.13)

ρms ≤wms ∀m∈M,s∈ S (5.14)

{wms∀s∈ S} ∈ SOS2 ∀m∈M. (5.15)

where

• Y min
m = (Umin

m )γm−1

1+
∑
m′ (U

max
m′ )

γm′ and Y max
m = (Umax

m )γm−1

1+
∑
m′ (U

min
m′ )

γm′ where Umax
m and Umin

m are the maximum and

minimum intrinsic values for a nest obtained by setting the discrete prices at the minimum

and maximum values respectively (which can be further strengthened by considering intra nest

constraints, if any);

• η̄ms ∀s∈ S are the chosen knots that discretize interval
[
Umin
m

Umax
m

,1
]

for each m∈M ;

• Ūms =Umax
m η̄ms, and R̄ms = (Umax

m η̄ms)
γm;

• the auxiliary decision variables wms∀s ∈ S are modeled as SOS2 variables wherein at most two

adjacent members (assuming the η̄ms’s are ordered) can be non-zero. We do not expand on the

form of the SOS2 constraints as all standard optimization packages allows this level of specifica-

tion and manage these variables internally.

We describe the transformations used to derive OCPN-PWL and refer the reader to Appendix C

for the proof on asymptotic optimality. We first introduce the market share transformations both

in the upper and the lower level. Let

Uγm
m

1 +
∑

m′∈M U
γm′
m′

= θm,
1

1 +
∑

m′∈M U
γm′
m′

= θ̄,
θm∑

n∈Nm

∑
i∈Imn rmnizmni

= ym and ymzmni = xmni.

We linearize the bilinear term exactly using RLT constraints because ym is bounded, in particular,

using the definitions of Umax
m , Umin

m , Y max
m , Y min

m , we know

(Umin
m )γm−1

1 +
∑

m′(U
max
m′ )γm′

= Y min
m ≤ ym ≤ Y max

m =
(Umax

m )γm−1

1 +
∑

m′(U
min
m′ )γm′

. (5.16)

With these definitions and transformations, (5.2) can be linearized exactly to objective (5.4) and

constraints (5.5–5.10).

We now linearize Uγm
m = θm

θ̄
approximately using constraint (5.3). We refer to Fig. 4 for the

following discussion. We introduce a piecewise linear mapping of the concave function ηγm for
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Figure 4 True and approximate value of the projected function ηγ , where η ∈ [0,1] is the normalized nest

attractiveness value, for varying number of uniformly spaced knots.

η ∈ [0,1] using a normalized nest intrinsic value η, which we define as the actual nest intrinsic value,

Um divided by Umax
m . For any nest m, ηγm ∈

[
Umin
m

Umax
m

,1
]
. With η̄ms ∀s ∈ S being the chosen knots,

and Ūms = Umax
m η̄ms, the lower level piecewise linear mapping given by Eq. (5.3) can be exactly

written as Eq. (5.11) because ηm = ηmswms and the SOS2 nature of the variables wms with (5.15).

For the upper level mapping, with R̄ms = (Umax
m η̄ms)

γm , Uγm
m is approximated as

Uγm
m ∼

∑
s∈S

R̄mswms. (5.17)

Substituting Uγm
m = θm

θ̄
, we get, bilinear variables of the form wmsθ̄. We now re-apply RLT to

linearize this term (denoted by ρms ) to obtain constraints (5.12–5.14). Note that this linearization

does not preserve exactness as the auxiliary wms variables are SOS2 variables (and not binary), but

constraint (5.12) ensures Um lies on the same piecewise-linear segment. Exactness is not preserved

using a finite number of knots, but it is achieved asymptotically as the number of knots increase

(see detail of proof in Appendix C).

We use Fig. 4 to depict the piecewise linear approximation for different numbers of knots

employed and different γ values. Observe that the approximation is relatively poor when η is close

to 0, although η is lower bounded by Umin
m

Umax
m

> 0. For basic (weakly elastic) items, we observe this

lower bound is higher compared to highly elastic products. The approximation improves for larger

values of γ and by increasing the number of knots.

Corollary 1. Suppose there exist a set of polyhedral price constraints in OCPN for which the

number of feasible price vectors is polynomial in the size of the choice set Nm and the index set Imn.

Then the intrinsic values corresponding to these price vectors can be enumerated and knots can be

located at every such normalized intrinsic value. In this special case, it suffices that wms ∀s∈ S are

modeled as binary variables in order for OCPN-PWL to be an exact transformation of OCPN.

We state the above corollary without proof. It is clear that by changing wms to binary variables,

the aforementioned RLT transformations for ρms become exact.
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1% Target Opt Tolerance 5% Target Opt Tolerance 10% Target Opt Tolerance(
|M |, |N |, Tangent Run Time Realized # Success Run Time Realized # Success Run Time Realized # Success
|J |
)

Approx avg. (sec) Opt Gap (%) Instances avg. (sec) Opt Gap (%) Instances avg. (sec) Opt Gap (%) Instances

