
Dynamic pricing of omnichannel inventories

Pavithra Harsha
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, pharsha@us.ibm.com

Shivaram Subramanian
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, subshiva@us.ibm.com

Joline Uichanco
Ross School of Business, University of Michigan, Ann Arbor, MI 48109, jolineu@umich.edu

Omnichannel retail refers to a seamless integration of an e-commerce channel and a network of brick-and-

mortar stores. An example is cross-channel fulfillment which allows a store to fulfill online orders in any

location. Another is price transparency, which allows customers to compare the online price with store prices.

This paper studies a new and widespread problem due to omnichannel retail: price optimization in the pres-

ence of cross-channel interactions in demand and supply, where cross-channel fulfillment is exogenous. We

model the omnichannel pricing problem as a dynamic stochastic program. We propose two pricing policies

that are based on the idea of “partitions” to the store inventory that approximate how this shared resource

will be utilized. These policies are practical, since they rely on solving computationally tractable mixed

integer programs that can accept various business and pricing rules. Moreover, in extensive simulation exper-

iments, they achieve a small optimality gap relative to theoretical upper bounds on the optimal expected

profit. The good observed performance of our pricing policies results from managing substitutive channel

demands in accordance with partitions that rebalance inventory in the network. A proprietary implementa-

tion of the analytics is commercially available as part of the IBM Commerce Markdown Price Solution. The

system results in an estimated 13.7% increase in clearance period revenue based on causal model analysis of

the data from a pilot implementation for clearance pricing at a large U.S. retailer.

Key words : Omnichannel, pricing, attraction demand, markdown pricing, e-commerce fulfillment,

cross-channel, elasticity

1. Introduction

Omnichannel retailing is a recent trend sweeping companies across the retailing industry (Bell et al.

2014). An omnichannel strategy promises to revolutionize how companies engage with customers

by creating a seamless shopping experience through an alignment of the retailer’s multiple sales

channels. The following are a few examples of the new capabilities enabled by omnichannel retail:

• A customer can buy a product from the online store while she is in a brick-and-mortar store

after finding through her mobile phone that it is offered at a cheaper price online.

• A customer who purchased a product online might choose a “buy online, pick up in store” option

to receive the product sooner than wait for the package to be shipped to his address.
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• The package that an e-commerce customer receives might have been fulfilled from a nearby store

since the e-commerce fulfillment center is out of stock.

From a customer’s perspective, an omnichannel environment makes it easier to compare prices

between stores and online, to purchase a product from any channel, and to receive the product

conveniently through any of the retailer’s multiple cross-channel fulfillment options. These capabil-

ities allow the retailer to remain competitive in a crowded e-commerce market. With the fast pace

of online sales growth (US Census Bureau 2017 reported that online sales grew 14–16% compared

to the previous year), retailers that are unable to quickly adapt to the changing retail landscape

could be left behind, as seen through the recent wave of store closures in the US (Rupp et al. 2017).

Amazon.com, the largest U.S. e-commerce retailer, is poised to benefit from a sustained trend of

online sales growth due its efficiency in fulfilling online orders from its multiple fulfillment centers.

In contrast, primarily brick-and-mortar retailers only have a few fulfillment centers due to the

significant fixed cost. Hence, an operational benefit from omnichannel integration is to enable the

use of the brick-and-mortar store network to fulfill online sales via ship-from-store (SFS) fulfillment

or buy-online-pickup-in-store (BOPS). Other benefits of cross-channel fulfillment include faster

delivery times and the flexibility to better utilize capacity (e.g., online order fulfillment can be

assigned to stores with slow-moving inventory). An operations manager for a books/media retailer

stated that enabling stores to fulfill e-commerce sales has driven cost down by 18% and revenue

up by 20% (Forrester Consulting 2014).

Despite an omnichannel environment having many benefits, it also introduces many new chal-

lenges for price optimization. Traditional retail pricing models optimize channel prices under the

assumption that there is no inventory sharing and coordination between channels. This assump-

tion does not hold in omnichannel where store inventory is additionally used for fulfilling customer

orders placed online. Another challenge is due to potential demand substitution between the online

store and brick-and-mortar store, which is affected by the prices offered on the two channels. Chan-

nel substitution is ignored in traditional revenue management models which assume price only

affects demand in the same channel. Despite these new challenges due to the omnichannel environ-

ment, many omnichannel retailers utilize legacy price optimization systems that do not account

for any channel interdependencies.

This paper studies a widespread and new problem due to omnichannel retail: price optimization

on an omnichannel network in the presence of cross-channel interactions in demand and supply,

where cross-channel fulfillment is exogenous and unknown. This is motivated from a business prob-

lem faced by a major U.S. omnichannel retailer, who we engaged with in a partnership with IBM

Commerce, a leading provider of merchandising solutions. The partnership aimed to develop an

omnichannel clearance pricing optimization system to replace the retailer’s legacy system that
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ignores cross-channel interactions. For this retailer, and for many other client retailers of IBM Com-

merce, it is difficult to fully coordinate pricing with fulfillment because order fulfillment is managed

by a separate and independent operational solution called the order management system (OMS)

that fulfills e-commerce orders on-the-fly, while price changes have a slower cadence (e.g., weekly).

This problem is different from other models in revenue management literature where prices have

to be optimized, either for a dedicated resource, or for an endogenously allocated shared resource.

We model the problem as a dynamic stochastic program, and propose two pricing policies that are

based on the idea of “partitions” to the store inventory that approximate how this shared resource

will be utilized:

• Policy D-OCPX determines inventory partitions by optimizing the profit of a deterministic model

where all random variables are replaced with their expected values.

• Policy R-OCPX determines inventory partitions by optimizing the worst-case realized profit in

an uncertainty set of the demand realizations.

Here OCPX refers to omnichannel pricing (OCP) with cross-channel (X) interactions. We demon-

strate that these pricing policies are:

1. practical since they rely on solving computationally tractable mixed integer programs or MIPs

(Lemma 2, Lemma 3) that can be solved by commercial off-the-shelf optimization solvers. In

experiments on data from the retailer, the model to price an item across all stores and channels

solves within 40 seconds for most problem instances, which is well within the business cycle

requirement for markdown optimization. Moreover, various business rules and pricing rules of

a retailer can be included as constraints to these models.

2. shown to perform well: (i) in extensive simulation experiments, and (ii) in a pilot implementation

of the omnichannel markdown optimization system with the partner retailer.

Deriving a MIP formulation for D-OCPX required proving that a deterministic nonlinear opti-

mization problem has the same optimal value as an optimization model with linear objectives and

constraints. Deriving the MIP formulation to R-OCPX required finding a tractable lower bound

to an NP-hard problem, a two-stage adjustable robust linear program. We prove a lower bound

in Proposition 1 by exploiting a structural property of the omnichannel problem.

The good observed performance of our pricing policies results from managing demand substi-

tution across channels in accordance with partitions that rebalance inventory in the network. In

particular, the policy encourages online demand, which can be fulfilled from any store, such as

stores with slow moving inventory. To demonstrate 2(i), we prove upper bounds on the optimal

expected profit (Lemma 1, Lemma 4) with which we benchmark the expected profit of a pricing

policy. In simulations, we find that the proposed pricing policies outperform ‘deterministic’ linear

program (DLP) approaches and policies that simulate the legacy pricing system of the retailer.
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To demonstrate 2(ii), we conduct a rigorous empirical analysis of data resulting from the pilot

implementation of the omnichannel system. We estimate a 13.7% increase in clearance period rev-

enues due to the omnichannel system. Because of the positive feedback from the retailer during

the engagement and the widespread nature of the problem, a proprietary implementation of the

proposed analytics was commercialized in May 2016 is now available as part of the IBM Commerce

Markdown Price Solution.

1.1. Literature review

Omnichannel retailing is a relatively new area, hence there are few academic papers on optimiza-

tion of omnichannel operations, including pricing and/or cross-channel fulfillment. But broadly

our work is in the area of revenue management, where most papers either adopt price controls

(use prices to control demand(s)) or capacity control (allocate capacity of resource(s) to classes of

demand). A novel aspect of this paper is that it employs both: cross-channel demand substitution

that is managed through pricing, and allocation (partition) of capacities (inventories in multiple

locations) optimally across channels. In addition, the capacities themselves are substitutable, as

online demand can be fulfilled using inventory from any store. To better emphasize this distin-

guishing characteristic of the paper, we organize the literature review around these three groups.

For comprehensive surveys of dynamic pricing, see Bitran and Caldentey (2003), Elmaghraby and

Keskinocak (2003), Chen and Simchi-Levi (2012). Single-product dynamic pricing models consider

a finite amount of perishable inventory being sold to price-sensitive customers over a finite horizon.

Typically, there is no inventory replenishment, an assumption applicable for hotel rooms, airline

flights, and products with short selling periods and long lead times. Assuming that the demand

follows a Poisson process with known time-dependent intensity as a function of price, Gallego and

van Ryzin (1994), Bitran and Mondschein (1997), Zhao and Zheng (2000) characterize the optimal

policies as functions of time and inventory. Bitran et al. (1998) extend this basic model to a network

of brick-and-mortar which coordinate prices and allow inventory transshipment between stores.

However, while the model allows for inventory flows between locations (similar to cross-channel

fulfillment), it only assumes the existence of a single channel and does not model substitution.

Caro and Gallien (2012) discuss the development and implementation of a clearance pricing model

for the fast-fashion retailer Zara.

Dynamic pricing models for multiple substitutable products assume that the price of one product

affects the demand rates of multiple products. A popular model of incorporating customer choice

in operation models is using discrete choice models. A common technique adopted by many papers

is to convert the resultant nonconvex pricing problem into an equivalent convex problem in the

market share or sales probability space (Aydin and Porteus 2008, Song and Xue 2007, Dong et al.
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2009, Li and Huh 2011). A recent paper by Harsha et al. (2015) develops a price optimization

model for omnichannel demand, by modeling channel substitution using discrete choice models.

Their model however assumes there are no inventory constraints or cross-channel fulfillment flows.

Our work is also related to papers where multiple products share multiple resources of limited

capacity. Gallego and van Ryzin (1997) consider the problem of dynamic pricing for products, where

products consume a fixed capacity of shared resources. Maglaras and Meissner (2006) study the

problem where the products share a single resource. In omnichannel pricing, the channel-location

can be viewed as a “product” and the inventories in different locations as “resources”, however,

consumption is not known a priori since it is determined by cross-channel fulfillment decisions.

Most of the above referenced papers, assume that the demands can be characterized completely

using probability distribution function. But some recent papers have also considered formulations

and models that avoid specifying complete distributional information for the unknown parame-

ters. One such approach is using robust optimization formulations, based on either maximizing

the minimum possible revenue (Adida and Perakis 2006, Thiele 2009), minimizing the worst-case

regret (Perakis and Roels 2008), or maximizing the competitive ratio (Lan et al. 2008). In deriv-

ing a robust optimization counterpart to our deterministic problem, because cross-channel flows

are recourse decisions after the uncertain demand is realized, the problem turns out to be a two-

stage adaptive robust optimization problem, which is known to be NP hard (Zeng and Zhao 2013,

Bertsimas and de Ruiter 2016), and for which we develop an approximation.

A related stream of literature is the topic of network capacity control, wherein unlike price-based

controls, the goal is to allocate resources across products at fixed prices by deciding which subset

of products to offer. In fact, the store inventory partitions introduced in our paper are similar

in spirit to booking limits or protection limits in capacity control problems. Early papers in this

topic assumed product independence (Talluri and van Ryzin 1999, Topaloglu 2009) while more

recent papers model consumer substitution across products (Liu and van Ryzin 2008, Bront et al.

2009). Cross-channel fulfillment is related to supply-side substitution in capacity control literature.

Gallego and Phillips (2004) introduce the idea of a “flexible product” which is a menu of alternative

products. The customer purchases a flexible product knowing that the seller will assign the final

product later. Gallego and Phillips (2004) models the capacity control problem of a single flexible

product composed of two specific products. In the omnichannel setting, products purchased online

are flexible products, since the retailer can later fulfill the purchase from a variety of store locations.

Product upgrades also allow sellers to better utilize capacities. For example, Shumsky and Zhang

(2009), Yu et al. (2015) study the dynamic capacity allocation problem of multiple classes, where

customers purchasing a demand class can be upgraded to a higher class.
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We briefly mention a few papers on pricing and/or fulfillment for a pure e-commerce retailer.

Acimovic and Graves (2014) discuss the development of a dynamic fulfillment system to optimize

outbound shipping costs (affected by shipping distances and split shipments). Jasin and Sinha

(2015) propose heuristics based on solving a deterministic linear program approximation. A paper

by Lei et al. (2017) study dynamic pricing and fulfillment of pure e-commerce retailer and similarly

propose solving a deterministic approximation.

Finally, there is significant literature on multichannel pricing in marketing. Surveys by Zhang

et al. (2010), Grewal et al. (2011) provide a good overview. Our work differs in that our goal is to

develop a computationally tractable models and a decision support system for omnichannel pricing

of short lifecycle products.

2. The omnichannel markdown optimization problem

The partner retailer generates over $40 billion sales annually through an online store and its more

than 1,000 brick-and-mortar stores in the U.S. as of 2014. While clearance sales is a small fraction

of the retailer’s total sales, it is significant in absolute terms (more than $1 billion per year). Table 1

summarizes data for a sample of 195 clearance SKUs in 2014 from the partner retailer. These SKUs

contribute to a total of 7.5 million annual clearance sales units, and total annual clearance revenues

of $107 million. About 89% of sales made in these categories is through store purchase, and about

11% is through the online channel. Almost 94% of online sales are fulfilled using inventory shipped

from a store. During clearance alone, the online sales share steeply increases to about 24% and the

ship-from-store (SFS) fraction is close to 100%.

Table 1 Data summary of a sample of 195 clearance SKUs in 2014 from partner retailer.

Categories # SKUs Clearance Sales Clearance Revenue % Sales From % E-commerce
(million units) ($ millions) E-commerce Ship From Store

Notebooks 100 4.1 84 13.4% 94.6%
Tablets 45 1.4 17 14.4% 93.7%
Tablet Accessories 50 2 6 5.4% 90.4%

Total 195 7.5 107 11.4% 93.8%

With omnichannel operations evident from Table 1, using legacy markdown optimization systems

that ignored cross-channel interactions result in negative consequences. Fig. 1 shows weekly channel

prices (e-commerce price and average brick-and-mortar price) and weekly channel sales for a Tablet

computer that has been marked for clearance in both channels starting from Week 40. At the start

of the clearance period, the legacy pricing software sets large initial markdowns in the brick-and-

mortar stores to clear off all store inventory over the next 12 weeks from walk-in store customers

(see topmost panel). However, not all store inventory is at risk of becoming unsold since e-commerce
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Figure 1 Time series data for the channel prices and the channel sales of a Tablet SKUs.

sales are primarily fulfilled by stores during the clearance period (see middle panel). Because of the

large store markdowns, after an initial sales spike on Week 40, total brick sales steadily decline due

to an increasing number of stores stocking out (see bottom panel). In contrast to the large brick

markdowns, the legacy system initially sets no markdown for the online channel since inventory in

the e-commerce warehouse is depleted by Week 40, hence the system assumes there is no inventory

left for online sales. However, due to substitution, setting the online price significantly higher

than the brick price will cause channel cannibalization. Merchandise managers would override

the price outputs from the system to reduce this price difference by making ad-hoc adjustments

to the system inputs. A common adjustment used to set the online price (also applied to the

Tablet example) is to inject artificial inventory into the online channel. Merchandise managers we

interviewed described this manual adjustment process as unmanageable, labor-intensive, and time

consuming. Additionally, a manual adjustment process cannot be used for each of the more than

1,000 stores. Hence, a major concern was that since most sales occured through stores, the large

brick markdowns would result in systemwide margin erosion.

