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Optimal Management and Sizing of Energy Storage
under Dynamic Pricing for the Efficient Integration

of Renewable Energy
Pavithra Harsha, Munther Dahleh

Abstract—We address the optimal energy storage management
and sizing problem in the presence of renewable energy and
dynamic pricing associated with electricity from the grid. We
formulate the problem as a stochastic dynamic program that
aims to minimize the long-run average cost of electricity used
and investment in storage, if any, while satisfying all the demand.
We model storage with ramp constraints, conversion losses,
dissipation losses and an investment cost. We prove the existence
of an optimal storage management policy under mild assumptions
and show that it has a dual threshold structure. Under this policy,
we derive structural results, which indicate that the marginal
value from storage decreases with its size and that the optimal
storage size can be computed efficiently. We prove a rather
surprising result, as we characterize the maximum value of
storage under constant prices and i.i.d. net-demand processes:
if the storage is a profitable investment then the ratio of the
amortized cost of storage to the constant price is less than 1

4
.

We further perform sensitivity analysis on the size of optimal
storage and its gain via a case study. Finally, with a computational
study on real data we demonstrate significant savings with energy
storage.

Index Terms—Energy storage, operations, management, invest-
ment, pricing, dynamic programming/optimal control, infinite
horizon, renewable energy

I. INTRODUCTION

Fossil-fuel based electricity generation is one of the largest
sources of greenhouse gas emissions [1]. This coupled with
the increasing demand for electricity has motivated the need
to integrate a vast amount of renewable energy such as wind
and solar with the electric grid. In the US, the Department of
Energy mandates that by 2030 wind energy should contribute
to 20% of the electric power consumption [2]. Similar aggres-
sive renewable energy integration targets have been set across
the world for different forms of renewable energy.

Renewable energy sources are non-dispatchable sources that
are both variable and uncertain in nature. At large penetration
levels this variability can pose significant challenges in the
operation of the power grid. This is because renewables
introduce large ramps that increase the need for reserves and
can lead to grid stability issues amidst other concerns such as
the need for costly upgrades in the transmission network [3].
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Energy storage technologies can address all these concerns
and facilitate power balancing as they decouple the time of
generation and consumption. In addition, they improve the
quality of power and its reliability, defer and/or eliminate
costly upgrades in the transmission network and increase
the value of distributed renewable energy sources. However,
storage devices are very expensive and their cost has been
the main barrier in their deployment. Owing to their benefits,
governments and industries have been investing significantly
in the research and development of newer and cheaper storage
technologies with the hope that storage will be an integral part
of the future smart grid.

This work broadly focuses on the interplay between renew-
ables and energy storage from a power balancing perspective
in the presence of dynamic pricing associated with electricity
from the grid. For example, consider settings such as indus-
tries, game parks, smart cities, microgrids (not in an island
mode), utilities or homes that own renewable generators in
form of solar panels and/or wind turbines. The purpose of the
renewable generators is to satisfy a local, potentially price-
sensitive demand using energy storage devices and electricity
from the grid. The main questions in such applications are the
following: what is the value of storage, what is the tradeoff
between the value of storage and its capital cost? how should
it be managed and finally how different factors influence the
above?

To answer the above questions we consider a setting where a
price-sensitive demand is satisfied at all times using electricity
from the grid and/or renewable generation. Electricity from the
grid has a real-time but exanté price associated with it whereas
renewable generation is assumed to have zero marginal cost
and is hence free. The goal is to identify the optimal storage
management policy and in turn, the optimal size of energy
storage to invest in to minimize the average cost of electricity
used and investment in storage, if any. We refer to these
problems together as the optimal energy storage management
and sizing problem and interchangeably refer to storage sizing
as storage investment.

In this paper, we formulate this problem as a discrete time
average cost stochastic dynamic program over an infinite hori-
zon. In modeling the storage device, we take into account ramp
constraints, energy losses during charging and discharging,
dissipation losses, and an amortized capital cost of investment.
The main contributions of the paper are as follows:



1) We prove the existence of the optimal storage management
policy for the average cost infinite horizon criterion. The
proof of the existence is non-trivial because we allow for
continuous state and action spaces in the underlying Markov
Decision Problem (MDP). Using the vanishing discount
method, we establish the existence of an optimal stationary
policy and show that it can be computed using the infinite
horizon average cost optimality equation.