(2, 5, 1) No 1.1 1.1 22 0.3 2.2 30 0.2 2.5 30
(2, 10, 1) No 3.9 1.4 11 0.5 2.4 30 0.4 2.7 30
(2, 20, 1) No 13 1.6 11 1.0 2.4 30 1.0 3.0 30
(2, 30, 1) No 26 1.5 11 1.8 2.5 30 1.6 3.8 30
(3, 30, 1) No 58 1.6 6 4.4 2.7 30 4.4 2.7 30
(4, 30, 1) No 103 1.8 5 18 2.7 30 17 3.4 30
(5, 30, 1) No 115 1.9 2 24 2.6 30 23 3.2 30
(2, 30, 1) Yes 13 1.5 10 1.7 2.9 30 1.5 3.6 30
(5, 30, 1) Yes 81 3.1 0 17 4.1 29 13 4.8 30
(2, 30, 5) Yes - - - 143 4.6 29 56 8.0 30
(2, 30, 10) Yes - - - 521 4.6 26 262 5.0 30
(2, 30, 20) Yes - - - 2447 4.9 22 890 5.5 30

Table 1 Computational results for 30 instances of OCPN with discrete prices and a global volume goal.

Proposition 5. Define OCPN-Tangent as OCPN-PWL with constraint (5.12) replaced by con-

straints (5.18) given below:∑
s∈S

R̄msρms ≤ θm ≤ R̄t
m

[
(1− γm)θ̄+ γm

∑
s∈S

η̄ms
η̄tm

ρms

]
∀t∈ T, (5.18)

where the tangent to concave normalized intrinsic value curve ηγmm is evaluated at η̄tm ∀t ∈ T and

R̄t
m = (Umax

m η̄tm)γm. OCPN-Tangent is a relaxation of OCPN using piecewise linear and tangent

bounds and is asymptotically exact as the number of knots increases.

OCPN-Tangent provide an alternative way of linearizing ηγmm such that the optimal objective

of OCPN-Tangent is a guaranteed upper bound to OCPN. The intuition to constraint (5.18) is

as follows. Observe that the piecewise-linear mapping curve is a lower bound to the true func-

tion (Umax
m ηm)γm , which is concave. Any tangent is any upper bound to this function, and hence

θm ≤ R̄mtθ̄
[
1− γm + γmηm

η̄tm

]
where the tangent is evaluated at η̄tm. We know ηm =

∑
s∈S η̄msws. Sub-

stituting and summarizing, we get, the constraint. The proof of the proposition is in Appendix D.

This single location OCPN formulation can be directly extended to the multi-location setting

by simply summing the objective and constraint contributions across locations. The corresponding

multi-location solution of both the OCPN-PWL and the OCPN-Tangent would approximately

satisfy the volume goals that are present.

5.2. Computational performance of the proposed methods for the OCPN problem

Table 1 provides average run time results for the single and multi-location constrained OCPN

problem over 30 random instances with model parameters motivated from real data. We vary the

number of channels |M |, the products per channel |N | and the number of locations |J |. The γm

values were randomly chosen between (0.1,1.0) and the price coefficients between (-2.0, -0.1). We

employed 20 discrete prices uniformly distributed within +/- 50% of the average value. We applied

a global volume goal to preserve the total sales volume that is calculated at the average product

prices. We did not implement any inter-product price constraints that reduced the feasible space
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and improved run times. We used only simple bound-preprocessing ideas to obtain and tighten the

bounds for Umin
m and Umax

m for this analysis. We used CPLEX 12.6.2 as a solver with a pre-specified

target optimality tolerance that was varied, while the bound node limit was set to 100K.

First, we tested the OCPN-PWL formulation (in Table 1, Tangent Approx = No). Here we

observe that all instances solve successfully at 10% and 5% optimality tolerance3, while only some

instances solve successfully at 1% tolerance, suggesting that the proposed MIP can achieve near

optimal solutions (within 2-5% of optimality) for the single-location instances within 30 seconds

of run time. Upon computing the maximum approximation error in the true (non-linear) objective

function value and OCPN-PWL model evaluated objective function value, and the corresponding

global volume values across all instances (in Table 1, Tangent Approx = No), we find this error to

be less than 0.1% (not in table), suggesting that the quality of the SOS2 approximation using 20

knots is adequate.

To evaluate the impact of adding tangential cuts (5.18), we re-solved some of the instances using

10 tangents per nest and the OCPN-Tangent formulation (in Table 1, Tangent Approx = Yes). On

average, the MIP converged about 30% faster compared to the case without tangents. Furthermore,

it also yields an upper bound on the true optimum (best upper bound achieved by the MIP solver).

We therefore employed the tangents to tackle the harder multi-location instances. We could solve

all multi-location instances at the 10% optimality setting. Between 73-97% of the instances were

solved at a 5% tolerance setting and therefore we did not test the 1% tolerance setting. The largest

problem setting (20, 2, 30) was solved to within 5.5% of MIP optimality under 15 minutes on

average (or 30 seconds per product). A lower bound for each instance was calculated by evaluating

the true non-linear objective of OCPN at the optimal MIP prices. This yielded an average global

optimality gap of 10.8%, where the average violation of the global volume goal was less than 0.6%.

6. OCP implementation for a major US retailer

In this section, we report results of an OCP implementation for a major U.S. omnichannel retailer.

We worked with IBM Commerce and engaged with the retailer over the course of 8 months to

demonstrate the business value of the integrated omnichannel regular pricing over their existing

channel independent pricing on representative product categories, based on historical data. The

details of the different steps are provided below but first, we describe the retailer and their business

process (while maintaining their anonymity).