2.1. Stochastic optimization model

We next model the omnichannel retailer’s problem through a dynamic stochastic optimization

model. We use the notation [N ] to denote the set {1,2, . . . ,N} for any integer N ≥ 1. Any variables

with tilde notation denote random variables. Subscripts e and b denote e-commerce and brick-and-

mortar store variables, respectively.

Consider a retailer selling a product with finite inventory over T sales periods. Customers can

purchase the product either through the retailer’s online store or through any brick-and-mortar

store in its network of retail stores. The retailer has one e-fulfillment center (EFC) that can fulfill
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any online purchase. Suppose that the retailer has stores in Z geographical zones, where we assume

there is one retail store for each zone. The proposed model can be trivially extended to the case

with multiple EFC locations, multiple stores per zone, or no stores in some zones. We assume that

customers in region z ∈ [Z] can only purchase from the online store or from the store in region z,

and are not willing to travel to a store in another region z′ 6= z. We assume a short selling period,

hence inventory is not replenished in the EFC or in the stores. This assumption is suitable for

seasonal, fast-fashion items or for clearance products. Due to the short horizon, we also assume

that there are no inventory holding costs and shortage costs. Inventory that is not sold by period T

can be salvaged at a per-unit value q.

The retailer can only change prices at the start of each period. At the start of period t∈ [T ], let

xte be the inventory level in the EFC, and let xtbz be the inventory available in store z ∈ [Z]. After

observing the period t inventory levels in the retail network xt = (xte, x
t
b1, x

t
b2, . . . , x

t
bZ), the retailer

then determines the network-wide prices. A business rule of the partner retailer is that the online

price must be uniform across customer locations, but each individual brick-and-mortar store can

set its own price. We denote the vector of network prices as pt = (pte, p
t
b1, p

t
b2 . . . , p

t
bZ), where pte is the

online price and ptbz is the store price in zone z ∈ [Z]. We let Ω be a discrete set of all feasible prices.

For example, retailers often restrict markdowns to fixed discount levels (e.g. 20%, 30%, 40%) or

prices with magic number endings (e.g. those ending with $0.99) to exploit customer psychology.

After setting the price, the random channel demands and fulfillments are realized. We denote

by D̃t = (D̃t
ez, D̃

t
bz)z∈[Z] the random vector of demands, where D̃t

mz = D̃t
mz(p

t
e, p

t
bz) is the random

channel m demand in zone z, which depends on the online price and the store price in zone z.

Note that this demand model allows substitution between the online channel and store channel.

We denote dtmz(p
t
e, p

t
bz) :=E[D̃t

mz(p
t
e, p

t
bz)] as its expectation. Let ỹtez be a random variable denoting

the portion of zone z online demand that has been fulfilled by EFC inventory and ỹtz′z be the

random portion fulfilled by store inventory from zone z′ ∈ [Z]; any unfulfilled portion is lost. Zone z′

can either be the same zone as z or a different zone. Suppose that zone z online orders fulfilled

from the EFC incur a per-unit fulfillment cost cez, while those fulfilled from a store in zone z′

incurs a per-unit fulfillment cost cz′z. The fulfillment costs include shipping costs and handling

costs. Define c= (cez, c1z, c2z, . . . , cZz)z∈[Z]. The fulfillment vector ỹt = (ỹtez, ỹ
t
1z, ỹ

t
2z, . . . , ỹ

t
Zz)z∈[Z] is

a random vector since it is realized exogenously (to the model) by the retailer’s order management

system (OMS), and cannot be jointly optimized with the prices.

Given the period t realization of demand D̃t and fulfillment ỹt, the retailer realizes its period t

profit by optimizing recourse sales variables. The channel sales in zone z ∈ [Z] are denoted by stez

and stbz. We denote the vector of sales variables as st = (stez, s
t
bz)z∈Z . The state variables for t+1 then
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become x̃t+1
e = xte−

∑
z∈[Z] ỹ

t
ez and x̃t+1

bz = xtbz−stbz−
∑

z′∈[Z] ỹ
t
zz′ for all z. Hence, x̃t+1 = f(xt, st, ỹt),

where f is a linear mapping.

If Π is the set of all non-anticipatory pricing and fulfillment policies, then the optimal policy π∗

maximizes the total expected profit:

J∗ = max
π∈Π

Eπ
∑
t∈[T ]

rt (x̃
t, pπ,t) , (2.1)

where rt is the period t profit. The optimal policy should satisfy the following Bellman equations:

V t
∗ (xt) = max

pt∈ΩZ+1
E

(
max

st∈St(xt,D̃t,ỹt)
pt>st− c>ỹt +V t+1

∗

(
f(xt, st, ỹt)

))
, t∈ [T ], (2.2)

V T+1
∗ (xT+1) = q

(
e>xT+1

)
, (2.3)

where V t
∗ is the period t value function, e is the vector of all ones, and St is the set of all feasible

sales variables given the period t inventory, demand, and fulfillment.

There are several practical challenges for solving the Bellman equations. Firstly, the dynamic

programming equations suffer from the well-known ‘curse of dimensionality’. Secondly, it is difficult

to determine a probability distribution for the random vector ỹt since it depends on a separate

and independent order management system that determines on-the-fly the fulfilling store or EFC

primarily based on operational costs, but may also include complex rules that depend on store

performance, store traffic, store fulfillment capacity, minimum store inventory levels, local weather,

and order splitting rules. Furthermore, these rules may be frequently adjusted by OMS users.

3. Omnichannel pricing policies

In this section, we propose omnichannel pricing policies that overcome the challenges of solving

the omnichannel markdown optimization problem where pricing and fulfillment cannot be fully

coordinated. The policies we propose use the idea of inventory partition variables. These variables

ration the amount of store inventory available for online fulfillment, similar to booking limits in

capacity control. Unlike booking limits, however, these partitions cannot be enforced using capacity

control (i.e., by accepting or rejecting fulfillment requests). Rather, the policies utilize channel

prices in order to adjust demand to meet the inventory partitions.

We were motivated to consider pricing policies based on inventory partitions due to observed

deficiencies of the legacy pricing system in an omnichannel environment. Particularly, the legacy

system outputs suboptimally large store markdowns because of its assumption that store inventory

is only used for store sales, even though in reality it is also used for online fulfillment. Optimizing

price markdowns of products used in omnichannel fulfillment require identifying partitions of store

inventory units by their usage (e.g. store sales or online fulfillment). However, the true partitions
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are unknown since they depend on the exogenously determined fulfillment. Directly forecasting

such partitions using historical data yields a 70–80% mean absolute percentage error.

To develop more accurate inventory partitions that would be used for the pricing policies, we

introduce endogenous fulfillment variables yt to approximate the exogenous fulfillment ỹt (see

Section 4.3 later for the resultant lower errors during the pilot). That is, we consider another model

in which pricing and fulfillment are coordinated This results in the Bellman equations:

V t(xt) = max
pt∈ΩZ+1

ED̃t

(
max

(st,yt)∈X t(xt,pt,D̃t)
pt>st− c>yt +V t+1 (f(xt, st, yt))

)
, t∈ [T ], (3.1)

V T+1(xT+1) = q
(
e>xT+1

)
, (3.2)

where X t(xt, pt, D̃t) is a polyhedral feasible set of period t fulfillment variables and sales variables.

Note that if OMS fulfillment satisfies all constraints of X t, then V 1
∗ (xt) ≤ V 1(xt) since jointly

optimizing prices and fulfillment achieves a higher expected profit. Hence, since V 1
∗ cannot be

evaluated due to the unknown fulfillment model, we will use V 1 (or upper bounds to V 1) as an

objective benchmark with which we compare the omnichannel pricing policies.

The feasible set X t can be written as

X t(xt, pt, D̃t) =

s≥ 0, y≥ 0

∣∣∣∣∣∣∣∣
stmz ≤ D̃t

mz(p
t
e, p

t
bz), m= e, b, ∀z ∈ [Z]

stez = ytez +
∑

z′∈[Z] y
t
z′z, ∀z ∈ [Z],∑

z∈[Z] y
t
ez ≤ xte,

stbz +
∑

z′∈[Z] y
t
zz′ ≤ xtbz, ∀z ∈ [Z],

 (3.3)

The first set of constraints in (3.3) ensures that the sales variables do not exceed the realized

demand. The second set of constraints ensures that all online sales are fulfilled. The remaining

constraints ensure inventory levels in all periods are nonnegative. If D̃t
mz is a nonnegative random

variable, then starting from nonnegative inventory levels x1 at t= 1, the sequence of feasible sets

X t(x̃t, p̃t, D̃t) for t∈ [T ] are nonempty with probability 1.

In this paper, we do not make an assumption on the stochastic model of channel demand D̃t, since

the policies that we propose can be used under any demand model. However, it is worth discussing

the multinomial logit (MNL) model of demand that is commonly used in revenue management

literature to model substitution among choices. Under this model, if the price online and in-store

are pe and pb, respectively, then the probability of a zone z arrival purchasing from channel m is:

θmz(pe, pb) =
exp(αmz −βmzpm)

1 + exp(αez −βezpe) + exp(αbz −βbzpb)
, for m= e, b, (3.4)

where αez, αbz, βez, βbz are the MNL parameters.
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Lemma 1. Suppose period t is subdivided into N t subperiods, where in each subperiod there is

no more than one arrival. Let Ntz
Nt

be the probability that there is an arrival in zone z during a

subperiod in t, where
∑

z∈[Z]N
t
z ≤N t. Under a MNL demand model, V 1(x)≤ VLP , where

VLP := maximize
λ,µ, y, s

∑
t∈[T ]

∑
z∈[Z]

∑
i∈[I+1]

∑
j∈[I+1]

λtzij ·N t
z ·
[
piθezij + pjθbzij

]
+ q ·

xe +
∑
z∈[Z]

xbz

 (3.5a)

−
∑
t∈[T ]

∑
z∈[Z]

N t
[
qstbz + (cez + q)ytez +

∑
z′∈[Z]

(cz′z + q)ytz′z

]
(3.5b)

subject to ytez +
∑
z′∈[Z]

ytz′z =
∑

i∈[I+1]

∑
j∈[I+1]

λtzij ·
N t
z

N t
· θez(pi, pj), ∀t∈ [T ], z ∈ [Z], (3.5c)

stbz =
∑

i∈[I+1]

∑
j∈[I+1]

λtzij ·
N t
z

N t
· θbz(pi, pj), ∀t∈ [T ], z ∈ [Z], (3.5d)∑

t∈[T ]

∑
z∈[Z]

N tytez ≤ xe, (3.5e)∑
t∈[T ]

∑
z′∈[Z]

N tytzz′ +
∑
t∈[T ]

N tytbz ≤ xbz, ∀z ∈ [Z], (3.5f)∑
j∈[I+1]

λtzij = µtei , ∀t∈ [T ], z ∈ [Z], i∈ [I + 1],

(3.5g)∑
i∈[I+1]

∑
j∈[I+1]

λtzij = 1, ∀t∈ [T ], z ∈ [Z], (3.5h)∑
i∈[I+1]

µtei = 1, ∀t∈ [T ], (3.5i)

λ≥ 0, µ≥ 0, y≥ 0, s≥ 0 (3.5j)

where pI+1 =∞, and θmzij = θmz(pi, pj).

While introducing endogenous fulfillment variables aids in identifying inventory partitions, solv-

ing the Bellman equations (3.1)–(3.2) suffers from the curse of dimensionality so the optimal pricing

policy cannot be solved in practice. Lemma 1 provides an upper bound to the optimal expected

profit, which we will use in later experiments to evaluate the optimality gap of different pricing

policies under MNL demand. The proof of the lemma is in the appendix. The idea behind the

proof is that V 1(x) is bounded by the optimal expected profit if the firm can dynamically price and

fulfill orders for each arriving customer. For this latter problem, the optimal profit is bounded by

the optimal value of the deterministic linear program (3.5), with the proof following similar lines

as Lemma 1 of Lei et al. (2017), but with time-inhomogenous demand rates.

Before we introduce our pricing policies, we first discuss why new heuristics had to be devel-

oped to address the practical constraints existing in omnichannel revenue management. A popular

approach in revenue management is the use of deterministic and fluid approximation models, in
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which stochastic quantities are replaced by their mean values and capacity and demand are assumed

to be continuous (Gallego and van Ryzin 1997, Liu and van Ryzin 2008, Jasin and Kumar 2013).

The ‘deterministic’ linear program (DLP) approach will take the fractional solution to (3.5) and

use these as probabilities to randomly determine the prices and fulfillment for each new arrival. As

the demand and capacity scales up, this approach is known to converge to the optimal profit under

the setting where the firm can coordinate prices and fulfillment for each customer (Lei et al. 2017).

However, as we demonstrate in computational experiments later, these policies are suboptimal

under the omnichannel setting where the price has to be the same for all arrivals in period t and

fulfillment is determined exogenously. Hence, we needed to develop a new heuristic that performs

well under an exogenous fulfillment.

3.1. Deterministic omnichannel pricing policy (D-OCPX)

To develop our pricing policy, we approximate the value function V t that is difficult to compute with

the optimal value of a computationally tractable optimization model. Since the optimal inventory

partitions not only depend on the fulfillment costs and salvage cost, but also on the future prices in

the whole retail network, we approximate V t by the optimal value V t
D of a deterministic multiperiod

optimization model that jointly optimizes prices (pt, pt+1, . . . , pT ) and optimal inventory partitions.

In particular,

V t
D(xt) := maximize

p, s, y, u

T∑
k=t

∑
z∈[Z]

(
pkes

k
ez + pkbzs

k
bz

)
−
∑
z∈[Z]

cezyez −
∑
z∈[Z]

∑
z′∈[Z]

czz′yzz′ + q

ue +
∑
z∈[Z]

ubz


(3.6a)

subject to skmz ≤ dkmz(pke , pkbz), k= t, . . . , T, m= e, b, ∀z ∈ [Z], (3.6b)∑
z∈[Z]

yez +ue = xte, (3.6c)

T∑
k=t

skbz +
∑
z′∈[Z]

yzz′ +ubz = xtbz, ∀z ∈ [Z], (3.6d)

T∑
k=t

skez = yez +
∑
z′∈[Z]

yz′z, ∀z ∈ [Z], (3.6e)

s≥ 0, y≥ 0, u≥ 0, (3.6f)

pk ∈ΩZ+1 k= t, . . . , T. (3.6g)

Variables yez and yzz′ are the inventory partitions that determine the channel-zone use of EFC

inventory and store inventory. Note that replacing all random demands in (3.1) with their expected

values and by setting yez =
∑T

k=t y
k
ez and yzz′ =

∑T

k=t y
k
zz′ results in (3.6). Hence, V t

D is the “certainty

equivalence” formulation of (3.1), a standard technique in stochastic control (Bertsekas 1995).



:
13

Algorithm 1 Pricing policy D-OCPX

Require: A vector of initial inventory levels x1, and feasible price set Ω
Ensure: Determine a sequence of online prices and zone-level store prices

1: t← 1
2: while t≤ T do
3: Solve (3.6) for the optimal solution (p∗, s∗, y∗, u∗)
4: pte← pt∗e
5: ptbz← pt

∗
bz for z ∈ [Z]

6: Exogenously realize demands Dt(pt, ξt), sales st, and fulfillments yt

7: xt+1← f(xt, yt, st)
8: t← t+ 1

Algorithm 1 is a pricing policy, which we refer to as Deterministic OCPX (D-OCPX), based

on these deterministic store inventory partitions. In each period, the pricing policy solves the

optimization model (3.6) and sets the price according to its optimal solution. The optimality

of D-OCPX under exogenous fulfillment depends on how accurately the fulfillment variables yt

approximate the actual fulfillment vectors ỹt from the OMS. In Section 4.3, we report the accuracy

of this prediction in the commercial pilot implementation.