2) We show that the optimal management policy has a dual-
threshold structure. The optimal policy is characterized
by two threshold functions as follows. If there is excess
generation then store the excess and possibly buy (and
store) to reach the lower threshold. Alternatively, if there is
excess demand it is one of three possibilities: buy and store
to reach the lower threshold if there is insufficient energy
in the storage device, do nothing or extract, as needed,
but only down to the higher threshold if there is sufficient
energy in the storage device. In special cases we are able
to characterize the nature of the threshold functions and
hence the optimal policy. For example, at a constant price
or at the highest price for electricity, the optimal policy
is a simple greedy policy, and at zero price, it is to fill
the storage entirely. Moreover, when prices and the net-
demand are i.i.d. processes, we show that the thresholds
are decreasing functions of price.

3) We show that the optimal storage management policy has a
non-increasing and convex average cost of electricity as a
function of the storage size. This implies that the marginal
value from storage (without considering investment cost) is
decreasing with storage size and that the optimal storage
size under the optimal policy can be computed efficiently.

4) In the special case of a constant price for electricity, we
quantify the maximum value from a given storage (savings
in electricity cost with storage) under any i.i.d. stochastic
process for net demand (demand minus generation). This
characterization allows us to prove a rather surprising
result: if storage is a profitable investment then ratio of the
amortized cost of storage to the constant price of electricity
is less than 1

4 .

5) Through a simple case study, we understand how different
factors such as the uncertainty of the exogenous distribu-
tions, differential pricing, price elasticity of demand, losses,
and ramp constraints impact the size of optimal storage
and its gain. We derive closed form solution for the size of
optimal storage in a special case and use it as a baseline to
study other trends (i.e., perform sensitivity analysis).

6) Finally, with a computational study using the Pacific North-
west GridWise Testbed Demonstration Projects [4] and the
western wind integration study at NREL [5], we show that
a 2.2% (100kWh) and 4.4% (200kWh) level of storage
penetration (size of storage relative to the total annual load)
results in 2.6% and a 4.4% savings in electricity cost for
a group faces a constant price and a 7.3% and a 12.9%
savings for a group that faces time-of-use pricing.

Related Work: Interaction between renewable energy and
storage has been the subject of many papers. Previous work
has mostly focused on the setting where bulk renewable
generators are used for participating in conventional electricity
markets to maximize revenue using energy storage (see [6],
[7] and references therein). The goal in these papers is to
make renewable energy commitments in day-ahead markets
that have associated penalties if the contracts are breached in
real-time. Our setting differs from these in that we consider
renewable generators that directly face demand and use energy
storage devices to reduce the total cost of electricity used. In
such a setting, [8] show that energy storage can be used to
smooth peak consumption under time-varying deterministic,
as opposed to stochastic, variations of demand, price and wind
power. In order to handle the uncertainty of renewables and
demand, the papers [9]–[11] adopt a MDP based approach to
solve the storage management while [12] adopts a scenario
tree based method.

In our earlier work [9] (a preliminary conference version
of this paper), we study the optimal sizing and management
problem when the prices are restricted to at most two levels
and formulate it as an average cost infinite horizon problem.
We showed that a greedy policy turns out to be optimal under
a constant price and that the marginal value of storage is non-
increasing and convex as a function of the storage size. The
optimality of the greedy policy was also observed in [11].
In [10], the authors show that under a constant price and no
losses the value of storage is increasing in storage size and
stabilizes at a certain level. The results we present in this
paper extends the work in the above papers to the general
case of time-varying stochastic dynamic pricing. This work
was conducted simultaneously and independently of the recent
works in [13] and [14]. We include some results from [9] for
the completeness of this paper and they will be clearly cited.

The commodity trading literature [15], [16] is also related
to our work. This literature focuses on an arbitrage setting
with bounds on the trades and a limited warehouse capacity.
This work has been extended in the context of energy storage
recently by [17] who provide an explicit formula for optimal
thresholds under i.i.d. prices with a storage that has a perfect
roundtrip efficiency. In [18] the authors numerically observe
that the optimal storage management strategy has a threshold
structure where the number of thresholds depends on the
number of piecewise-linear components in its convex cost
function. Similar to the results in this literature, we show
that the optimal policy has two threshold functions, one for
injection and one for withdrawal. Though unlike the arbitrage
setting where the lower threshold arises because of the price
for injection, the lower threshold in our setting is because of
the efficiency losses in the storage device. Due to the nature of
the setting, the trading literature has focused primarily on finite
horizon applications while the methodology that we provide
in this paper extends that analysis to discounted and average
cost infinite horizon settings as well.

Amongst papers that study the structural properties of
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average cost infinite horizon problems, the paper that is closely
related to our work is the inventory control problem with
supply risks [19]. Unlike the inventory setting, the presence
of price uncertainties, storage ramp constraints, and storage
dissipation and conversion losses contributes to the difference
in the structure of the optimal policy and the related analysis.