Retailer and their current business process: The retailer sells a variety of products, including

office supply product categories. They operate a network of over 1500 stores across the United

3 This means the realized optimality gap is less than the target optimality gap. In general, this may not happen with
other stopping criteria like maximum node limit, which we also imposed.
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States. The online channel is used to complete sales transactions that are routed through their

website, as well as mobile and paper-catalog orders. The organizational structure of the retailer

results in two different divisions separately managing the planning and operations of the two

channels. Both divisions use a regular price optimization (RPO) solution to manage prices for

many non-perishable products, referred to as UPCs (universal product code). The prices for the

remaining products are controlled partly by the manufacturer or are price-matched with certain

competitors. The incumbent RPO solution first produces weekly demand forecasts using models

that are calibrated with the latest available weekly sales and promotion data and are independent

of the other channels’ or competitors’ data. Next it identifies regular or baseline price for the

(non-perishable) products that maximizes the retailer’s profitability over a specified finite horizon

(often multiple weeks at a time) subject to some business constraints. Small price changes (e.g.,

less than 30%) are typical. One price is recommended for every geographical cluster of brick stores

identified by the retailer as a ‘price zone’. The entire online channel is treated as a separate price

zone. These prices can be overlaid with various promotions.

Business Problem: More than 20% of UPCs that are priced by the retailer are sold in both

channels. They contribute to a significant portion of the retailer’s category revenue (details provided

below). Due to the rapid growth of the online channel, the retailer was primarily concerned about

how to profitably coordinate prices between the two channels while accounting for competitor

effects and preserving market share. For the business value assessment, they suggested we ignore

cross-product effects (since it was negligible for the UPCs provided in the historical data) and that

we do not enforce a price match between the brick and online channels.

Data Summary: To support the business value assessment, we were provided with 52 weeks of

U.S. sales transaction and promotion data from July 2012 for the brick and online channels for

two categories: (1) inkjet cartridges and (2) markers and highlighters. The top 50 UPCs in terms

of historical volume that were sold in both the channels (channel volume share of at least 1%)

were selected for the business value assessment. Some statistics about the data are summarized in

Table 6.

Category No. of UPCs
Avg. Final Price % of category Online volume
Brick Online revenue share

Inkjet Cartridges 50 $36.4 $32.1 30% 12%
Markers and Highlighters 50 $8.7 $8.3 42% 12%

Table 2 Summary of the 2012-13 data provided.

In the inkjet cartridges and the markers and highlighters category, the 50 UPCs that were

selected contributed to about 30%, and 42% of the category revenues respectively, and have a 12%
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online volume share in each case. Although the historical online share of the retailer sales in 2012-13

was relatively low, we note that this number has been steadily increasing every year. The inkjet

cartridges category consists of products that are more expensive than the markers and highlighters.

The retailer sells products in the brick channel at a slightly higher price than the online channel,

despite a vast majority of customers buying in-store. Although one would attribute it to the higher

holding costs in-store, this information was not provided to us. We were only provided with the

wholesale cost values for the different UPCs and these were the same across the sales channels.

We implemented a scalable data method to extract, transform and load, high volumes of trans-

actional data streams. Forty geographical price zones were created based on this data using the

omnichannel framework described in Section 2. The total sales rates across the 40 zones were not

evenly distributed across locations, and we found that the top 10 zones contributed to 54% of the

total sales, and the top 20 zones accounted for 83% of the total sales.

For each of the UPC-zone pairs, we obtained by channel, the weekly aggregated sales, volume

weighted weekly average ticket price, discounts and promotions, and weekly holidays and seasonal-

ity factors. For a subset of UPCs, we were also provided a time series of three online competitor’s

prices in order to assess the competitor price impact on profitability and sales. We observed that

the products exhibited a relatively steady sales rate, which is typical of non-perishable basic prod-

ucts. The retailer varied their store and online prices over time, with relatively more frequent online

price changes. Their store prices varied across locations and differed from the online price. These

pricing variations enabled us to estimate own- and cross-channel price elasticity values from the

sales data using our data framework.

6.1. Demand Estimation using Machine Learning

We use the zone-tagged historical data to calibrate the omnichannel demand model described

in Eq. (3.1) based on the MNL attraction function at the UPC-zone level. Model selection and

cross-validation on a variety of training instances yielded: (1) the following exponential market-size

model τt(γ) for a zone that predicts the customer arrivals for any week t in the selling season as a

function of coefficients γ:

ln (τt(γ)) = γ0 +
∑
q

γ1,qTEMPORAL-VARIABLESq,t, (6.1)

and (2) the following channel attraction model fm,t(βm) to predict channel purchase probabilities

in week t as a function of coefficients βm:

ln (fm,t(βm)) =βm0 +βm1PRICEm,t +
∑
r

βm2,rPROMOTION-VARIABLESm,r,t (6.2)

+
∑
w

βm3,wCOMPETITOR PRICES (optional)m,w,t.

The promotion variables included discounts and other promotional indicators and the tempo-

ral variables included seasonality, holiday effects and trend. Competitor market share data were
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unavailable and competitor prices were introduced as attributes in the channel-specific utilities to

approximately account for their impact on location and channel-specific demand.