We next discuss the computational tractability of D-OCPX. In each period t, the algorithm

solves model (3.6) which is nonconvex since the objective function is bilinear and the feasible set

could be nonconvex (for instance, it is nonconvex if the demand function is MNL). However, since

the feasible price set is discrete, the following lemma shows that this optimization model can be

reformulated as a tractable mixed integer linear program.

Lemma 2. V t
D(xt) is equal to the optimal value of a mixed integer program with O(I2) binary

variables. Under a multinomial logit demand model, the number of binary variables is O(I).

Lemma 2 states that the price optimization problem (3.6) can be solved as a MIP with O(I2)

binary decision variables. The proof of the lemma can be found in the electronic companion. A

key step in the reformulation is to introduce binary decision variables corresponding to the feasible

prices in the discrete set Ω. The binary variable µkei is equal to 1 if and only if the online price

at time k ∈ [T ] is pi where i ∈ [I]. The binary variable µkzj is 1 if and only if the store price in

zone z ∈ [Z] at time k ∈ [T ] is set to pj where j ∈ [I]. Therefore, instead of solving (3.6), D-OCPX

can instead solve a tractable MIP in each period t and set pte←
∑

i∈[I] µ
te
i pi and ptbz←

∑
i∈[I] µ

tz
i pi

for all z ∈ [Z]. The lemma also states that the number of binary variables of (A.11) reduces to

O(I) under the special case of a multinomial logit model of demand. The proof requires the use

of the reformulation-linearization technique (Sherali and Adams 1999) and Charnes and Cooper

(1962) transformations. In our computational experiments later in Section 4, when implementing

this model in CPLEX for realistic problem sizes, the solver with its default termination criteria

solves most instances in less than 40 seconds (see Fig. EC.1 in the e-companion).
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We next demonstrate the performance of D-OCPX in simulations under the arrival process

described in Lemma 1. The feasible price set is between $125 to $500 (with a stepsize of $12.50),

and the salvage value is $50. We set Z = 5 and T = 5. The distance between zones is randomly

chosen, which determines the fulfillment costs. To test the pricing policies, we chose high fulfillment

costs ($46.70 for in-zone, $50.70–$71.20 for cross-zone). We generated parameters for (3.4) and

N t
z according to the method we describe later in Section 5.1, and assume zero probability of no

arrivals in a subperiod. We set xe = 0 and, for all z ∈ [Z], set xbz = 0.5×
∑

t∈[T ]N
t
z so that the

total inventory is less than the expected number of arrivals in the zone. The baseline total arrivals

N :=
∑

t∈[T ]N
t is 50. In different runs of the experiment, we report the performance of D-OCPX

as the problem size increases by scaling the number of arrivals and the total inventory to σN and

σx, respectively, where σ ∈ {1,2,4,8,16,20,24,34} is a scaling parameter.

At the beginning of period t ∈ [T ], the simulation sets the prices pt = (pte, p
t
b1, . . . , p

t
b5) based on

the solution of the D-OCPX model (3.6). During period t, a total of N t =
∑

z∈[Z]N
t
z customers

arrive one at a time. The probability of an arrival originating from zone z is Ntz
Nt

. Given a zone z

arrival, the probability of this customer choosing to purchase from the store and from online are

θbz(p
t
e, p

t
bz) and θez(p

t
e, p

t
bz), respectively. If the customer chooses to purchase from the store, the sale

is fulfilled using store z inventory, if available. Otherwise, the sale is lost. If the customer chooses

to purchase online, the sale is fulfilled by the store with lowest fulfillment cost out of all stores

with positive inventory. For each experiment run, we estimate the expected profit by averaging the

profit of D-OCPX on 104 randomly generated sample paths, where each sample path is a different

sequence of the N customer arrivals. We compare the D-OCPX sample average profit to the LP

upper bound (3.5). We also compare D-OCPX to the following three randomized policies that use

the deterministic linear program (DLP) solution (λ∗, µ∗, y∗, s∗) to (3.5):

• Policy DLP-FP-LF (Fixed Price - Low Fulfill) uses (µte∗i )i∈[I] as probabilities to draw a random

online price to set for all customers arriving in time t. Given the online price pi, the policy then

uses the probabilities (λtz∗ij )j∈[I] to draw the store price to be set for all arriving customers in

zone z during time t. Fulfillment for each online sale uses the lowest fulfillment cost rule.

• Policy DLP-RP-LF (Random Price - Low Fulfill) uses (µt∗, λt∗) to draw a new random online

price and random store price for each arriving customer in time t. Fulfillment for each online

sale uses the lowest fulfillment cost rule.

• Policy DLP-RP-RF (Random Price - Random Fulfill) is a joint pricing and fulfillment policy

for each new arriving customer, similar to Lei et al. (2017). It uses (µt∗, λt∗) to draw a new

random online price and random store price for each arriving customer in time t. It chooses the

fulfillment node based on yt∗. Given an online sale in zone z during time t, it randomly chooses

the fulfilling zone based on the probabilities (yt∗z′z)z′∈[Z].
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Figure 2 Optimality gap of D-OCPX, DLP-FP-LF, DLP-RP-LF, and DLP-RP-RF plotted against the problem

size scale. The optimality gap is the relative difference between the expected profit and VLP .

DLP-RP-LF and DLP-RP-RF are not feasible policies for (2.2) since stores cannot change prices

for each new customer and, for the latter policy, fulfillment is not exogenous. Since their expected

profits are also bounded above by VLP , we test these policies in the simulation as benchmarks.

Fig. 2 reports the optimality gap of the pricing policies plotted against the problem size scale

parameter σ. A well-known property of a ‘deterministic’ linear program approach is that its solution

is asymptotically optimal to stochastic revenue management problem as demand and capacity are

scaled up (see for example Cooper 2002, Liu and van Ryzin 2008, Lei et al. 2017). We observe this

property on DLP-RP-RF, with an empirical convergence closely resembling the O( 1√
σ
) bound by

Lei et al. (2017). On the other hand, when σ = 34, DLP-FP-LF and DLP-RP-LF have optimality

gap of 4.78% and 4.56%, respectively. In these two policies, fulfillment is determined exogenously,

instead of using the LP solution to randomize fulfillment, so they do not achieve the desirable

convergence properties of DLP-RP-RF. Of all the policies, D-OCPX has the smallest optimality

gap even for small problem sizes. Hence, D-OCPX is suited for clearance pricing problems which

are characterized by low inventory and low demand.

3.2. Robust omnichannel pricing (R-OCPX)

Pricing policy D-OCPX approximates the value function by assuming the stochastic demand would

equal its expected value. That is, given the omnichannel prices, the inventory partition variables

yez and yzz′ in (3.6) are aggregate fulfillment quantities that minimize the fulfillment cost of the

deterministic demand. In the experiments with multinomial demand, D-OCPX results in expected

profits with small optimality gaps. In general, under demand distributions with higher variability,

D-OCPX could result in a higher optimality gap. This is because the partition variables may be
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poor approximations of the optimal fulfillment quantities, since ignoring uncertainty results in

fulfillment decisions that incur significant lost in-store sales and fulfillment costs under higher than

expected demand realizations or low revenue under lower than expected demand realizations.

We will next enhance the proposed pricing policy D-OCPX with inventory partitions that incor-

porate uncertainty through a robust optimization approach. The robust formulation assumes that

after the firm chooses the omnichannel prices, an “adversary” chooses demand realizations from

a specified uncertainty set which results in the worst-case firm profit. Knowing the adversary’s

strategy, the firm then chooses the prices to maximize its worst-case profit. Note that the prices

chosen by the firm can be interpreted as a Stackelberg-type game equilibrium solution, with the

firm as the leader and the adversary as the follower. The advantage of the robust approach is that

it does not suffer from the curse of dimensionality inherent in a stochastic dynamic programming

approach. Moreover, the optimal value of the robust model is a lower bound on the firm’s profit

for any demand realization in the uncertainty set.

We next describe the demand uncertainty set. We assume a multiplicative uncertainty, where

D̃t
mz(p

t
e, p

t
bz) = ξ̃tmz × dtmz(pte, ptbz) for some nonnegative random variable ξ̃tmz with mean 1. Suppose

that ξ̃tmz ∈ [1 − δtmz,1 + δtmz] for some δtmz ≤ 1. We can then express any of its realizations as

ξtmz = 1 + δtmzw
t
mz for some wtmz ∈ [−1,1]. Hence wtmz determines the realization of the random

demand D̃t
mz, and it is sufficient to define an uncertainty set for w. If this uncertainty set allows

each wtmz variable to take values independently, the adversary will choose wtmz =−1 for all periods,

zones and channels, resulting in the robust solution setting large markdowns to reduce the number

of unsold units. Thus we include several other coupling constraints in the uncertainty set of w:

W t
Γ,∆ :=

 w

∣∣∣∣∣∣∣
−1≤wkmz ≤ 1, k= t, . . . , T, ∀z ∈ [Z],m= e, b,∑

m=e,b

∑
z∈[Z] |wkmz| ≤ Γk, k= 1, . . . , T∣∣∣∑m=e,b

∑
z∈[Z] a

k
mzw

k
mz

∣∣∣≤∆k, k= 1, . . . , T

 (3.7)

where Γ,∆ ≥ 0 are budgets of uncertainty. Γ limits the average absolute percentage deviation of

channel-zone demand. Motivated from commonly observed behavior that aggregate chain-level

demand has a lower forecast error than the zone-level demand, ∆ limits the aggregate chain-level

demand percentage deviation. Scalars atmz are normalization constants. A choice of small Γ shrinks

the uncertainty set; a choice of small ∆ permits only a small forecast error in the aggregate chain-

level demand while allowing larger zone-level demand errors. To set the parameters for (3.7), one

can set δtmz as the absolute percentage error of the channel m zone z demand forecast in previous

periods, and ∆t as the error of the chain-level demand forecast. The constants atmz can be set

as δtmzd̄
t
mz/

∑
mz d̄

t
mz (i.e., demands normalized by δtmz), where d̄tmz are the calibrated demands at

observed prices.
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Under a robust framework, after the retailer chooses prices p = (pt, . . . , pT ), an adversary sets

the demand realizations by choosing w ∈W t
Γ,∆ which results in the worst-case profit. We denote

the worst-case profit during period t to T resulting from setting price vector p as

U t
R(p,xt) := minimize

w ∈W t
Γ,∆

U t(w,p;xt)
(3.8)

where U t(w,p;xt) is the profit during period t to T under realization w given the initial inven-

tory level xt. Faced with an adversary, the retailer’s best strategy is to choose the price vector p

that maximizes U t
R(p;xt). Thus, the computational complexity of the robust approach depends on

finding the maximizer of U t
R(p;xt) efficiently. However, (3.8) is NP-hard, as we discuss next.

In the sequence of the robust model, the fulfillment vector y and the sales vector s are chosen

after the adversary chooses a demand realization. Hence, the profit realization U t(w,p;xt) is the

optimal value of following optimization model:

U t(w,p;xt) = maximize
s, y,u

T∑
k=t

∑
z∈[Z]

(
pkes

k
ez + pkbzs

k
bz

)
−
∑
z∈[Z]

cezyez +
∑
z′∈[Z]

czz′yzz′

+ q

ue +
∑
z∈[Z]

ubz


(3.9a)

subject to Constraints (3.6c) – (3.6f),

skez ≤ dtez(pte, ptbz)(1 + δtezw
t
ez), k= t, . . . , T, z ∈ [Z], (3.9b)

skbz ≤ dtbz(pte, ptbz)(1 + δtbzw
t
bz), k= t, . . . , T, z ∈ [Z] (3.9c)

Note that U t(w,p;xt) is the optimal value of a linear program. Hence, by LP strong duality, we

have that U t(w,p;xt) is equivalent to its dual (a minimization LP), and consequently U t
R(p;xt)

is the optimal value of a minimization problem with decision variables w and the dual variables

of (3.9). However, this minimization problem is bilinear, which in general is NP-hard.

To overcome the computational challenge of the robust model, we next develop a tractable linear

program which gives a lower bound on the worst-case profit U t
R(p;xt) under the following regularity

condition on the feasible price set Ω.

Assumption 1. For any p∈Ω, p≥ q+ cmin
z ∀z ∈ [Z], where cmin

z := min
{
cez,minz′∈[Z] cz′z

}
.

If a price p violates the condition of Assumption 1 for some z ∈ [Z], then the firm will not sell to

any online customer from zone z since, regardless of the fulfillment location, it is more profitable

to hold on to the inventory and sell it at salvage value. The assumption also implies that p≥ q,

hence it is not profitable to hold store inventory than sell to a store customer.

Defining pmax := max{p : p∈Ω} as the maximum price, let us introduce the following parameters:

Akbz := pmax− q and Akez := pmax− cmin
z − q where k= t, . . . , T and z ∈ [Z]. Then the following lemma

gives a lower bound for U t
R.
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Algorithm 2 Pricing policy R-OCPX

Require: A vector of initial inventory levels x1, and feasible price set Ω
Ensure: Determine a sequence of online prices and zone-level store prices

1: t← 1
2: while t≤ T do
3: Solve (3.6) for the optimal solution (p∗, s∗, y∗, u∗)
4: p̂← arg max

p∈Ω
t,T
Z

(p∗)U
t
l (p;x

t)

5: pte← p̂te
6: ptbz← p̂tbz for z ∈ [Z]
7: Exogenously realize demands Dt(pt, ξt), sales st, and fulfillments yt

8: xt+1← f(xt, yt, st)
9: t← t+ 1

Proposition 1. Under Assumption 1, U t
R(p;xt)≥U t

l (p;x
t) for any p= (pt, . . . , pT ), where

U t
l (p;x

t) = maximize
s,y,u,χ,υ,ψ,ϑ,f

T∑
k=t

∑
z∈[Z]

(
pkes

k
ez + pkbzs

k
bz

)
−
∑
z∈[Z]

cezyez +
∑
z′∈[Z]

cz′zyz′z

+ q

ue +
∑
z∈[Z]

ubz


(3.10a)

−
T∑
k=t

(
Γkfk + ∆k|ϑk|

)
−

T∑
k=t

∑
z∈[Z]

∑
m=e,b

(
Akmz|υkmz|+ |χkmz|

)
(3.10b)

subject to skmz ≤ dkmz(p) + |υkmz| − |ψkmz|, m= e, b, k= t, . . . , T, ∀z ∈ [Z], (3.10c)

υkmz +ψkmz = δkmzd
k
mz(p

k
e , p

k
bz), m= e, b, k= t, . . . , T, ∀z ∈ [Z], (3.10d)∣∣Akmzυkmz −χkmz − akmzϑk∣∣≤ fk, m= e, b, k= t, . . . , T, ∀z ∈ [Z], (3.10e)

Constraints (3.6c)–(3.6f)

The proof of Proposition 1 can be found in the e-companion. While (3.10) is not a linear program,

the objective and the constraints (3.10c) and (3.10e) can be linearized with standard techniques.

Note that (3.9) maximizes profit under a given demand realization through the sales and inven-

tory partition variables. On the other hand, (3.10) maximizes profit with penalty terms through

these same variables and auxiliary decision variables. From constraint (3.10d), it is easy to deduce

that |υkmz|− |ψkmz| takes values between the possible demand deviations from −δkmzdkmz to +δkmzd
k
mz.

Therefore, U t
l (p;x

t) allows sales, partition variables, and demand realizations to be determined

jointly, but a penalty is incurred based on the demand realization.