Organization: The rest of the paper is organized as follows.
In Section II, we formalize our models. In Section III, we
study the optimal storage management problem followed by
the optimal storage investment problem in Section IV. In
Section V, we derive a theoretical bound on the storage
cost. We present the sensitivity analysis in Section VI, the
computational results on real data in Section VII and finally,
conclude in Section VIII. All the proofs are included in the
appendix of the paper.

II. MODEL

Consider a renewable generator the purpose of which is
to satisfy some (local) demand. Any excess generation is
assumed to be lost or pumped into the grid at zero price
unless stored in an energy storage device. Any excess demand
that is not satisfied from renewable generation is supported by
other generators connected to the electric grid at prices which
are revealed prior to the consumption. Our goal is to identify
the optimal storage size and the optimal policy to manage
the storage so as to minimize the long term average cost of
electricity used along with the cost associated with storage
investment.

To simplify the analysis we address this problem in the
absence of any network constraints (as a single bus) and
model only the flow of real power. We also discretize time
into intervals of length τ with constant power in each interval
ignoring any variations in generation or load within an interval.

Energy storage model. Any storage can be characterized
using the following parameters:
• Energy rating is the net capacity or size of storage repre-

sented by S.
• Power rating specifies the rate at which storage can be

charged or discharged. This can be the same or different
for charging and discharging cycles and denoted by R̂i and
R̂o respectively.

• Efficiency accounts for conversion losses and denoted by
ρ. This is commonly referred to as the roundtrip efficiency
because it is the product of two conversion loss efficiencies:
converting renewable energy to its stored form, ρi, and the
reverse, ρo. If ρ = 1, the storage is known to have a perfect
roundtrip efficiency.

• Dissipation losses refers to the losses that occur due to
leakages and are accounted for by the constant η.

• Total ownership cost refers to the investment cost in storage.
We model this cost as a simple amortized per unit cost
of capital that we denote by c. One method to estimate
this amortized cost from the investment cost is discussed in
Appendix A.

All the above parameters are assumed to be inputs to our
problem except for S which we treat as a decision variable.

Note 1. For the simplicity of the mathematical expressions in
this paper, we scale all the parameters of the problem so that
we can work with the useful component of the energy in the
storage device where conversion losses are already accounted
for. That is, we redefine S to be the maximum amount useful
energy that can be stored in the storage device. Therefore, the
energy rating is S

ρo
. Similarly, the actual power ratings are

R̂i

ρ and R̂o

ρo
for charging and discharging respectively where

R̂i, R̂o reflect the constraints on the useful power. Finally, c
is the amortized cost per (useful) unit of the storage device
while cρo is the true cost.

Renewable generation, price, demand. We assume that
renewable generation, price and demand are known exogenous
stochastic processes and denote them by Wt, pt and Dt respec-
tively. The support for each of these processes is assumed to be
non-negative and bounded. We allow for possible correlation
in these processes and in turn account for price-sensitive (i.e.,
elastic) demand and dependence of prices on wind levels. We
will soon see in our formulation that at any time, we are only
interested in the net difference between demand and renewable
generation. We denote it by Yt = Dt −Wt and refer to it as
the net load with units in energy.

These exogenous processes are typically governed by pre-
diction models that we assume are characterized using known
Markovian function as follows:

{pt, Yt} = g
(
pHt ,Y

H
t , εt

)
, (1)

where the vector εt is assumed to be independently and
identically distributed (i.i.d) random process that is known for
each t. The bolded terms with superscript H refers to the
history of the respective quantities required for predicting the
current state. We often use the notation Qt ∈ Q and QH

t ∈ QH
to compactly denote the tuples {pt, Yt} and {pHt ,YH

t } and
their supports.

Problem formulation. Let Xt denote the level of useful en-
ergy in the storage at time t. By definition, Xt ∈ [0, ηS] where
η accounts for the dissipation losses. The tuple {Xt,Q

H
t }

forms the state of the system.

We assume the following sequence of events in each period:
at the beginning of period t, we are revealed exanté the price,
pt and the net load, Yt. Next, the decision, ut, the amount of
useful energy to store is made. We allow this to be negative
as we can extract energy from storage as well. Note that ut is
an ex-post decision. So, we define ut for every Qt = {pt, Yt}.
By definition, ut is restricted by the size of storage and the
ramp constraints as follows:

−min{Xt, Ro} ≤ ut ≤ min{(S −Xt), Ri}, (2)

where Ri = τR̂i and Ro = τR̂o. The state update equations
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∀ Xt ∈ [0, ηS] and QH
t ∈ QH are as follows:

Xt+1 = η [Xt + ut] , and (3)
QH
t+1 = f

(
Qt,Q

H
t

)
. (4)

Eq. (3) increments the current storage level by the amount of
useful energy that is stored depending on the value of Qt =
{pt, Yt} in period t and then discounts it by the dissipation
losses, η, to arrive at the storage level in the next time period.
Eq. (4) is the state update equation for pt and Yt where a
known function f(.) updates the exogenous processes by the
most recent history.