Because lost sales data was unavailable in the training data, the weekly market-sizes are also

unknown. Given this the γ and βm coefficients in Eq. (6.1) and Eq. (6.2) are jointly estimated using

an L1 loss-minimization model, which is an omnichannel adaptation of the censored data estimation

model proposed in Subramanian and Harsha (2017) along with user-acceptance constraints. In

this approach, the censored lost share value for any time period is treated as an auxiliary decision

variable that is bounded between 0 and 1. The resultant nonconvexity and nonlinearity in the

estimation problem is effectively managed using a piecewise-linear (PWL) approximation and yields

a tractable linear MIP formulation. An MNL demand model calibrated in this manner can predict

the weekly market sizes as well as channel purchase probabilities required by our pricing models.

We now describe the notation used, the data inputs, and key decision variables, and then discuss

the L1 loss-minimization model formulation.

The user specifies a discrete sampling of possible lost share values/knots in [ε,1− ε], denoted by

φk,∀k ∈K, where ε is a small positive number (e.g., 10−3). In period t, the observed sales for choice

m is denoted by s̄mt and supposing that the lost share is φk, the corresponding lost sales for period t

due to no-purchase is obtained as ζ̄kt = φk
1−φk

∑
m∈St s̄mt, and the market size is η̄kt = 1

1−φk

∑
m∈St s̄mt.

We introduce auxiliary SOS2 decision variables zkt to denote the probability that the lost share in

period t is φk. Recall that this means at most two adjacent members zkt ∀k ∈K (assuming the φk’s

are ordered) can be non-zero. Using these auxiliary variables, we approximate the logarithm of the

lost sales and the market size to be PWL functions in the z-space, i.e., ln ζt ≈
∑

k∈K ln(ζ̄kt)zkt and

lnηt ≈
∑

k∈K ln(η̄kt)zkt. The corresponding true functions are non-linear near when lost shares are

near 0 or 1 and linear in the mid-range. This feature can be exploited to reduce the number of φk

knots used, which otherwise for simplicity can be chosen to be equidistant. The primary decision

variables of interest are the continuous bounded-constrained channel attraction and market size

coefficients βm and γ respectively with user specified lower and upper bounds (lm and um for βm

and ls and us for γ) and L1 penalties (ρm and ρs). The model used is as follows:

min
β,γ,z

∑
t∈T

∑
m∈M

∣∣∣∣∣ln(s̄mt)−
∑
k∈K

ln(ζ̄kt)zkt− ln (fm,t(βm))

∣∣∣∣∣ (OCDE)

+
∑
t∈T

∣∣∣∣∣∑
k∈K

ln(η̄kt)zkt− ln (τt(γ))

∣∣∣∣∣+ ∑
m∈M

ρTm|βm|+ρTs |γ|∑
k∈K

zkt = 1 ∀ t∈ T (6.3)

zkt ≥ 0 ∀ t∈ T , k ∈K (6.4)

{zkt ∀ k ∈K} ∈ SOS2 ∀ t∈ T (6.5)

lm ≤βm ≤ um ∀m∈M (6.6)

ls ≤ γ ≤ us (6.7)
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The objective function of the omnichannel demand estimation (OCDE) minimizes the sum of

the absolute deviations between the imputed and predicted values of the MNL log-channel shares

(first term, where the imputed share is s̄mt
ζt

) and the log-market size values (second term, where

imputed size is ηt) over all the periods in the training data set. The remaining terms represent the

L1 (LASSO) penalty that helps to automate variable selection and obtain a sparse model. Con-

straints (6.3–6.5) ensure that one lost share probability value is chosen for any given period t and

the PWL lost sales and market size imputations are obtained endogenously using this probability

and observed sales. Coefficient bounds (6.6–6.7) enforce sign constraints and are useful practical

safeguards in an automated machine learning environment.

The OCDE optimization models were evaluated on a Windows-7 computer having 8GB RAM,

and an Intel Core i7 processor. We used CPLEX 12.6.2 with a branch and bound node limit setting

of 10,000 and optimality gap of 1%. Using 10 uniform PWL segments (|K| = 10, {φk, k ∈K} =

{0.001,0.1,0.2, ...,0.9,0.999}) resulted in a run time of 1.5 seconds on average per instance (i.e., at

the UPC-Zone level). We used sign constraints on parameter values (e.g., βm1 ≤ 0, βm2,k, βm3,j ≥ 0)

and appropriate L1 penalty values in [0.1,1]. Introducing such penalties result in a biased estimator

and makes standard significance testing difficult. On the other hand, a tuned LASSO penalty

selects variables that enhances out-of-sample forecast accuracy.

With the resultant MNL model obtained from the calibrated parameters and the weekly feature

values, we can predict the weekly demand (same as sales in our setting). The preferred method for

the retailer to track the forecast accuracy of the MIP-based machine learning approach was using

the weighted mean absolute percentage error (WMAPE) metric where t represents the week index:

WMAPE =

∑
t |predicted sales(t)− actual sales(t)|∑

t actual sales(t)
∗ 100 (6.8)

Table 4 reports the achieved out-of sample WMAPE metric for eight-week ahead predictions of

weekly sales at the UPC-zone level. The WMAPE value compares well with the estimates of Fisher

and Vaidyanathan (2014) who report an out-of-sample sales-weighted MAPE of 40.1% at the

store-UPC level and 25.8% at the chain-UPC level for store-sales of automobile tires. Overall,

the achieved forecast accuracy by our machine learning approach at this fine level of aggregation

satisfied the retailer’s expectation.