We propose Algorithm 2 which we refer to as Robust OCPX (R-OCPX). In each period, the

policy finds prices that maximize the lower bound on the worst-case firm profit U t
l (p;x

t), i.e.,

V t
R(xt) := max

p=(pt,...,pT )∈Ω
t,T
Z

U t
l (p;x

t), (3.11)

where Ωt,T
Z is a feasible price set for p= (pt, . . . , pT ). If Ωt,T

Z includes all feasible prices allowed in

Ω, we observe that the resulting pricing policy is too conservative. Hence, we restrict the allowable
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prices that R-OCPX can choose. In particular, at each period t, R-OCPX first solves (3.6) for the

optimal prices p∗ = (pt∗, . . . , pT
∗
). Then Ωt,T

Z are all the feasible prices that are some neighborhood

of p∗. A motivation for this is that in practical large-scale combinatorial optimization instances

such as D-OCPX, there tend to be a large pool of (near) alternative optimal solutions. Hence

R-OCPX can preserve the overall D-OCPX expected margin, while choosing the maximally robust

price vector among these alternatives.

Note that even though U t
l is the optimal value of a linear program, optimization model (3.11) is

nonlinear. However, it is possible to linearize the problem for general demand functions by adding

binary variables for each feasible price, the same technique used to derive (A.11). Moreover, under

a multinomial logit demand model, the number of binary variables can be reduced. We omit the

proof since it follows along the same lines as the proof of Lemma 2.

Lemma 3. V t
R(xt) is equal to the optimal value of a mixed integer program with O(I2) binary

variables. Under a multinomial logit demand model, the number of binary variables is O(I).

3.3. Applicability to other omnichannel retailers

Markdown (or clearance pricing) optimization is a widely used pricing solution to boost profitabil-

ity while making room for the next seasons inventory. In developing the pricing policies, we made

several modeling assumptions to tailor the model to the partner retailer’s specific business require-

ments. While some features are specific to the retailer, the business problem that we described

in Section 2 (i.e., inventory is used for multiple channels, but existing pricing systems ignore cross-

channel interactions) exists for many major omnichannel retailers. This can lead to reduced sales in

one channel and margin erosion in the other, and, depending on the retailer, one can be more severe

than the other. To offer new solutions for omnichannel retail, IBM Commerce commercialized the

omnichannel markdown pricing solution that includes a proprietary implementation of the models

proposed in this paper. Below we describe how the models described in this paper can be tailored

to meet the idiosyncratic requirements of other retailers.

In our work with other major retailers, we have observed different implementations of omnichan-

nel pricing. The partner retailer allows each store to set its own markdowns, but only allows a

single e-commerce markdown. Other retailers, on the other hand, may choose to set a single price

regardless of the channel or location. These omnichannel business constraints on prices can be

easily modeled through inequalities on prices or binary variables.

Omnichannel retailers may also differ in their fulfillment methods. Fulfillment has to be accu-

rately modeled by the inventory partition variables, which can be achieved through modifications to

the model. For instance, a retailer could have multiple e-fulfillment centers, which can be modeled
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by adding new supply nodes. Practically motivated constraints on fulfillment, such as ship-from-

store (SFS) capacities per store can also be easily encoded in the model to better approximate

fulfillment quantities. Other retailers have a ‘buy online pickup in store’ option for their online

customers. This can be modeled by assuming this option will be chosen by a known proportion of

online customers in a zone, then modifying the constraints (3.6d)–(3.6e) appropriately.

Mid-season replenishment of store inventory can be modeled by introducing flow variables

between warehouse and stores. Some retailers may also use store transshipment to rebalance inven-

tory between stores during the sales horizon. This can be modeled with store-to-store continuous

flow variables similar to y. Transshipment complements SFS and aims to avoid lost sales in the

store channel whereas SFS avoids lost sales in the e-commerce channel. However, it is worth men-

tioning that unlike SFS, transshipments cannot satisfy immediate inventory shortages. This is due

to the transshipment leadtime and that, unlike online sales that are realized as soon as a package

is shipped, out-of-stock stores lose sales even when the transshipment is in the pipeline.

The model can also be modified for single channel retailers to price shared inventories (e.g., a

retailer selling the same item across different websites that have independent markdowns). The

model can also be used to generate displacement costs (shadow prices) of a unit inventory which

can be used by OMS to optimize sourcing decisions and to coordinate pricing and fulfillment (Ettl

et al. 2017).

4. Pilot implementation at a large U.S. retailer

We next describe the development of an omnichannel price analytics system (part of the IBM

Commerce markdown optimization solution). The project proceeded in three phases: (i) a business

value assessment on historical data, (ii) the development of the omnichannel system, and (iii) a

commercial release and pilot implementation for clearance pricing at a major U.S. retailer.

4.1. Business value assessment

We engaged with the retailer for 6 months to conduct the business value assessment (BVA) to

understand the impact of D-OCPX on representative product categories based on historical data.

The first few weeks were spent on working with all stakeholders to define the business problem,

select the categories to be analyzed, and collect and process the historical data. Thereafter, we

performed the demand model calibration and the value assessment.

The retailer provided transaction log data and inventory data for 195 clearance SKUs in three

product categories (Notebooks, Tablets, and Tablet Accessories) between January 1, 2014 to

December 31, 2014 (see Table 1 for the data summary). We were additionally provided with price

information for 18 online competitors. This competitor price data overlapped with 59 SKUs in our

study and among those that had an overlap, on average, there were 6 competitors per SKU. We
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Table 2 Impact of D-OCPX on average channel prices and category-wide sales in business value assessment.

Store price Online price % Change in Sales Change in

Category Actual D-OCPX Actual D-OCPX Online Store Total Clearance Revenue

Notebooks 81% 93% 90% 85% +16% −1% +3% +10% (+$9.0 million)
Tablets 81% 90% 79% 77% +15% +10% +11% +12% (+$2.3 million)
Accessories 81% 93% 90% 85% +11% +5% +6% +6% (+$1.2 million)

use this data to calibrate the zone-level demand models of each SKU using a procedure we describe

in Section EC.2 of the e-companion.

Using the estimated zone-level demand models of each SKU, we optimize the 10–12 week clear-

ance prices through the MIP formulation of (3.6) with t = 1. The retailer’s fulfillment strategy

was to use the EFC to fulfill the online orders if it had inventory; otherwise, the nearest in-stock

store was used, unless there were other operational costs and business rules. Fulfillment cost data

was not available, hence we set distance-based shipping costs, with additional cost for ship-from-

store (SFS) fulfillment to adhere to priority ordering. For each SKU, the retailer provided the

salvage values. We included in (3.6) pricing constraints based on SKU-specific rules provided by

the retailer, such as a minimum time between markdowns, minimum and maximum markdown

price percentages, and price bounds. Model (3.6) was developed as a Java API which was evaluated

on an OS X computer with an Intel Core i7 processor. CPLEX 12.6.2 with its default termination

criteria was used to solve the MIPs. Model (3.6) was solved with up to 20 price discretizations.

Problem instances had up to 10K binary variables, 50K flow variables, and 100K constraints. In

comparison, the pre-pilot approach was to solve price optimization models for each channel and

store(s) separately, which are significantly smaller in size. Fig. EC.1 in the e-companion provides

the distribution of the computational run times of the MIPs, the percentage gap of the MIP opti-

mal solution to the LP root node, and the total number of branch-and-bound nodes in solving

the MIP problem. We note that 80% of the instances solved in less than 40 seconds, with a gap

of at most 1% with the root node LP with little or no branching required. Thus, our MIP-based

approach allows us to solve the large scale problem within the required business cycle.

Since the “true” demand values and fulfillment quantities are unknown for the counterfactual

prices, we use the revenue component of V 1
D in (3.6) as the predicted clearance revenue of D-OCPX.

Table 2 shows the predictions on D-OCPX average channel prices (normalized by regular price),

category-wide sales, and category-wide clearance revenues. We make the following observations.

First, D-OCPX results in lower online prices than the historical online prices, resulting in a proje-

ceted increase in online sales from customers buying online instead of from the store. Higher online

sales is desirable since, unlike store sales that can only be fulfilled through same-zone stores, online

sales can be directed by OMS to any store with slow moving inventory. A benefit of D-OCPX is
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that it uses prices to manage channel demand in accordance with partitions that rebalance inven-

tory in the network. In stores with slow moving inventory, SFS has a large partition, resulting in

a low store markdown. In stores with strong sales, the store markdown is also low to maximize

profitability from store sales. Thus our second observation: D-OCPX results in higher average

store prices than the historical average store prices. Hence, D-OCPX is addressing the concern of

margin erosion due to the low store prices recommended by the legacy markdown optimization

(MDO) system. In fact, our demand models predict more than 21% reduction in lost store sales

opportunities at the recommended prices across categories. The net effect of the D-OCPX prices

and the predicted fulfillment yields an increase in clearance revenues ranging between 6% and 12%,

a combined increase of $12.5 million in the total clearance revenue of the 195 SKUs.

The BVA was presented to the retailer and reviewed by their team of pricing analysts and

senior executives who were well-versed with the incumbent MDO system. Their feedback was

overwhelmingly positive. The pricing analysts have long recognized that the incumbent system fails

for SKUs with significant cross-channel (SFS) fulfillment due to its inability to partition inventory

between store demand and online fulfillment, and hence they requested to productize the OCPX

solutions immediately.

4.2. Development of a commercial solution

A proprietary version of an omnichannel price analytics (OCPX) solution was approved for com-

mercial deployment at IBM. To productize the OCPX solution, we collaborated with the IBM

Commerce team who developed the necessary IT infrastructure, data processing, analytics inte-

gration, and user interface.

The team conducted system integration testing of the OCPX system to validate that the system

performs in accordance with user expectations. This was done by comparing, on the same SKU, the

price outputs of the OCPX system and of the incumbent MDO system. There were 43 clearance

SKUs (across 10 consumer electronics categories) during 2015 Q4 through 2016 Q1 selected for the

system integration test. Unlike the tests conducted with historical clearance data, these SKUs were

soon to enter their clearance period. The test revealed that compared to the incumbent system,

the OCPX system lowered store markdowns by 2 percentage points on average without any drop

in the system predicted sell-through rate. The lower OCPX store markdowns, an important metric

addressing the retailer’s main concern of margin erosion, were consistent with the observations

from the BVA. For each SKU, we also constructed a vector whose elements are the maximum

markdowns of each store. We observed that the price dispersion in stores, which is empirically

measured as the coefficient of variation of this vector, was up to 6.45% lower in the OCPX prices

compared to incumbent MDO prices. This suggests OCPX results in a higher degree of price parity

in the retail network.
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Figure 3 Gain in markdown revenue plotted against store inventory partitions for SFS fulfillment. Each data

point represents a product category in the system integration test.

As part of the system integration test, projected revenues resulting from the price outputs of

OCPX and the incumbent MDO were also computed. The retailer had years of experience with the

incumbent demand forecasting engine and its accuracy for various categories. Hence for unbiased

revenue projections, it was determined that the projected revenue of both price outputs should be

estimated from the incumbent MDO system, with inventory adjusted (using the OCPX partitions)

to account for cross-channel fulfillment in OCPX. No adjustments were made to compute the

revenue from the incumbent prices since its undiscounted online price results in low online sales,

hence, low fulfillment. The difference between the two revenue projections provides a projection of

the revenue gain from the OCPX system. We plot the projected gain against the predicted degree

of supply-side channel interdependency (Fig. 3) and observe that the revenue gain is expected to

be higher if cross-channel fulfillment is used more. The horizontal axis of the figure is the OCPX

partition for SFS (aggregated over SKUs in a category) divided by the aggregate store inventory,

which is the predicted proportion of store inventory used for online fulfillment. The vertical axis

is category-wide revenue gain from OCPX, which is computed as the relative difference between

the OCPX projected revenue (aggregated over the category) and the incumbent MDO projected

revenue (aggregated over the category).

4.3. Commercial release and pilot implementation

After a successful system integration test, a limited commercial release of the proprietary version

of the OCPX system went live in March 2016, with the partner retailer as its pilot client. This was

followed with its general availability in May 2016. The capabilities of the solution were announced

at the IBM Amplify 2016 conference.
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Subsequent to the commercial release in Q2 2016, the retailer has gradually transitioned SKUs

marked for clearance to the OCPX system. For the transitioned SKUs, the parameters of the

omnichannel demand model are periodically recalibrated and the OCPX models are re-optimized

every period. The SKUs were monitored in real-time by IBM Commerce as part of continued

performance testing. For these SKUs, the optimality of the recommended prices depend on how

accurately the OCPX inventory partitions predict the actual store inventory quantities used for

SFS fulfillment. Hence, an inventory partition accuracy metric is additionally reported to the

retailer. This accuracy metric compares the OCPX’s Week 1 inventory partitions against the actual

fulfillments during the same weeks. For 22 SKUs across 5 consumer electronics categories, the mean

absolute percentage error at the chain-level was about 20%. Closing this gap requires the modeling

of the market-basket fulfillment and complex operational factors and is a topic for future research.

4.3.1. Causal model analysis. A controlled experiment to assess the benefits of OCPX could

not be executed for several reasons. Firstly, OCPX optimizes across the complete retail network

and uses as input the inventory levels across the 1000+ stores. Hence, it is difficult to estimate

the treatment effect through finding close substitutes (similar to Caro and Gallien 2012) since not

only should the identified substitutes have similar demand characteristics, but the distribution of

inventory at the start of clearance should also be identical. Secondly, a SKU is only in clearance for

one season before being retired. Hence, we cannot apply pre-treatment (legacy) and post-treatment

(OCPX) on the same SKU in different clearance seasons.

Instead, to estimate the revenue improvement of OCPX in a real-world implementation, our

approach was to analyze the pilot data through causal model analysis via statistical adjustment

using appropriate pre-treatment predictors (Gelman and Hill 2006, Chapter 9). This is a variation

of the Difference-in-Differences test (see Fisher et al. 2017), wherein we evaluate the change in the

markdown season revenue rate between the treatment SKUs and the control SKUs by using the

regular season revenue rate as a baseline for both and adjusting for other pre-treatment factors.

We obtained one year historical data from the IBM Commerce production system for a sample

of SKUs across 34 categories, where each SKU either had the OCPX treatment or not. All SKUs

were marked for clearance in both channels with a markdown “end date” (last date sold) in Q1 of

2017. We selected SKUs where the full clearance season is in the data. For an average treatment

SKU, the online sales share is 12.6% during the regular season and this nearly doubles to 24.1%

during clearance season. In addition, nearly 98% of online sales during clearance season is fulfilled

with SFS using approximately 20% of store inventory.

To identify the presence of selection bias in the SKUs in control and treatment data, we compute

a variety of regular season (pre-treatment) covariates such as the ticket price, average selling



:
25

Figure 4 Histograms of the density of propensity scores for observations before and after matching.

price, sales rate, revenue rate, and channel shares for all SKUs. We observe that the range of

the respective distributions across the control and treatment SKUs has a significant overlap. To

formalize we use a non-parametric preprocessing matching method called MatchIt (Ho et al. 2007,

2011) that estimates a propensity score – defined as the probability of receiving the treatment

given the pre-treatment covariates – and matches observations in treatment with those in control

by balancing the propensity score (and thus the covariate distribution) to reduce the selection bias

in parametric causal inference. We observe that higher propensity products correspond to those

with high regular season promotion depths, strong sales and a large online presence. We expect

OCPX to yield relatively higher benefits for higher propensity-score items, and lower benefits

for lower propensity-score items characterized by weaker sales rates and a small online presence.

This indicates that there is a selection bias, but the left-side panels of Fig. 4 that plot the raw

density of the propensity scores for the treated and control SKUs reveal that this bias is not severe.

The average propensity score is 0.2 for control and is slightly higher at 0.23 for the treatment

SKUs. Next, we use MatchIt to select control SKUs in the mid-range scores (between 0.15 to

0.35) with nearest propensity score to the treatment SKUs and discard the remaining unmatched

SKUs. The distributions of the propensity scores after matching are plotted in right-side panels of

Fig. 4, showing nearly identical distributions with an average propensity score of 0.24 each. For this

matched subclass, we conclude that there is no selection bias based on the descriptive covariates

of the SKUs. To confirm this, recomputing propensity scores on this matched subclass results in

scores of 0.5±0.02 with 92% confidence.
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We use the following regression model to estimate the average causal effect of OCPX (across all

SKUs and within the matched subclass), where each SKU is an observation:

ln(Avg-Weekly-MD-Revi)∼ α0 +α1 ln(Avg-Weekly-Reg-Revi) +α2 Avg-Weekly-MD-Inventoryi

+α3 Reg-Online-Sharei +α4 Treatmenti

+α5 Treatmenti ∗Reg-Online-Sharei + ε ∀i∈ Items. (4.1)

The terms Avg, MD, Reg and Rev correspond to average, markdown, regular and revenue respec-

tively. Here, Treatmenti = 1 if the SKU i used OCPX and 0 otherwise. The average weekly mark-

down and regular season revenues are obtained by dividing the total revenue in each season by

their respective durations, and the average weekly markdown inventory is the initial clearance

inventory divided by markdown duration. This normalization was done since the durations can

vary by season for the same item and across items.

The dependent variable in the regression model is the log markdown revenue rate. Motivated by

the observation in Fig. 3 that the gain in OCPX markdown revenue is proportional to use of SFS

fulfillment, we interact the regular season online share with the treatment effect (For this retailer,

the regular season online share is highly correlated with the SFS fulfillment during clearance). We

also add the treatment variable by itself to gather local effects. Moreover, for both treatment and

control SKUs, we expect that the higher the online presence, the retailer can clear the inventory

better using SFS fulfillment. We also control for pre-treatment predictors, which are the log regular

season revenue rate and the normalized initial clearance inventory.

The coefficients of interest are α4 and α5. Table 3 and Table 4 show the estimation results for

the data set with all SKUs and only the matched SKUs, respectively. In each table, we present

the results of three regression models: with the main treatment effect only, with the interaction

treatment effect only, and with both. For the matched SKUs, the coefficient for Reg-Online-Share

(α3) was not significant in all the three models, hence we report a model without it in Table 4. The

tables report results from an F-test for joint significance of α4 and α5, where the null hypothesis is

that both α4 and α5 are zero. Based on the p-values of the F-test, we can reject the null hypothesis

on the raw data and the matched data. We observe that the coefficient estimates of the treatment

effect (α4, α5) has the same sign across models. To compute average improvement due to OCPX on

the treatment SKUs, we compute the average of the SKU-level benefits over all treatment SKUs.

We note that among the three models, the one with only the interaction term results in the lowest

gains, which is what we report. It is 13.7% for the data set with all SKUs and 20% to 24% (the

former when we include the Reg-Online-Share control variable) for the model with matched SKUs

only. We observe higher gains for the treatment SKUs in the matched subclass since the average

sales and average online share (kept same for control SKUs in the matched subclass) is slightly

higher compared to the treatment SKUs in the raw data.
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Table 3 Causal model estimated from the pilot data with all the SKUs.

ln(Avg-Weekly-MD-Rev) Coefficient All [1] All [2] All [3]

Constant α0 1.820∗∗∗ 1.776∗∗∗ 1.819∗∗∗

(0.178) (0.169) (0.178)

ln(Avg-Weekly-Reg-Rev) α1 0.597∗∗∗ 0.598∗∗∗ 0.594∗∗∗

(0.021) (0.021) (0.021)

Avg-Weekly-MD-Inventory α2 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗

(0.001) (0.001) (0.001)

Reg-Online-Share α3 0.563∗∗ 0.734∗∗ 0.636∗∗

(0.263) (0.240) (0.270)

Treatment α4 0.195∗∗ 0.140
(0.097) (0.118)

Treatment ∗Reg-Online-Share α5 0.918∗ 0.497
(0.509) (0.619)

# obs 275 275 275
# treatment 57 57 57

R-sq 0.832 0.832 0.833

F-test for joint significance ∗ ∗∗ ∗
of α4 and α5

Improvement due to OCPX (lowest of above models): 13.7%

∗ ∗ ∗p < .001, ∗∗p < .05, ∗p < .1. SKUs with very small durations and rate of sales were
eliminated. Standard errors are in the parenthesis.

Table 4 Causal model estimated from the pilot data with matched SKUs only.

ln(Avg-Weekly-MD-Rev) Coefficient Matched [1] Matched [2] Matched [3]

Constant α0 1.202∗∗ 1.078∗∗ 1.191∗∗

(0.374) (0.364) (0.373)

ln(Avg-Weekly-Reg-Rev) α1 0.664∗∗∗ 0.672∗∗∗ 0.657∗∗∗

(0.038) (0.037) (0.039)

Avg-Weekly-MD-Inventory α2 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗

(0.001) (0.001) (0.001)

Treatment α4 0.325∗∗ 0.221
(0.158) (0.178)

Treatment ∗Reg-Online-Share α5 1.743∗∗ 0.119
(0.843) (0.950)

# obs 78 78 78
# treatment 39 39 39

R-sq 0.850 0.850 0.853

F-test for joint significance ∗∗ ∗∗ ∗
of α4 and α5

Improvement due to OCPX (lowest of above models): 24%

∗ ∗ ∗p < .001, ∗∗p < .05, ∗p < .1. Matched control and treatment SKUs only and the rest are
discarded. Standard errors are in the parenthesis.

5. Simulation experiments

The previous section describes a pilot implementation of the omnichannel pricing system at a

large U.S. retailer, resulting in an estimated revenue increase compared to the legacy system. In

this section, our aim is to have a controlled environment through which we conduct a detailed
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comparison of the omnichannel policies and the legacy policy in carefully designed simulation

experiments.

5.1. Parameter generation

We randomly generate 27 problem instances, where each instance has randomly chosen parameters

for the demand models and the zone-to-zone distances. We set Z = 5 and T = 5. To model the

oftenly observed case that EFC is depleted at the start of a product’s clearance period, we set

xe = 0. To model high-ticket items sold by the partner retailer, we set the minimum and maximum

price for the product as $125 and $500, respectively. We discretize the set of feasible prices into

a finite set of 31 prices, with a stepsize of $12.50. The salvage value for unsold items is $50. The

zone-to-zone distance matrix is populated with random distances from 0 to 2,500 miles. We then

set the shipping cost between zones as $4.67 + $0.001× d, where d is the inter-zone distance in

miles. Note that the shipping costs can take values between $4.67 to $7.17.

Given the chosen zone z channel prices at time t, the stochastic demand in channel m is:

D̃t
mz(pe, pb) =N t

z × θmz(pe, pb)× (1 + w̃mzδm), for m= e, b, (5.1)

where θtmz is the deterministic MNL function (3.4). The demand stochasticity originates from the

random demand factor ξ̃tmz = 1+ w̃mzδm for all t, where δe, δb are parameters, and w̃mz is a random

variable with mean of 0. We chose δb = 0.5 and δe = 0.9 to reflect our observations from the retailer’s

data that the forecast error is higher for online demand. Parameter αmz in (3.4) is randomly chosen

from the interval [10.8, 13.2]. The online price coefficient βez in (3.4) is randomly chosen from

[0.0243, 0.0297], while the store price coefficient βbz is randomly chosen from [0.0225, 0.0275]. Note

that if both channel prices are $350, then the average own and cross elasticities of the online channel

are -6.1 and 5.3, respectively; for the store channel, they are -3.4 and 3.3, respectively. These high

elasticity values are typical of products marked for clearance. We set

N t
z =B

(
t

T + 1
;a, b

)
× εz ×σ, t∈ [T ], z ∈ [Z], (5.2)

where B is the pdf of a beta r.v. with randomly chosen shape parameters b ∈ [1,5] and a ∈ [1, b],

εz is randomly chosen in [0,1], and σ is a scaling factor that ensures
∑

z

∑
tN

t
z = 100. Thus, in

all problem instances, the aggregate market size is always 100. To complete the specification of a

problem instance, we set xbz =
∑

tN
t
z, i.e., the available inventory at zone z is set to the expected

market size at z. Note that the aggregate demand in zone z can be greater than
∑

tN
t
z under some

demand realizations.

The zero-mean random variable w̃mz has the distribution illustrated in Fig. EC.2 and can take

values between -1 and 1. We ensure the realizations of w have the property∑
m=e,b

∑
z

wmz = 0. (5.3)
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This models our observations that while the zone-level channel demand may deviate significantly

from its expected value, the expected aggregate market size is a good predictor of the actual value.

This also helps compare across different policies and sample paths that see the same total demand.

Given the prices, the set of demand factors (wmz)mz determines the actual demand realizations.

To conduct the simulation experiments, we randomly generate 103 sets of the demand factors.

5.2. Methodology

For any pricing policy, our simulations construct the distribution of realized profits (total revenue

minus fulfillment costs) when the policy is applied to a specific problem instance. The distribution

is constructed from the 103 samples of the demand factors (wmz)mz.

We next describe how we compute the realized profit under a given sample of demand factors.

For each week t starting from week 1, the policy sets channel prices pte, (p
t
bz)z∈Z based on the

current inventory levels. The actual demand (Dt
ez,D

t
bz)z∈Z is realized based on (5.1). The channel

sales, fulfillment decisions, and profit realization are then determined by a fulfillment engine, which

returns the inventory levels for week t + 1. The fulfillment engine takes in as input the week t

realized demand, the week t prices, and the week t store inventory levels. The engine was designed

to approximate how fulfilment is done at the partner retailer: store customers arrive throughout

the day, and fulfillment of online orders is determined periodically (e.g. after one day). If week t

is divided into K fulfillment periods (e.g., 7 days), we assume that the realized week t zone-level

demand is uniformly distributed over the K periods. At the end of the kth period, the zone-

level store demands are met to the maximum extent possible using the same-zone store inventory.

The remaining inventories in the Z stores are then used to fulfill the kth period online demands

through an optimization model which determines online sales and fulfillment with the objective of

maximizing the myopic revenue minus fulfillment costs. The total profit is the sum of each week’s

profit and the salvage value from unsold items at the end of week 5.

The expected profit of the optimal pricing policy cannot be computed, and is also difficult to

approximate using sample average approximation since the number of variables and constraints

of optimization model is proportional to the sample size. Moreover, since the stochastic channel

demand does not follow a multinomial distribution, the upper bound in Lemma 1 does not apply.

However, as the following lemma states, we can prove an easily computable upper bound which

could be used as a benchmark to the profit of any pricing policy.

Lemma 4. For any distribution of w̃, V 1(x)≤ VPF :=Ew̃[UPF (w̃)], where

UPF (w) := max
p=(p1,...,pT )

U 1(w,p;x), (5.4)

and U 1 is the optimal value of optimization model (3.9) with t= 1.
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We next describe the pricing policies used in the simulation experiments. We tested our proposed

pricing policies D-OCPX and R-OCPX. The parameters of uncertainty set (3.7) we use are Γk

2Z
= 0.1,

atmz = δtmz, and ∆t = 0. This uncertainty set restricts the average absolute percentage error of zone-

level demand to less than 10%, and only considers sample paths in which the aggregate weighted

percentage error is zero. R-OCPX constructs Ωt,T
Z for (3.11) by setting lower and upper bounds

that are 95% and 105%, respectively, of the optimal price solution to (3.6).

We also test the following pricing policies based on the legacy pricing model:

• Policy Legacy sets the online price and store prices at period t as

pte← arg max
p∈Ω

p ·min

xte, ∑
z∈[Z]

N t
z · θez(p, pnom)

 (5.5)

ptbz← arg max
p∈Ω

p ·min(xtbz, N
t
z · θbz(pnom, p)) , z ∈ [Z], (5.6)

where pnom = $350, a price level that is approximately the center of the feasible price range.

The policy ignores any cross-channel interactions when optimizing the channel prices. The effect

of the online price on stores is ignored, and conversely, the effect of store prices on the online

demand is ignored. The full store inventory is used to determine store prices. This mimics the

output of the legacy system. Since xte = 0, pte is set to $500 (no markdown).

• Policy Legacy+Adjust sets the store prices in period t according to (5.6). Then to set the

online price, it solves (5.5) but with the adjustment xte← xte + ν
∑

z∈[Z] x
t
bz for some parameter

ν ≥ 0. This policy mimics the manual adjustment process of the merchandise managers to the

inputs of the legacy pricing system. Since xte = 0, we chose ν = 0.27, which is the average MNL

online share if both channel prices are $350. The store price is unadjusted because, based on

our conversations, managers accept the store markdowns from the legacy system as correct, but

take action on the undiscounted online price.

• Policy Legacy+OCPX sets the period t online and store prices based on (5.5)–(5.6), but with

the adjustments xte ← xte +
∑

z,z′∈[Z] y
∗
zz′ and xtbz ← xtbz −

∑
z′∈[Z] y

∗
zz′ , where y∗ is the optimal

inventory partition from (3.6). This policy model ignore cross-channel demand interactions but

partitions store inventory to account for cross-channel fulfillment.

We implemented the computational experiments in Python 3.5. The optimization models are

solved using CPLEX Optimization Studio 12.7. We set CPLEX to terminate when an integer

feasible solution is within 0.01% of optimality. The average run time of D-OCPX and R-OCPX

on a sample path are 6.796 sec and 7.895 sec, respectively. The average run time of Legacy,

Legacy+Adjust, and Legacy+OCPX are 1.025 sec, 1.712 sec, and 11.046 sec, respectively.
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Figure 5 The profit loss distribution under the pricing policies in one problem instance. The kernel density is

estimated from the profit loss in 103 sample paths. The black vertical lines mark the range (removing

statistical outliers), while the dashed red vertical lines mark the mean of the distribution.

Table 5 The average price markdown, average sales, and average unsold units of different pricing policies

applied to a specific problem instance. The average is estimated from 1000 sample paths.

Avg. Price markdown Avg. Inventory usage
Online Store Online sales Store sales Unsold

Legacy 0% 41% 0.5% 85% 14%
Legacy+Adjust 26% 41% 10% 79% 11%
Legacy+OCPX 35% 39% 32% 59% 10%
D-OCPX 16% 12% 40% 48% 12%
R-OCPX 13% 11% 36% 50% 14%
Perfect Foresight 11% 10% 42% 54% 4%

5.3. Results

Fig. 5 shows the distributions of profit loss in one specific problem instance. The profit loss on a

sample path w is defined as the relative difference between the realized profit of a pricing policy

and UPF (w) defined in (5.4). We show only the distributions in one problem instance, since the

distributions in all 27 problem instances follow a similar pattern. Particularly, a clear pattern is that

the pricing policies based on the legacy model (Legacy, Legacy+Adjust, Legacy+OCPX)

have a significantly higher profit loss compared to the omnichannel pricing policies (D-OCPX,

R-OCPX). This is further demonstrated in Fig. 6 which uses scatter plots to compare the average

profit loss of the legacy pricing policies to that of D-OCPX in all 27 problem instances. The average

profit loss of D-OCPX is between 5% to 8%. The prices from the unadjusted legacy model (Legacy)

results in roughly 20% to 40% average profit loss. Adjusting the pricing policy by injecting online

inventory (Legacy+Adjust) reduces the average profit loss slightly. Out of the legacy models,

the one that incurs the lowest average profit loss is Legacy+OCPX, which has average profit

losses of 15% to 30%.

In order to understand the causes of the above observations, we next compare and contrast the

pricing policies with respect to their average markdowns and their average sales. Table 5 presents
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Figure 6 Scatter plot of D-OCPX average profit loss and a baseline policy (Legacy, Legacy+Adjust,

Legacy+OCPX) average profit loss. Points to the right of the red line are problem instances where

D-OCPX has a lower average profit loss compared to the baseline.

these statistics for the problem instance corresponding to Fig. 5. From the table, we observe that

policies Legacy and Legacy+Adjust result in only a small percentage of inventory sold through

the online channel. This is due to the significantly larger store markdown compared to the online

markdown. Since customers consider the online channel and store channel as substitutes, this price

difference induces a larger proportion of customers to purchase from stores. Due to the large store

markdowns, the resulting effect is a low overall profit margin.