Inkjet Cartridges Markers and highlighters

Brick Online Brick Online

29 36 36 24
(23,31) (24,45) (26,44) (20,27)

Table 3 Eight week average and range (25th and 75th quantile) of the out-of-sample WMAPE fit over the

UPC-zone pairs in each category.
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From an implementation perspective, continual model re-training is required for a variety of

practical reasons: (1) changing customer preferences and demographic trends; (2) new types of

promotions; (3) newer product versions and/or channels introduced with limited historical data.

Automated re-training of the demand model is triggered prior to every price optimization using the

latest available data and with sufficient history to capture price, promotion and temporal effects, so

that the OCDE model is used to progressively learn the parameters over time and reduce prediction

error. For products with limited data, prior coefficient values with ridge (L2) penalty are used

until the estimated coefficient values stabilize. Bootstrapping and Thompson sampling (Russo and

Van Roy 2014) based active learning methods can be used to enhance convergence when there is

limited price variation in the training data.

MIP-based censored MNL vs. MLE-based uncensored hybrid MNL: We compare our

MIP-based censored data estimation accuracy to the uncensored hybrid MNL demand model (Sub-

ramanian and Sherali 2010) employed in the retail industry to model consumer choice. Recall that

in the hybrid model, total sales are spread down to the purchase choices using an MNL model

excluding the no-purchase option (there is no 1 in the denominator of the MNL). This simplifies the

estimation procedure into two independent estimations: (1) channel purchase probability (using

MLE), and (2) total sales (e.g., using GLMNET library in R statistical software package), where

the latter depends on all the channel features as well. The practical drawbacks of hybrid MNL are

the non-intuitive cross price elasticities (e.g., positive price elasticity for substitutive items) and

an increased degree of non-linearity and non-convexity in the resultant price optimization model.

Table 4 compares the forecast quality of the OCDE model with that of the hybrid demand model

for the different scenarios (a standard error of 1% or lower is observed in the reported WMAPEs).

We also included UPCs from other product categories that were not part of the BVA. We can see

that the OCDE approach either matches or improves upon the WMAPE achieved by the hybrid

approach in 9 of the 10 channel-level scenarios. Furthermore, the omnichannel model is strictly

better in all the product categories for the online channel.

Category # UPCs
Omnichannel Hybrid

Brick Online Brick Online

Inkjet Cartridges 50 29 36 29 38
Markers & Highlighters 50 36 24 37 27
Category 3 147 8 12 9 17
Category 4 114 23 21 21 26
Category 5 76 18 16 19 18

Table 4 Eight week average out-of-sample WMAPE fit over the UPC-zone pairs in each category.

Estimated own and cross-channel price elasticities: We present the average (and percentile

variations) of the same-channel and cross-channel price elasticity values evaluated at the average
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channel price in Table 5 across the UPC-Zone data instances. These elasticities range between -2.0

to 0. The relatively low elasticity values are typical of essential consumer products. For example,

Krugman and Wells (2008) report price elasticities for various essential and luxury product types

and a value of -0.5 for stationery goods. It can also be seen from Table 5 that the cross-channel

price elasticities are significant for these categories, and as high as 50% of the own channel price

elasticity. We also observe that the cross-elasticities are asymmetric in that the impact of brick

prices on the online sales tends to be higher than the impact of the online prices on brick sales.

It is indicative of the heterogeneity of the customers shopping in the different channels as well as

the volume share of these channels. With the brick channel contributing to 88% of the market

share, the absolute change in volume of brick sales though is much higher than that for the online

channel. As the online share rises over time, we can expect the online price to exert an increasing

influence on the brick channel sales.

Channel \ Price
Inkjet Cartridges Markers and highlighters

Brick price Online price Brick price Online price

Brick sales
-0.66 0.06 -1.19 0.04

(-1.84,-0.4) (0,0.22) (-1.87,-0.01) (0, 0.05)

Online sales
0.31 -1.04 0.19 -0.78

(0,1.46) (-1.99,-0.01) (0,0.39) (-1.96,-0.01)

Table 5 Average and the range (10th and 90th quantile) of the own and cross-channel price elasticities across

the UPC-Zone data instances.

Note that the cross-channel elasticities (off diagonal entries in Table 5), and the impact of brick

prices on online sales at a location specific level (lower off-diagonal entry), cannot be computed

using traditional pricing models employed in the industry. The value assessment presented in the

following section are projections based on the calibrated demand model discussed here.

6.2. Business value assessment

For each of the 50 UPCs in the two product categories we jointly optimize prices in all the physical

stores and the online channel using the estimated zone-level omnichannel demand models and the

OCP MIP model. For the business case, we explicitly focused on the multi-period regular pricing

problem (a typical RPO setting) wherein the goal is to find an optimized price for a product over

the last 8 consecutive out-of-sample prediction weeks. The OCP model was extended to include

multiple time periods and its demand variations, via a constraint like (4.4) that runs across time4.

The retailer specified the following goals and business rules for the value assessment using the

historical sales data: (1) price bounds to ensure that recommended prices were within historical

4 More precisely, we replace the index j and set J in the OCP-MIP with indicies j, t and sets J and T , where j ∈ J
and t∈ T . We also include the equality constraint: zmji = zmjti ∀i∈ Imj ,m∈M,j ∈ J, t∈ T .



Harsha, Subramanian and Ettl: Omnichannel demand modeling and price optimization
Article submitted to INFORMS Journal on Optimization; manuscript no. (Please, provide the manuscript number!) 29

Avg.	Price	
Brick:	$38.5	
Online:	$33.7	

Avg.	Price	
Brick:	$39.7	
Online:	$29.7		

Total	Sales	

50	

60	

70	

80	

90	

100	

110	

120	

$0.5		

$0.6		

$0.7		

$0.8		

$0.9		

$1.0		

$1.1		

$1.2		

Actual	 Predicted	 Op/mized	

Sales	(in	1000	units)	G
ro
ss
	P
ro
fit
	(i
n	
$	
M
	)	

Inkjet	Cartridges	

Avg.	Price	
Brick:	$8.8	
Online:	$8.9	

Avg.	Price	
Brick:	$9.1	
Online:	$7.8		

Total	Sales	

50	

60	

70	

80	

90	

100	

110	

120	

$0.5		

$0.6		

$0.7		

$0.8		

$0.9		

$1.0		

$1.1		

$1.2		

Actual	 Predicted	 Op/mized	

Sales	(in	1000	units)	G
ro
ss
	P
ro
fit
	(i
n	
$	
M
	)	

Markers	and	Highlighters	

Figure 5 Re-normalized gross-profit and sales during an 8-week period for actuals from historical data,

predicted using omnichannel demand models at actual prices and the optimization.

values allowing a 10% variation (20 price points per ladder with magic number endings); (2) a

global volume goal to preserve sales volume that required the predicted volume at the optimal

prices to be no less than the predicted volume at the baseline (actual) prices; and (3) a price

balancing constraint that required the average channel price at a location to be with a preset factor

of the corresponding baseline value. The motivation for the last constraint is to prevent a myopic

response of raising prices at any location that can gradually erode market share.

The OCP optimization models developed as a JAVA API were evaluated on a Windows-7 com-

puter having 8GB RAM, and an Intel Core i7 processor. CPLEX 12.6.2 with its out-of-box param-

eter settings was used to solve the resultant MIPs to global optimality. The average problem size

after preprocessing was about 30K rows, 20K columns, and 550 binary variables. The average run-

time per UPC was 1.7 seconds, and no more than 3 seconds in the worst case. Thus, the solution

response is fast enough to perform multiple price updates within a day making it a suitable solution

for dynamic omnichannel pricing.

The results of this optimization are presented in Fig. 5 along with two baselines. The first baseline

(actual) represents the historically realized KPIs. The second baseline (predicted) represents the

predicted KPIs using the actual prices and the calibrated omnichannel demand model. To protect

the retailer’s data privacy, the actual gross profits are normalized to $1M and the sales volume to

100K units and the results for predicted and optimized are relative to these normalized actuals.

We observe that the predicted and realized metrics are close to each other for both categories,

i.e., within 1% in terms of sales volume and gross profit each for inkjet cartridges, and within 1%

in terms of sales volume and 4% in terms of gross profit for markers and highlighters. This baseline

result is important because it boosted the confidence of all the stakeholders in the accuracy of the

calibrated omnichannel demand model and was accepted as a valid model for the BVA projections.

The optimized metrics project a 7% gross profit lift in both categories over the predicted value. This
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Figure 6 Cumulative distribution of UPC (UPC-Zone pairs for brick) as a function of the relative change of the

optimized channel price compared to the actual price.

is notable because it is achieved while also increasing the corresponding aggregate sales volume

by 1% and 3% respectively. This gain is obtained by lowering the average optimized online prices

from actuals by about 12%, while the average optimized store prices are increased by 2.5% in each

of the product categories.

Fig. 6 displays the cumulative distribution of the UPCs (UPC-Zone pairs for the brick stores) as

a function of the relative change of the optimized channel price from the actual price. For example,

the y-axis value at the ‘zero’ point on the x-axis gives us the total proportion of UPCs (or UPC-

Zone pairs) whose optimized channel prices are at or below the actual price. In the inkjet category,

we observe that the optimization increased brick prices in 70% of the zones, while retaining or

lowering brick prices in 30% of the locations. On the other hand, for the markers, only 37% of the

brick locations witness a price rise (due to the higher own brick price elasticity of markers over the

inkjet category). In both categories, the optimization predominantly lowered the online channel

price for all UPCs compared to the brick zones. This is due to the higher elasticity of the online

channel relative to the stores. Such a pricing solution boosts online sales, allowing the retailer to

be more competitive with online retailers in the marketplace without trying to aggressively match

the low price of e-tail giants.

The above results were presented at the retailer site to a team of pricing analysts and senior

executives, including their Vice-President for revenue management. OCP’s demonstrated ability

to accurately model omnichannel customer behavior and integrate competitive channel pricing

strategies was highly valued by IBM Commerce and their retail customers. The overall feedback

was positive, and with similar experiences with other retailers in a variety of product categories.

Subsequently, a proprietary version of the solution was deployed into production by IBM Commerce

in 2014 and showcased as one of the retail analytics success stories in an IBM smarter-commerce

global summit the same year. It included a presentation on its capabilities by a partner retail chain.