The legacy store markdown optimization model assumes that the store inventory input will

be sold only through the store channel. Hence, the big store markdowns of Legacy and

Legacy+Adjust are the result of the unadjusted store inventory inputs to the legacy model.

But based on Table 5, it is optimal to sell an average of 42% of the store inventory through the

online channel. Since the D-OCPX model (3.6) optimizes the inventory partitions which allocate

store inventory between the channels, we also tested the Legacy+OCPX pricing policy which

adjusts the inventory inputs to the legacy model based on the optimized partitions from (3.6).

With this adjustment, the average online and store markdowns are brought closer together (see

Table 5), implying that the inventory partitions of (3.6) correctly identify a balanced allocation

of inventory between channels. However, the average channel markdowns of 35% and 39% with

Legacy+OCPX are larger than the Perfect Foresight markdowns. Thus, even if inventory

is balanced across the network, a markdown optimization model that ignores channel substitution

and does not jointly optimize omnichannel prices results in significant profit loss.

Fig. 5 shows that for a specific problem instance, R-OCPX incurs a lower average profit loss than

D-OCPX. Fig. 7 shows the distribution (over the 103 samples) of profit increase due to R-OCPX,

with a box plot for each of the 27 problem instances. The profit increase was computed as the D-

OCPX profit loss minus the R-OCPX profit loss. The red line in the figure denotes no improvement
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Figure 7 Boxplots of the R-OCPX profit increase in 103 samples. The boxplots have been ordered in decreasing

25% quantile.

Figure 8 Scatter plots and linear fit of the profit increase by R-OCPX against the average online demand factor.

The plots demonstrate a decreasing relationship between the profit increase and the average online

factor.

in profit. In the first nine problem instances shown in the figure, R-OCPX has a higher profit than

D-OCPX in about 75% of the samples. In almost all instances, the median R-OCPX profit increase

is positive.
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We next investigate which cases result in the largest profit increase by R-OCPX. Define the

online demand factor ξ̄e := 1 + δew̄e, where w̄e = 1
Z

∑
z∈[Z]wez is the average online percentage

deviation. Fig. 8 shows scatter plots of the R-OCPX profit increase plotted against ξ̄e. Note that

ξ̄e < 1 if the online demand is lower than its expected value. Due to the procedure for generating

the demand factor samples in (5.3), the average store percentage deviation is −w̄e. In other words,

if the average online demand is higher than expected (i.e., ξ̄e > 1), then the average store demand

is lower than expected. It is clear from these scatter plots that the largest profit increase due to

R-OCPX occurs whenever the average online factor is small, i.e., when the actual online demand

is lower than the predicted values and actual store demand is higher than predicted.

Observe that the omnichannel demand uncertainty has an asymmetric impact on a retailer’s

expected profitability. The reason is when store demand is lower than predicted and online demand

is higher than forecasted, the omnichannel retailer can gainfully employ SFS fulfilment to satisfy

the excess online demand using unused store inventory, resulting in a ‘win-win’ revenue situation.

On the other hand, when store sales are higher than expected (exceeding store inventory), and

online demand is correspondingly lower, this results in lost in-store sales, and the SFS option is also

of limited use due to weak online demand, resulting in a ‘loss-loss’ in both channels. Therefore, the

robust “adversary” can be expected to choose low online demand and high store demand (partic-

ularly, higher store demand for stores with low inventory). As can be seen in Fig. 8, the proposed

R-OCPX solution increasingly outperforms D-OCPX when omnichannel demand realizations are

highly adversarial (ξ̄e is very small). This also explains why R-OCPX profitably protects against

worst-case demand realization by optimally raising prices relative to D-OCPX (see Table 5).
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Figure EC.1 Distribution of the computational runtimes, the percentage gap of the MIP optimal solution with

respect to its LP root node, and number of branch and bound nodes.

Figure EC.2 The distribution of the demand uncertainty factors used in the simulations.

EC.1. Proofs
EC.1.1. Proof of Lemma 1

Note that V 1 defined by the Bellman equations (3.1)–(3.2) gives the optimal expected profit of a pricing

policy that sets the same price for customers arriving in each period t. An upper bound for V 1 is the optimal

expected profit for a pricing policy that can set a different price and fulfillment for each arriving customer.

Given an arrival to zone z, if the online price and in-store price are pe and pb, respectively, then the

probability that the customer will choose to buy online is θez(pe, pb) and from the store is θbz(pe, pb). Let us

define the functions:

ψtnmz(pe, pb) :=
N t
z

N t
· θmz(pe, pb), n∈ [N t], t∈ [T ], m= e, b, z ∈ [Z], (A.1)
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which is the probability of a customer arriving in subperiod n during period t to zone z and choosing to

purchase from channel m given prices (pe, pb).

Let ptne be the online price and ptnbz be the store price observed by an arrival n∈ [N t] to zone z ∈ [Z] during

period t∈ [T ]. Define D̃tn
mz(p

tn
e , p

tn
bz) as the stochastic demand for channel m= e, b in zone z during subperiod

n∈ [N t] of period t. Note that E[D̃tn
mz(p

tn
e , p

tn
bz)] =ψtnmz(p

tn
e , p

tn
bz), and that

∑
z∈[Z]

∑
m=e,b

ψtnmz(p
tn
e , p

tn
bz)≤ 1, ∀n∈ [N t],∀t∈ [T ]. (A.2)

Let us assume that there exists a p∞ ∈ Ω such that D̃tn
bz (pe, p∞) = 0 for any pe ∈ Ω. Define R̃tnez(p

tn
e , p

tn
bz) =

pteD̃
tn
ez(ptne , p

tn
bz) and R̃tnbz (ptne , p

tn
bz) = ptbzD̃

tn
bz (ptne , p

tn
bz) as the stochastic revenue from the online and store chan-

nel, respectively, in zone z during subperiod n∈ [N t] of period t.

Let λ̃tnzij be a binary random variable which equals to 1 if and only if a zone z arrival in subperiod n of

period t is presented by price pi online and pj in the store. Let µ̃tnei be a binary random variable which equals

to 1 if and only if a zone z arrival in subperiod n of period t is presented with price pi online. Let ỹtnez and

ỹtnz′z be the random fulfillment from the EFC and the store in zone z′, respectively, of an arrival in zone z

during subperiod n of period t. Let s̃tnbz be the random store sales in zone z during subperiod n of period t.

Therefore, V 1 ≤ V ∗, where

V ∗ = maximize
λ,µ, y, s

E

∑
t∈[T ]

∑
n∈[Nt]

∑
z∈[Z]

∑
m=e,b

∑
i∈[I]

∑
j∈[I]

λ̃tnzij R̃
tn
mz(pi, pj)

+ q

xe +
∑
z∈[Z]

xbz

 (A.3a)

−E

∑
t∈[T ]

∑
n∈[Nt]

∑
z∈[Z]

qs̃tnbz + (cez + q)ỹtnez +
∑
z′∈[Z]

(cz′z + q)ỹtnz′z

 (A.3b)

subject to

ỹtnez +
∑
z′∈[Z]

ỹtnz′z =
∑
i∈[I]

∑
j∈[I]

λ̃tnzij D̃
tn
ez (pi, pj) , ∀z ∈ [Z], ∀t∈ [T ], ∀n∈ [N t], (A.3c)

s̃tnbz =
∑
i∈[I]

∑
j∈[I]

λ̃tnzij D̃
tn
bz (pi, pj), ∀z ∈ [Z], ∀t∈ [T ], ∀n∈ [N t], (A.3d)

∑
t∈[T ]

∑
n∈[Nt]

ỹtnez ≤ xe, (A.3e)

∑
t∈[T ]

∑
n∈[Nt]

s̃tnbz +
∑
z′∈[Z]

ỹtnz′z

≤ xbz, ∀z ∈ [Z], (A.3f)

∑
j∈[I]

λ̃tnzij = µ̃tnei , ∀t∈ [T ], n∈ [N t], z ∈ [Z], i∈ [I], (A.3g)

∑
i∈[I]

µ̃tnei = 1, ∀t∈ [T ], n∈ [N t], (A.3h)

ỹ≥ 0, s̃≥ 0, λ̃∈ {0,1}, µ̃∈ {0,1} (A.3i)
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Let Pzt : Ω×Ω 7→ [0,1] be the marginal probability distribution of zone z prices under the optimal policy

π∗ to (A.3). Let us define ψ̄tnmz and r̄tnmz be the optimal expected demand rate and revenue rate, respectively,

during subperiod n of period t in channel m of zone z. Note that

ψ̄tnmz =
∑
i∈[I]

∑
j∈[I]

ψtnmz(pi, pj)Pzt(pi, pj), m= e, b, ∀t∈ [T ],∀n∈ [N t],∀z ∈ [Z], (A.4)

r̄tnmz =
∑
i∈[I]

∑
j∈[I]

rtnmz(pi, pj)Pzt(pi, pj), m= e, b, ∀t∈ [T ],∀n∈ [N t],∀z ∈ [Z] (A.5)

Also,
∑

j∈[I]Pzt(pi, pj) =
∑

j∈[I]Pz′t(pi, pj) = Pt(pi) for some Pt(pi) ∈ [0,1] and any z, z′ ∈ [Z] and pi ∈ Ω.

Finally, given the optimal demand rate, the probability distribution of fulfillment and store sales under π∗

achieves an expected fulfillment cost equal to:

FC∗ = minimize
s≥ 0, y≥ 0

∑
t∈[T ]

∑
n∈[Nt]

∑
z∈[Z]

qstnbz + (cez + q)ytnez +
∑
z∈[Z]

ytnz′z

 (A.6a)

subject to ytnez +
∑
z′∈[Z]

ytnz′z = ψ̄tnez , ∀z ∈ [Z], t∈ [T ], n∈ [N t], (A.6b)

stnbz = ψ̄tnbz , ∀z ∈ [Z], t∈ [T ], n∈ [N t], (A.6c)∑
t∈[T ]

∑
n∈[Nt]

ytnez ≤ xe, (A.6d)

∑
t∈[T ]

∑
n∈[Nt]

stnbz +
∑
z′∈[Z]

ytnz′z

≤ xbz, ∀z ∈ [Z] (A.6e)

Defining rtnez(pi, pj) := piψ
tn
ez (pi, pj) and rtnbz (pi, pj) := pjψ

tn
bz (pi, pj), consider the deterministic LP counter-

part:

V LP = maximize
λ,µ, y, s

∑
t∈[T ]

∑
n∈[Nt]

∑
z∈[Z]

∑
m=e,b

∑
i∈[I]

∑
j∈[I]

λtnzij r
tn
mz(pi, pj) + q

xe +
∑
z∈[Z]

xbz

 (A.7a)

−
∑
t∈[T ]

∑
n∈[Nt]

∑
z∈[Z]

qstnbz + (cez + q)ytnez +
∑
z′∈[Z]

(cz′z + q)ytnz′z

 (A.7b)

subject to

ytnez +
∑
z′∈[Z]

ytnz′z =
∑
i∈[I]

∑
j∈[I]

λtnzij ψ
tn
ez (pi, pj) , ∀z ∈ [Z], ∀t∈ [T ], ∀n∈ [N t], (A.7c)

stnbz =
∑
i∈[I]

∑
j∈[I]

λtnzij ψ
tn
bz (pi, pj), ∀z ∈ [Z], ∀t∈ [T ], ∀n∈ [N t], (A.7d)

∑
t∈[T ]

∑
n∈[Nt]

ytnez ≤ xe, (A.7e)

∑
t∈[T ]

∑
n∈[Nt]

stnbz +
∑
z′∈[Z]

ytnz′z

≤ xbz, ∀z ∈ [Z], (A.7f)

∑
j∈[I]

λtnzij = µtnei , ∀t∈ [T ], n∈ [N t], z ∈ [Z], i∈ [I], (A.7g)

∑
i∈[I]

µtnei = 1, ∀t∈ [T ], n∈ [N t], (A.7h)

y≥ 0, s≥ 0, λ≥ 0, µ≥ 0 (A.7i)
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We next construct a feasible solution (λ,µ, s, y) to (A.7) which achieves an objective value equal to V ∗.

In particular, choose

λtnzij = Pzt(pi, pj), ∀t∈ [T ],∀n∈ [N t],∀z ∈ [Z],∀i∈ [I],∀j ∈ [I] (A.8)

µtnei = Pt(pi), ∀t∈ [T ],∀n∈ [N t],∀i∈ [I]. (A.9)

It is easy to verify that (λ,µ) satisfy constraints (A.7g)–(A.7i). We let (s, y) be the solution to a linear

program of the following form:

FC ′ = minimize
s≥ 0, y≥ 0

∑
t∈[T ]

∑
n∈[Nt]

∑
z∈[Z]

qstnbz + (cez + q)ytnez +
∑
z∈[Z]

ytnz′z

 (A.10a)

subject to

ytnez +
∑
z′∈[Z]

ytnz′z =
∑
i∈[I]

∑
j∈[I]

Pzt(pi, pj)ψ
tn
ez (pi, pj), ∀z ∈ [Z], t∈ [T ], n∈ [N t], (A.10b)

stnbz =
∑
i∈[I]

∑
j∈[I]

Pzt(pi, pj)ψ
tn
bz (pi, pj), ∀z ∈ [Z], t∈ [T ], n∈ [N t], (A.10c)

∑
t∈[T ]

∑
n∈[Nt]

ytnez ≤ xe, (A.10d)

∑
t∈[T ]

∑
n∈[Nt]

stnbz +
∑
z′∈[Z]

ytnz′z

≤ xbz, ∀z ∈ [Z] (A.10e)

Note that due to (A.10b)–(A.10e), we have that (λ,µ, s, y) also satisfy (A.7c)–(A.7f). Additionally, from

definition (A.4), the right-hand side of (A.10b) and (A.10c) are equal to ψ̄tnez and ψ̄tnbz , respectively. Hence,

FC∗ = FC ′. Therefore,

V LP ≥
∑
t∈[T ]

∑
n∈[Nt]

∑
z∈[Z]

∑
m=e,b

∑
i∈[I]

∑
j∈[I]

Pzt(pi, pj)r
tn
mz(pi, pj)︸ ︷︷ ︸

=r̄tnmz

+q

xe +
∑
z∈[Z]

xbz

−FC ′ = V ∗ ≥ V 1.

What is left to prove Lemma 1 is to show that in each period t, a stationary solution is optimal for (A.7).

Note that for any optimal solution (λ,µ, y, s), a stationary solution (λ̄, µ̄, ȳ, s̄) is also optimal, where for any

t∈ [T ] and n∈ [N t], we set

λ̄tnzij =
1

N t

∑
n′∈[Nt]

λtn
′z

ij , ȳtnez =
1

N t

∑
n′∈[Nt]

ytn
′

ez , ȳtnz′z =
1

N t

∑
n′∈[Nt]

ytn
′

z′z , s̄tnbz =
1

N t

∑
n′∈[Nt]

stn
′

bz . �
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EC.1.2. Proof of Lemma 2

To prove the first part of the lemma, it suffices to prove that V t
D(xt) = V̄ ∗, where

V̄ ∗ := maximize
λ,µ, s, y, u

T∑
k=t

∑
z∈[Z]

∑
m=e,b

∑
i∈[I]

pis
k
mzi−

∑
z∈[Z]

cezyez −
∑
z∈[Z]

∑
z′∈[Z]

czz′yzz′ + q

ue +
∑
z∈[Z]

ubz

 (A.11a)

subject to Constraints (3.6c) – (3.6e),∑
i∈[I]

skmzi ≤
∑
i∈[I]

∑
j∈[I]

λkzij d
k
mz(pi, pj), k= t, . . . , T, m= e, b, z ∈ [Z], (A.11b)

skezi ≤
∑
j∈[I]

λkzij d
k
ez(pi, pj), k= t, . . . , T, z ∈ [Z], i∈ [I], (A.11c)

skbzj ≤
∑
i∈[I]

λkzij d
k
bz(pi, pj), k= t, . . . , T, z ∈ [Z], i∈ [I], (A.11d)

∑
i∈[I]

µkei = 1,
∑
j∈[I]

µkzj = 1, ∀z ∈ [Z], (A.11e)

λkzij ≤ µkei , λkzij ≤ µkzj ∀z ∈ [Z], i∈ [I], j ∈ [I], (A.11f)

s≥ 0, y≥ 0, u≥ 0, λ,µ∈ {0,1} (A.11g)

Since the feasible price set is discrete, then (3.6) is equivalent to the optimization model with the objective

(A.11a), and with constraints (3.6c)–(3.6e) and (A.11b)–(A.11g). Let us denote by (λ̂, µ̂, ŝ, ŷ, û) the optimal

solution to this model, which has an objective value of V t
D(xt). Defining

skezi = µ̂kei ŝ
k
ez, k= t, . . . , T, ∀z ∈ [Z], ∀i∈ [I],

skbzj = µ̂kzj ŝ
k
bz, k= t, . . . , T, ∀z ∈ [Z], ∀j ∈ [I],

we can easily check that (λ̂, µ̂, s, ŷ, û) is a feasible solution to (A.11) and achieves the objective value V t
D(xt).

Hence, V t
D(xt)≤ V̄ ∗.

We next show that V t
D(xt)≥ V̄ ∗. Let us denote the maximizer of (A.11) as (λ̄, µ̄, s̄, ȳ, ū), which achieves

the optimal value V̄ ∗. From the binary constraints of the MIP, and from constraints (A.11e), it follows that

for time k, there exist price indices (ike, jkz1 , . . . , jkzn) such that:

µ̄keike
= 1, µ̄kei = 0, ∀i 6= ike, (A.12)

µ̄kzjkz
= 1, ∀z ∈ [Z], µ̄kzj = 0, ∀j 6= jkz, ∀z ∈ [Z]. (A.13)

These then imply from constraints (A.11f) that λ̄kzij = 0 for all i, j where i 6= ike or j 6= jkz, for all z ∈ [Z]. There-

fore, from constraint (A.11c), it follows that s̄kezi = 0 for all i 6= ike, z ∈ [Z]. Similarly, from constraint (A.11d),

it follows that s̄kbzj = 0 for all j 6= jkz, z ∈ [Z]. Define

skez = s̄kezike
, k= t, . . . , T, ∀z ∈ [Z],

skbz = s̄kbzjkz
, k= t, . . . , T, ∀z ∈ [Z]

Based on the definitions (A.12)–(A.13), we have that s̄kezi = µ̄kei s
k
ez and s̄kbzj = µ̄kzj s

k
bz for any k ∈ [T ], z ∈ [Z]

and i ∈ [I]. Therefore (λ̄, µ̄, s, ȳ, ū) is a feasible solution to (3.6) with an objective value V̄ ∗. Hence, V̄ ∗ ≤

V t
D(xt), which proves the lemma. �
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To prove the second part of the lemma, assume the MNL model (3.4) of choice for arrivals in zone

z ∈ [Z]. Under this demand model, assuming that N t
z is the expected number of zone z arrivals in period t,

dtmz(pi, pj) =N t
z · θmz(pi, pj) for all i, j ∈ [I]. Let us introduce the following constants:

γkezi := exp (αez −βezpi) , k= t, . . . , T, ∀z ∈ [Z], ∀i∈ [I], (A.14)

γkbzj := exp (αbz −βbzpj) , k= t, . . . , T, ∀z ∈ [Z], ∀j ∈ [I]. (A.15)

Therefore, by introducing binary decision variables for the price decisions, we can reformulate optimization

model (3.6) as:

V t
D(xt) = maximize

µ, s, y,u

T∑
k=t

∑
z∈[Z]

∑
i∈[I]

pi
(
skezµ

ke
i + skbzµ

kz
i

)
−
∑
z∈[Z]

cezyez −
∑

z,z′∈[Z]

czz′yzz′ + q

ue +
∑
z∈[Z]

ubz


(A.16a)

subject to Constraints (3.6c)− (3.6f), (A.11e),

skez ≤
N t
z

∑
i∈[I] γ

k
eziµ

ke
i

1 +
∑

i∈[I] γ
k
eziµ

ke
i +

∑
j∈[I] γ

k
bzjµ

kz
j

, k= t, . . . , T, ∀z ∈ [Z], (A.16b)

skbz ≤
N t
z

∑
j∈Ibz

γkbzjµ
kz
j

1 +
∑

i∈Ie γ
k
eziµ

ke
i +

∑
j∈Ibz

γkbzjµ
kz
j

, k= t, . . . , T, ∀z ∈ [Z], (A.16c)

µkei ∈ {0,1}, µkzi k= t, . . . , T, ∀z ∈ [Z], ∀i∈ [I] (A.16d)

Hence, it suffices to prove the following lemma.

Lemma EC.1. Under a multinomial logit demand model, V t
D(xt) = V̄ ∗2 , where

V̄ ∗2 = maximize
µ, s, y, u, g,h

T∑
k=t

∑
z∈[Z]

∑
m=e,b

∑
i∈[I]

pis
k
mzi−

∑
z∈[Z]

cezyez −
∑

z,z′∈[Z]

czz′yzz′ + q

ue +
∑
z∈[Z]

ubz

 (A.17a)

subject to Constraints (3.6c)− (3.6f), (A.11e),∑
i∈[I]

skmzi ≤N t
z

∑
i∈[I]

γkmzih
k
mzi, k= t, . . . , T, m= e, b, ∀z ∈ [Z], (A.17b)

skmzi ≤Nk
z γ

k
mzih

k
mzi, k= t, . . . , T, m= e, b, ∀z ∈ [Z], ∀i∈ [I], (A.17c)∑

i∈[I]

hkmzi = gkz , k= t, . . . , T, m= e, b, ∀z ∈ [Z], (A.17d)

hkezi ≤ µkei , k= t, . . . , T, ∀z ∈ [Z], ∀i∈ [I], (A.17e)

hkbzj ≤ µkzj , k= t, . . . , T, ∀z ∈ [Z], ∀j ∈ [I], (A.17f)

gkz +
∑
i∈Ie

γkezih
k
ezi +

∑
j∈Ibz

γkbzjh
k
bzj = 1 k= t, . . . , T, ∀z ∈Z, (A.17g)

g≥ 0, h≥ 0, µ∈ {0,1} (A.17h)
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Proof. Let us denote by (µ̂, ŝ, ŷ, û) as the optimal solution to (A.16) with objective value V t
D(xt). Defining

skezi = µ̂kei ŝ
k
ez, k= t, . . . , T, ∀z ∈ [Z], ∀i∈ [I],

skbzj = µ̂kzj ŝ
k
bz, k= t, . . . , T, ∀z ∈ [Z], ∀j ∈ [I],

gkz =
1

1 +
∑

i∈[I] γ
k
eziµ̂

ke
i +

∑
j∈[I] γ

k
bzjµ̂

kz
j

, k= t, . . . , T, ∀z ∈ [Z],

hkezi = µ̂kei g
k
z , k= t, . . . , T, ∀z ∈ [Z], ∀i∈ [I],

hkbzj = µ̂kzj g
k
z , k= t, . . . , T, ∀z ∈ [Z], ∀j ∈ [I],

we can easily check that (µ̂, s, ŷ, û, g, h) is a feasible solution to the mixed integer program (A.17) and achieves

the objective value V t
D(xt). Hence, V t

D(xt)≤ V̄ ∗2 .

We next show that V t
D(xt)≥ V̄ ∗2 . Let us denote the maximizer of model (A.17) as (µ̄, s̄, ȳ, ū, ḡ, h̄), which

achieves the optimal value V̄ ∗2 . From the binary constraints of (A.17), and from constraints (A.11e), it follows

that for time k, there exist price indices (ike, jkz1 , . . . , jkzn) such that:

µ̄keike
= 1, µ̄kei = 0, ∀i 6= ike, (A.18)

µ̄kzjkz
= 1, ∀z ∈ [Z], µ̄kzj = 0, ∀j 6= jkz, ∀z ∈ [Z]. (A.19)

From constraints (A.18) and (A.17c), it follows that s̄kezi = 0 for all i 6= ike, z ∈ [Z]. Similarly, from con-

straints (A.19) and (A.17c), it follows that s̄kbzj = 0 for all j 6= jkz, z ∈ [Z]. We set skez = s̄kezike
and skbz = s̄kbzjkz

for all z ∈ [Z]. Thus, it is easy to check based on the definitions (A.18)–(A.19) that:

s̄kezi = µ̄kei s
k
ez, k= t, . . . , T, ∀z ∈ [Z], ∀i∈ [I], (A.20)

s̄kbzj = µ̄kzj s
k
bz, k= t, . . . , T, ∀z ∈ [Z], ∀j ∈ [I], (A.21)

From constraints (A.18) and (A.17e), it follows that h̄kezi = 0 for all i 6= ike, z ∈ [Z]. Similarly, from

constraints (A.19) and (A.17f), it follows that h̄kbzj = 0 for all j 6= jkz, z ∈ [Z]. Thus, these imply from

constraints (A.17d) that h̄kezike
= ḡkz for all z ∈ [Z], and that h̄kbzjkz

= ḡkz for all z ∈ [Z]. Thus, it is easy to

check based on the definitions (A.18)–(A.19) that we have the following relationships:

h̄kezi = µ̄kei ḡ
k
z , k= t, . . . , T, ∀z ∈ [Z], ∀i∈ [I], (A.22)

h̄kbzj = µ̄kzj ḡ
k
z , k= t, . . . , T, ∀z ∈ [Z], ∀j ∈ [I], (A.23)

From (A.22)–(A.23), and from (A.17g), it follows that 1 = ḡkz + γkezike
ḡkz + γkbzjkz

ḡkz . Thus,

ḡkz =
1

1 + γkezike
+ γkbzjkz

=
1

1 +
∑

i∈[I] γ
k
eziµ̄

ke
i +

∑
j∈[I] γ

k
bzjµ̄

kz
j

. (A.24)

Substituting (A.22)–(A.23) into (A.17b), and using the relationship (A.24), we have

stez ≤Nk
z γ

k
ezike

ḡkz =
Nk
z

∑
i∈[I] γ

k
eziµ̄

ke
i

1 +
∑

i∈[I] γ
k
eziµ̄

ke
i +

∑
j∈[I] γ

k
bzjµ̄

kz
j

, (A.25)

stbz ≤Nk
z γ

k
bzjkz

ḡkz =
Nk
z

∑
j∈[I] γ

k
bzjµ̄

kz
j

1 +
∑

i∈[I] γ
k
eziµ̄

ke
i +

∑
j∈[I] γ

k
bzjµ̄

kz
j

. (A.26)

Thus, (A.25)–(A.26) proves that (s, ȳ, ū, µ̄) is feasible for model (A.16). Moreover, since we have (A.20)–

(A.21), then this solution achieves the objective value V̄ ∗2 . Thus, V̄ ∗2 ≤ V t
D(xt), proving the lemma. �
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EC.1.3. Proof of Proposition 1

If w and p are fixed, then (3.9) is a linear program. Hence, by strong LP duality, U t(w,p;xt) is equivalent

to a minimization LP. Thus, the worst-case retailer profit is equivalent to:

U t
R(p;xt) = minimize

α,β,w

T∑
k=t

∑
z∈[Z]

∑
m=e,b

dkmz(p
k
e , p

k
bz)
(
1 + δkmzw

k
mz

)
αkmz +βex

t
e +

∑
z∈[Z]

βbzx
t
bz (A.27a)

subject to αkbz +βkbz ≥ pkbz, k= 1, . . . , T, ∀z ∈ [Z], (A.27b)

αkez +βke ≥ pke − cez, k= 1, . . . , T, ∀z ∈ [Z], (A.27c)

αkez +βkbz′ ≥ pke − cz′z, k= 1, . . . , T, ∀z, z′ ∈ [Z], (A.27d)

α≥ 0, β ≥ q, w ∈W t
Γ,∆ (A.27e)

where α,β are the variables in the dual of U t(w,p;xt). To prove Proposition 1, we need the following result:

Lemma EC.2. If (ᾱ, β̄, w̄) is the optimal solution for (A.27), then ᾱkbz ≤ pkbz − q and ᾱkez ≤ pke − cmin
z − q

for all z ∈ [Z], where cmin
z := min

{
cez,minz′∈[Z] cz′z

}
.

Proof. Since the demands are nonnegative for all realizations, then given β̄, ᾱ must take the small-

est feasible value allowed by constraints (A.27b)–(A.27d). Thus, ᾱkbz = max
(
0, pkbz − β̄bz

)
, and ᾱkez =

max
(
0, pke − cez − β̄e,maxz′∈[Z]

(
pke − cz′z − β̄bz′

))
. Since the β̄ variables are bounded below by q, we have the

following upper bounds for the ᾱ variables: ᾱkbz ≤ pkbz − q and ᾱkez ≤ pke − cmin
z − q for all z ∈ [Z]. �

Note that α variables are the shadow prices for the demand constraints of U t(w,p;xt), while the β variables

are the shadow prices for its inventory constraints. Thus the upper bounds in Lemma EC.2 are natural

because αkbz is the marginal increase in value with an additional unit of store demand, which cannot exceed

the marginal value of a store sale. Similarly, αkez is the marginal increase in value with an additional unit of

online demand, which cannot exceed the maximum marginal value of an online sale (i.e., using the cheapest

fulfillment). Moreover, due to Assumption 1, these upper bounds on α are nonnegative.

Optimization problem (A.27) is nonconvex due to the bilinear term α>w in the objective. Note how-

ever that the w variables are bounded between -1 and 1. Moreover, if we define the parameters pmax :=

max{p : p∈Ω}, Akbz := pmax − q, and Akez := pmax − cmin
z − q, then from Lemma EC.2, we can add the con-

straints αkmz ≤Akmz to (A.27) without changing its optimal value. Hence the α variables are also bounded.