This work was formally recognized by IBM as one of the research accomplishments in 2015.
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Appendix A: Proof of Proposition 1

We prove this proposition with a contradiction. Let us assume the general price monotonicity (or a volume measure)

constraint (4.7) is convex using market share variables. Consider a special case of this constraint: pmj ≤ γpm′j ,

where γ 6= 1 is a constant. We drop the location subscript j for ease of notation. Suppose that fm (p) = eam−bmp,

fm′ (p) = eam′−bm′p and that bm 6= bm′ . The price monotonicity constraint can be written as follows in the market

share variables:
am
bm
− 1

bm
log

(
θm

1− θm

)
≤ γam′

bm′
− γ

bm′
log

(
θm′

1− θm′

)
This constraint results in an irreducible non-linearity and is non-convex unless γ = 1 and bm = bm′ . Hence the

contradiction. �

Appendix B: Proof of Proposition 2

We achieve this result by performing a reduction from the 2-class logit assortment optimization problem (2CL) which

is shown to be NP-complete by Rusmevichientong et al. (2010). The inputs and the problem are as follows:

2-Class Logit (2CL) Problem:

Inputs:

• The set of products indexed by 1,2, · · · , n.

• The profits w1,w2, · · · ,wn, where wi ∈Z+∀i= 1,2, · · · , n.

• The preference weights (vg1 , · · · , vgn), where vgi ∈Z+∀i= 1,2, · · · , n, g= 1,2.

• The relative weights of the two classes, α1, α2 ∈Q+ such that α1 +α2 = 1.

• The target profit K ∈Z+.

Question: Is there an assortment S ⊂ {1, · · · , n} whose expected profit is at least K, that is

α1

∑
i∈S wiv

1
i

1 +
∑
i∈S v

1
i

+α2

∑
i∈S wiv

2
i

1 +
∑
i∈S v

2
i

≥K (B.1)

We similarly describe the 2-location OCP problem as follows:

Two location OCP (2L-OCP) Problem:

Inputs:

• The set of channels indexed by I = 1,2, · · · , n.

• The attraction functions (fg1 (p1), · · · , fgn(pn)), with the following mild regularity assumption:

lim
pi→∞

pi
fgi (pi)

1 + fgi (pi)
= 0 ∀i∈ I, g= 1,2. (B.2)

The regularity condition ensures that there exists a finite, possible large, price where the revenue contribution of

a virtual channel can be reduced to 0 or close enough to 0.

• The cost of offering the item on a channel is ci ∀i∈ I.

• The weights across locations, τ1, τ2.

• The target profit K ∈Z+.

Question: Is there a price vector (p∗1, ..., p
∗
n) ∈ Ω1 × · · · × Ωn such that Ωi is a finite set of discrete prices, whose

expected profit is at least K, that is

τ1

∑
i∈I(pi− ci)f

1
i (pi)

1 +
∑
i∈I f

1
i (pi)

+ τ2

∑
i∈I(pi− ci)f

2
i (pi)

1 +
∑
i∈I f

2
i (pi)

≥K (B.3)

Clearly the 2L-OCP problem is in NP. Consider an arbitrary instance of 2CL. We map every item 1, · · · , n to a

distinct virtual channel in the 2-location OCP problem, i.e., I = 1, · · · , n and set ci = 0 ∀i∈ I and τg = αg for g= 1,2.

We consider an attraction function with two finite discrete price offers (p̄i, p̄
′
max) for each channel i∈ I where p̄i =wi
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and fgi (p̄i) = vgi for g = 1,2 and a very large but finite price p̄′max is chosen, constant across channels, such that the

following inequalities are satisfied:

p̄′max >
∑

i∈I,g=1,2

wiv
g
i (B.4)

p̄′max

fgi (p̄′max)

1 + fgi (p̄′max)
≤ 1

2n
δ ∀i∈ I, g= 1,2 (B.5)

where δ= ming=1,2
1

1+
∑

i∈I v
g
i

. Note that because of Eq. (B.2), a finite p̄′max can be identified.

We first show that given an assortment S for the 2CL problem, its objective 2CLObj(S) can be used to upper and

lower bound the OCP objective when channels in S offer price p̄i respectively for each i ∈ I and the rest offer p̄′max.

We denote this OCP objective by OCPObj(S).

OCPObj(S) =τ1

∑
i∈S p̄if

1
i (p̄i) +

∑
i/∈S p̄

′
maxf

1
i (p̄′max)

1 +
∑
i∈S f

1
i (p̄i) +

∑
i/∈S f

1
i (p̄′max)

+ τ2

∑
i∈S p̄if

2
i (p̄i) +

∑
i/∈S p̄

′
maxf

2
i (p̄′max)

1 +
∑
i∈S f

2
i (p̄i) +

∑
i/∈S f

2
i (p̄′max)

(B.6)

≤ 2CLObj(S) + τ1
∑
i/∈S

1

2n
δ+ τ2

∑
i/∈S

1

2n
δ (B.7)

≤ 2CLObj(S) +
δ

2
(B.8)

The first inequality is because p̄′max satisfies (B.5). Moreover, because p̄′max satisfies (B.4),

2CLObj(S)≤OCPObj(S). (B.9)

Now suppose there exists an assortment S such that 2CLObj(S) ≥ K then from (B.9), it is easy to conclude

that, OCPObj(S) ≥ K. But suppose there exists no assortment S such that 2CLObj(S) ≥ K, i.e., 2CL∗Obj < K

where 2CL∗Obj = maxS 2CLObj(S), then because of the following observation, we conclude that OCP ∗Obj <K where

OCP ∗Obj = maxSOCPObj(S). The key observation is that 2CL∗Obj is either an integer (less than or equal to K−1) or

d2CL∗Obje− 2CL∗Obj > δ, (B.10)

because vgi ∈ Z+ and α1 +α2 = 1. In either case, now 2CL∗Obj + δ
2
<K and hence OCP ∗Obj <K. This concludes the

reduction, showing that 2L-OCP is NP-complete (its optimization counterpart is NP-Hard). �

Appendix C: Proof of Proposition 4

All transformations to obtain the OCPN-PWL formulated are explained below Proposition 4. The transformed model

uses two approximations: (1) the PWL approximation of the normalized intrinsic value curve using SOS2 variables,

wms; and (2) the RLT constraints with the same SOS2 variables to remove the non-linearity ρms = θ̄wms. With the

increase in the number of knots, the approximation due to (1) is by definition exact. What remains to show is that∑
s∈S R̄msρms converges to term

∑
s∈S R̄msθ̄wms when the knots increase, i.e., when |Ūms1− Ūms2| → 0 for any s1, s2

that are adjacent indicies. Because wms ∀s∈ S are SOS2 variables, without loss of generality, say wms1,wms2 ≥ 0 and

the rest are all zero. Therefore, wms1 +wms2 = 1 and ρms1 + ρms2 = θ̄. Now substituting for ρms2 and wms2 in the

respective terms, they reduce to (R̄ms1− R̄ms2)ρms1 + R̄ms2θ̄ and (R̄ms1− R̄ms2)θ̄wms1 + R̄ms2θ̄, which converge in

the limit as |R̄ms1− R̄ms2| → 0 when |Ūms1− Ūms2| → 0. �

Appendix D: Proof of Proposition 5

We first show that the new formulation is always an upper bound. Because all the transformation steps are exact (in

the integer sense) except the lower and upper bounds on Rm, it suffices to show that even with the RLT relaxation,
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and the introduction of the variable ρms, the lower and upper bounds to the true value of Rm given in Eq. (5.3) hold.

This means we have to show that the following holds:

∑
s∈S

R̄msρms ≤ θ̄(Umax
m η)γm (D.1)

θ̄(Umax
m η)γm ≤ R̄tm

[
(1− γm)θ̄+ γm

∑
s∈S

η̄ms
η̄tm

ρms

]
∀t∈ T (D.2)

Because wms ∀s ∈ S are SOS2 variables, without loss of generality, say wms1,wms2 ≥ 0 and the rest are all zero.

Therefore, wms1 +wms2 = 1 and ρms1 + ρms2 = θ̄. Note that here η= η̄ms1wms1 + η̄ms2wms2.

Now the left hand side (LHS) of constraint (D.1) can be simplified to θ̄
[
R̄ms1

ρms1
θ̄

+ R̄ms2
ρms2
θ̄

]
=

θ̄(Umax
m )γm

[
η̄γmms1

ρms1
θ̄

+ η̄γmms2
ρms2
θ̄

]
. We can deduce that it is always less than the right hand side (RHS) of con-

straint (D.1) as the RHS is a concave function and LHS is a piecewise linear lower bound.

Now consider the RHS of constraint (D.2). This can be simplified as follows:

R̄tmθ̄
[
(1−λm) +λm

η̄ms1ρms1+η̄ms2ρms2
θ̄η̄mt

]
. This simplifies to a tangent to the concave function on the LHS and

hence is always an upper bound. Thus, this proves that even with the RLT relaxation of the SOS2 variables,

constraints (D.1–D.2) relax the function at its true value and hence the optimal solution of this formulation is an

upper bound on OCPN.

The proof of asymptotic optimality follows the same steps as Proposition 4, except that here we use it both on the

lower and the upper bound. �

Appendix E: Price matching and the practical value of global optimality

Consider a retailer who would rather price-match the channels if the profitability gain (by not price-matching) is

insufficient. The retailer can conveniently specify this tradeoff via a profitability threshold, where in, a price match

constraint is accepted only if the resultant drop in profitability is within the threshold.

A natural way of implementing this feature is to solve the OCP problem with, and without the price-matching

constraint and then pick the preferred solution. Employing an exact solution approach turns out to be critical in this

context. The use of a local-optimum based heuristic approach to solving OCP with and without the price matching

constraint, can result in incorrect profitability gaps, producing ‘false-positive’ price-matching recommendations. Note

that for such heuristic methods, a price-matching constraint can operate like a cutting-plane that deletes a local (but

not global) optimal solution to the unconstrained problem (i.e., without the price-matching constraint), potentially

yielding an improved profitability objective. In such cases, the heuristic approach is likely to approve price-matching,

whereas, the unconstrained profit value it achieves may have been far from optimality. Numerical testing clearly

demonstrated that such false-positives were not uncommon. On the other hand, an optimal approach always generates

the correct price-coordination recommendation, and the application produces stable and predictable responses from

a user perspective.
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