Therefore, using these bounds on w and α, we can “lift” the optimization problem (A.27) onto a higher

dimensional space by introducing variables ηkmz = αkmzw
k
mz, which linearizes the objective. This results in a

linear program whose optimal value U t
l (p;x

t) is a lower bound to U t
R(p;xt), where

U t
l (p;x

t) := minimize
α,β,w, ν, η

T∑
k=t

∑
z∈[Z]

∑
m=e,b

dkmz(p
k
e , p

k
bz)
(
αkmz + δkmzη

k
mz

)
+βex

t
e +

∑
z∈[Z]

βbzx
t
bz (A.28a)

subject to αkbz +βkbz ≥ pkbz, k= 1, . . . , T, ∀z ∈ [Z], (A.28b)

αkez +βke ≥ pke − cez, k= 1, . . . , T, ∀z ∈ [Z], (A.28c)

αkez +βkbz′ ≥ pke − cz′z, k= 1, . . . , T, ∀z, z′ ∈ [Z], (A.28d)

α≥ 0, β ≥ q, w ∈W t
Γ,∆, (A.28e)∣∣ηkmz∣∣≤ αkmz, m= e, b, k= 1, . . . , T, ∀z ∈ [Z], (A.28f)∣∣Akmzwkmz − ηkmz∣∣≤Akmz −αkmz, m= e, b, k= 1, . . . , T, ∀z ∈ [Z] (A.28g)
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Note that constraints (A.28f), (A.28g) and (3.7) can be linearized. The new constraints (A.28f) and (A.28g)

are valid inequalities that are satisfied by any feasible solution to the linearized problem. We next derive the

form (3.10) in Proposition 1. Note that due to strong duality, we can reformulate (A.28) as:

U t
l (p;x

t) = maximize
s,y,u,r,R,g,G,
h,H,φ,Φ,l,L,f

T∑
k=t

∑
z∈[Z]

pkbzskbz +
(
pke − cez

)
ykez +

∑
z′∈[Z]

(
pke − cz′z

)
ykz′z

 (A.29a)

−
T∑
k=t

Γkfk +
∑
z∈[Z]

∑
m=e,b

(
φkmz + Φk

mz

)
+
∑
z∈[Z]

∑
m=e,b

Akmz
(
gkmz +Gk

mz

) (A.29b)

−
T∑
k=t

∆k
(
lk +Lk

)
+ q

ue +
∑
z∈[Z]

ubz

 (A.29c)

subject to

skbz + rkbz +Rkbz − gkbz −Gk
bz ≤ dkbz(pke , pkbz), k= t, . . . , T, ∀z ∈ [Z],

(A.29d)

ykez +
∑
z′∈[Z]

ykz′z + rkez +Rkez − gkez −Gk
ez ≤ dkez(pke , pkbz), k= t, . . . , T, ∀z ∈ [Z],

(A.29e)
T∑
k=t

∑
z∈[Z]

ykez +ue = xte, (A.29f)

T∑
k=t

skbz +

T∑
k=t

∑
z′∈[Z]

ykzz′ +ubz = xtbz, ∀z ∈ [Z], (A.29g)

φkmz −Φk
mz +hkmz −Hk

mz −Akmz
(
gkmz −Gk

mz

)
+ akmz

(
lk−Lk

)
= 0, m= e, b, k= t, . . . , T, ∀z ∈ [Z],

(A.29h)

− fk +hkmz +Hk
mz = 0, m= e, b, k= t, . . . , T, ∀z ∈ [Z],

(A.29i)

rkmz −Rkmz + gkmz −Gk
mz = δkmzd

k
mz(p

k
e , p

k
bz), , (A.29j)

s, y,u, r,R, g,G,h,H,φ,Φ, l,L≥ 0. (A.29k)

Define the following variables: skez = ykez +
∑

z′ y
k
z′z, yez =

∑T

k=t y
k
ez, and yz′z =

∑T

k=t y
k
z′z. Thus,

U t
l (p;x

t) = maximize
s,y,u,r,R,g,G,
h,H,φ,Φ,l,L,f

T∑
k=t

∑
z∈[Z]

(
pkes

k
ez + pkbzs

k
bz

)
−
∑
z∈[Z]

cezyez +
∑
z′∈[Z]

cz′zyz′z

 (A.30a)

−
T∑
k=t

Γkfk +
∑
z∈[Z]

∑
m=e,b

(
φkmz + Φk

mz

)
+
∑
z∈[Z]

∑
m=e,b

Akmz
(
gkmz +Gk

mz

) (A.30b)

−
T∑
k=t

∆k
(
lk +Lk

)
+ q

ue +
∑
z∈[Z]

ubz

 (A.30c)

subject to

Constraints (3.6c)–(3.6f), (A.29h)–(A.29k),

skmz + rkmz +Rkmz − gkmz −Gk
mz ≤ dkmz(pke , pkbz), m= e, b, k= t, . . . , T, z ∈ [Z] (A.30d)
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Let us introduce the following variable transformations:

χkmz = φkmz −Φk
mz, Xk

mz = φkmz + Φk
mz,

υkmz = gkmz −Gk
mz, Λk

mz = gkmz +Gk
mz,

ψkmz = rkmz −Rkmz, Ψk
mz = rkmz +Rkmz,

υkmz = hkmz −Hk
mz, Υk

mz = hkmz +Hk
mz,

ϑk = lk−Lk, Θk = lk +Lk.

Therefore, by replacing these new variables into model (A.30), we have its equivalent formulation:

U t
l (p;x

t) = maximize
s,y,u,χ,X,υ,Λ,
ψ,Ψ,υ,Υ,ϑ,Θ,f

T∑
k=t

∑
z∈[Z]

(
pkes

k
ez + pkbzs

k
bz

)
−
∑
z∈[Z]

cezyez +
∑
z′∈[Z]

cz′zyz′z

 (A.31a)

−
T∑
k=t

Γkfk + ∆kΘk +
∑
z∈[Z]

∑
m=e,b

(
Xk
mz +AkmzΛ

k
mz

)+ q

ue +
∑
z∈[Z]

ubz


(A.31b)

subject to Constraints (3.6c)–(3.6f) , (A.31c)

skmz ≤ dkmz(pke , pkbz) + Λk
mz −Ψk

mz, m= e, b, k= t, . . . , T, z ∈ [Z], (A.31d)

χkmz + υkmz −Akmzυkmz + atmzϑ
k = 0, m= e, b, k= t, . . . , T, z ∈ [Z], (A.31e)

Υk
mz = fk, m= e, b, k= t, . . . , T, z ∈ [Z], (A.31f)

υkmz +ψkmz = δkmzd
k
mz(p

k
e , p

k
bz), m= e, b, k= t, . . . , T, z ∈ [Z], (A.31g)

Xk
mz ≥ |χkmz|, m= e, b, k= t, . . . , T, z ∈ [Z], (A.31h)

Λk
mz ≥ |υkmz|, m= e, b, k= t, . . . , T, z ∈ [Z], (A.31i)

Ψk
mz ≥ |ψkmz|, m= e, b, k= t, . . . , T, z ∈ [Z], (A.31j)

Υk
mz ≥ |υkmz|, m= e, b, k= t, . . . , T, z ∈ [Z], (A.31k)

Θk ≥ |ϑk|, k= t, . . . , T (A.31l)

Note that since Υk
mz = fk, then we can eliminate the Υk

mz variables by replacing the constraint (A.31k) by

fk ≥ |υkmz|. By equation (A.31e), we know υkmz =Akmzυ
k
mz−χkmz−atmzϑk. Due to the maximizing objective, in

the optimal solution, we have Xk
mz = |χkmz| and Θk = |ϑk|. Next, because the coefficient of skmz in the objective

is positive and Ψk
mz reduces the upper bound for skmz without impacting the objective, an alternative optimal

solution is obtained when Ψk
mz is reduced and set equal to |ψkmz|. Lastly, note that the coefficient of Λk

mz

is negative, and it increases the bound on skmz through equation (A.31d). However, since Akmz is an upper

bound on the marginal profit for every unit of sale in channel m and zone z, it is optimal to decrease Λk
mz

to the smallest feasible value and incur the least penalty Akmz. Hence, in the optimal solution Λk
mz = |υkmz|.

Hence, we have that model (A.31) is equivalent to (3.10). �
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Figure EC.3 Distribution of sales over 50 zones for a product category. Sales volume is proportional to the pie

size. The pie in each zone shows the relative frequency of brick-and-mortar sales and e-commerce

sales.

EC.1.4. Proof of Lemma 4

Consider a clairvoyant who knows the future demand factors w = (wmz)mz prior to making decisions, and

thus is able to earn the highest profit with his or her price, sales, and fulfillment decisions by solving (5.4). On

each sample path w, the “perfect foresight” realized profit UPF (w) is an upper bound on the realized profit

of any pricing policy. Hence, the expected perfect foresight profit VPF is an upper bound on the optimal

expected profit. �

EC.2. Demand estimation for Business Value Assessment

We geo-spatially clustered the retailer’s stores into 50 zones using a k-means (k=50) algorithm on the store

coordinates. Fig. EC.3 shows the 50 zones used for the experiments. We geo-tag all transaction data using

zones based on the origin of the demand and the fulfillment location. We ignored the buy-online-pickup-in-

store option since we observed few such transactions in the data for the items analyzed. Fig. EC.3 also shows

the zonal distribution of sales (the volume is proportional to the pie size) for one of the product category in

our data for the retailer. The pie in each zone illustrates the relative frequency of brick-and-mortar sales and

e-commerce sales in the zone. Note the heterogeneity of the e-commerce channel share across zones (e.g., 4%

to 11%), which can result in certain zones having relatively more ship-from-store activity. Aside from the

ability to model geographic-based heterogeneity, another advantage of zone tagging is the ability to tractably

capture cross-channel effect (Harsha et al. 2015). We use the zone-tagged data to estimate SKU-zone level

demand models described in this section.

We use the MNL function Eq. (3.4) to model the aggregate consumer behavior across channels. The time

series sales data exhibit a distinct product lifecycle (PLC) representing the baseline popularity of a product

over its selling season that begins at time tstart and has a pre-planned exit date of tend. We estimate the PLC

curve by fitting a beta distribution which encompasses a variety of curve shapes, as well as other prediction

coefficients using the procedure described later in this section. Model selection and cross-validation on a
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variety of training instances yielded the following market-size model that predicts the customer arrival rate

for any week t in the selling season:

log(Market Sizet) =γ0 + γ1 log (1 + t− tstart) + γ2 log (1 + tend− t) (B.1)

+
∑
k

γ3,kHOLIDAY-VARIABLESk,t,

and the following market-share model to predict the channel shares in week t:

log(Channel Attractiont) =β0 +β1PRICEt +
∑
k

β2,kPROMOTION-VARIABLESk,t (B.2)

+
∑
j

β3,jCOMPETITOR-PRICE-VARIABLES (optional)
j,t
.

Holiday spikes, if any, are addressed using holiday indicator variables. It was also beneficial to add channel-

specific temporal lag effects prior to the holiday weeks in order to model the spike in online gift orders

placed earlier due to the lead time of delivery. Promotional indicators, which include whether the product

was advertised that week, were also useful. Competitor prices are introduced as channel-specific attributes,

whenever they are available. Future competitor price data are generally not available, but we can use time

series methods to forecast competitor prices based on historical trends.

Since the clearance period occurs during the final 10-12 weeks of the product lifecycle, the end-of-life

sales decay (measured by decay coefficient γ2) is a key prediction component for clearance period demand.

This decay can occur due to factors such as the waning popularity of the product towards the end of life.

Due to the broken assortment effect, this decay may be amplified by inventory depletion, since the item

is less visible to store customers. To gauge the incremental impact of low inventory levels on store sales

during the markdown period, we experimented with several threshold-based inventory-effect models (Smith

and Achabal 1998, Caro and Gallien 2012). However, we did not observe any significant improvement in

prediction quality after incorporating such inventory effects, and a PLC-based market-size prediction model

was adequate for our application. A review of the in-store display procedures followed by sales associates

indicated that the categories we analyzed were unlikely to be influenced by the broken assortment effect and

the ‘store-presentation’ effects. Nevertheless, incorporating inventory effects in an omnichannel environment

can be useful for relevant product categories such as fashion apparel.

EC.2.1. Estimation procedure.

The γ and β coefficients in Eqs. (B.1–B.2) are estimated using real historical sales and price data. The goal

is to predict future end-of-life sales by channel and location using partial (early and mid-season) TLOG data

from the current selling season. There are two challenges.

First, the standard methods to estimate discrete choice models require historical information about every

choice, which in our setting, includes censored lost sales. We employ an integrated mixed-integer program-

ming (MIP) approach that jointly estimates market size and the market share parameters in the presence

of censored lost sales data proposed by Subramanian and Harsha (2017). Their method performs imputa-

tions endogenously in the MIP by estimating optimal values for the probabilities of the unobserved censored
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Figure EC.4 Predicted and actual e-commerce sales, and brick-and-mortar sales for a specific SKU-zone.

choice. Under mild assumptions, they show the method is asymptotically consistent. Besides being a compu-

tationally fast single step method, this estimation approach is capable of calibrating market-size covariates

(e.g., γ1, γ2, γ3), a critical feature with real data. We incorporated model enhancements such as regularization

using lasso and ridge penalties and sign constraints on price coefficients to enable an automated demand

estimation environment.

The second challenge is in estimating the decay coefficient, γ2, for the PLC curve without the full sales

history of an item (e.g., future end-of-life sales trajectory can be convex, concave or affine). To overcome

this problem, we employed the following two-phase procedure to estimate the parameters of the demand

model. In the first phase, the average end-of-life sales decay coefficient γ2 for a representative SKU from the

category was estimated using a learning procedure, and employed as a ‘prior’ desired value in the second

phase of estimation that is done at a SKU-zone level for all SKUs. Such priors can also be estimated using

historical values of like-SKUs in the same category.

The training sales data was used to estimate parameters of the channel attraction models and the market

size model. As we move closer toward the end of the season, and more end-of-life sales data becomes available,

the prediction model is recalibrated on a weekly basis using the most recent data, updating all coefficients

including the decay coefficient γ2 with its previous estimate used as a prior, to produce improved sales

forecasts for the remaining weeks.

EC.2.2. Prediction accuracy.

We next discuss the achieved model fit and prediction quality using the retailer’s actual sales data and

prices. The prediction results presented here is the 12-week look-ahead forecast for the entire clearance

period as opposed to rolling horizon weekly sales predictions. We present the look-ahead forecast because

the OCPX model at the start of the clearance period requires an estimate of demand for all future periods

until the planned end date. As time progresses, the demand predictions for the remaining weeks will need to

be revised each period. The forecast quality was measured in terms of the volume weighted mean absolute

percentage error (WMAPE). We observed this to be largely dependent on the sales rates and hence, the level

of disaggregation at which the model calibration was performed, which is consistent with the observations

in Caro and Gallien (2012). The achieved out-of-sample WMAPE at the category-chain level was about 22%.

This WMAPE value is in close proximity to that observed by Caro and Gallien (2012) who report a 23.8%
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Table EC.1 Average same-channel and cross-channel price elasticities for Tablets Category.

Channel Sales Elasticity to Elasticity to
brick-and-mortar price e-commerce price

Brick-and-mortar sales −1.3 0.7
E-commerce sales 2.8 −3.9

WMAPE at the category-chain level. At the lowest level of aggregation (SKU-zone level), the average sales

rate across the SKUs analyzed during the clearance period (10 per week for brick and 2 for online) was more

than 10 times lower than the mid-season sales rate, resulting in the predicted weekly sales deviating from

actual sales by ±5 units for stores and ±1.2 units for online. Fig. EC.4 is a sample graphical plot of the

model fit (for training data) and the look-ahead predictions (for test, the final 12 weeks of sales).

To measure the impact of cross-channel causals to prediction accuracy, we compared the estimated model

to a baseline which uses the data to estimate channel demand models without cross-channel causals. We

observed the omnichannel demand model reduces SKU-zone level WMAPEs by 1.5 percentage points for

the brick channel, and 5 percentage points for the digital channel over the baseline. The incremental gain

in prediction accuracy was higher when compared to the partner retailers incumbent single-channel demand

forecasting system. Although the benefit of incorporating of cross-channel effects varies by product category,

channel price differential, and selling season, for the categories we tested, we observed that the online sales

prediction (in general, across categories and across multiple retailers) tends to improve after incorporating

cross-channel price and promotion effects. Overall, our demand model and estimated parameters result in

prediction qualities consistent with the goals set by the retailer, and was embedded within our proposed

optimization framework to calculate optimal prices and inventory partitions.

EC.2.3. Estimated price elasticities.

We present the average price same-channel and cross-channel elasticity values evaluated at the average

channel price for the Tablets category in Table EC.1. These relatively high elasticity values are typical of

markdown settings. Note that the cross-elasticities are asymmetric in that the impact of brick prices on the

online sales is different from (and tends to be higher than) the impact of the online prices on brick sales. It

is indicative of the heterogeneity of the customers shopping in the different channels as well as the volume

share of these channels (the absolute change in volume of brick sales is much higher than that for the online

channel).
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