We now formulate the optimal storage management and
investment problem as a discrete-time average-cost infinite
horizon stochastic dynamic program. We assume that the
granularity of the discretizations (e.g., hourly) are relatively
small compared to the life-cycle of storage devices (e.g., a
few years) and hence choose an infinite horizon metric.

I : min
S≥0,π

lim
T→∞

sup
1

T
Ept,Yt

T∑
t=1

pt

[
Yt +

ut
βt

]+

+ cS (5)

s.t. (2), (3), (4) ∀ t ∈ {1, ..., T}

where βt =

{
ρ if ut ≥ 0
1 otherwise.

The first term in the objective is the average cost of con-
ventional generation that is drawn from the grid in order
to meet demand. We divide ut by βt to reflect the actual
energy stored as ut is just the useful part of the energy
stored. The second term is the amortized per-period investment
cost in storage. For a fixed S, we refer to the problem as
the optimal storage management problem. The goal here is
to identify the optimal policy, π∗, amongst feasible policies
denoted by π = {ut|t = 1, 2, . . . } which is a sequence of
feasible actions ut. Each ut depends on (Xt, Qt,Q

H
t ) i.e.,

ut = ut(Xt, Qt,Q
H
t ) with a slight abuse of notation. A

policy π is considered stationary if ut is a time independent
function, i.e., ut = u(Xt, Qt,Q

H
t ) ∀ t. When S is also a

decision variable, we refer to the problem as the optimal
storage management and sizing problem.

Under the optimal policy, we refer to the decrease in the
cost of electricity with storage (without investment cost) as
the value of storage and the decrease in total cost of problem
I (i.e., with investment cost) as the gain from storage. An
investment in storage is considered profitable if the gain is
non-negative. The goal in the sizing problem is to identify the
most profitable storage to invest in.

III. OPTIMAL STORAGE MANAGEMENT POLICY

In this section, we prove the existence, identify the structure
and discuss some computational aspects of the optimal sta-
tionary storage management policy, u∗(Xt, Qt,Q

H
t ), for the

problem I with a known storage of size S. We first discuss
the case of a constant price and then the more general case of
time varying prices.

A. Constant price: Balancing/greedy control [9]

Consider the following stationary greedy policy that we
refer to as the balancing control: if there is excess demand
(over renewable generation), we extract as needed from storage
and alternatively, if there is excess generation, we store it. Let

hB(Xt, Yt) = (Xt − γtYt)+, (6)

where γt is ρ if Yt ≤ 0 and 1 otherwise. Then, the balancing
control u∗(Xt, Yt) =

min
{
Ri, (S −Xt),max{hBt (Xt, Yt)−Xt,−Ro}

}
. (7)

The superscript B refers to the balancing control. This sta-
tionary policy is optimal at a constant price because there
is no gain in satisfying demand in a future period and not
satisfying it in the current period because the energy from
the grid has a constant price. In particular, in the presence
of conversion and dissipation losses this action can result in
losses. This simple management scheme is optimal for both
finite and infinite horizon problems and does not depend on
the stationarity assumptions and/or the Markovian nature of
the exogenous stochastic processes.

B. Time varying prices: Dual-threshold control

We now consider the case of time-varying prices. To identify
the structure of the optimal policy for the average cost infinite
horizon storage management problem, we first prove that the
corresponding Bellman equation is satisfied and that there
exists a stationary policy that satisfies it. The existence is no
surprise for finite horizon problems from dynamic program-
ming and for finite state problems with an average cost metric
using linear programming. But in general, it need not be true
for infinite horizon problems when there is a continuous state
or action space (see examples in section 4.6 in [20]). In this
section, we allow the storage level Xt to be continuous in
[0, ηS]. Note that the main structural results that we prove in
this section for the optimal policy and the optimal cost-to-go
functions (except for the continuity property in Xt) continue
to hold even if Xt is discrete.

We first study the discounted finite horizon problem. We
prove certain structural results for the cost-to-go functions in
the Bellman equation. Using this we show that the optimal
policy has a dual-threshold structure. In particular, above the
highest threshold, a modified greedy control that we refer
to as the threshold-dependent balancing control is optimal.
We then prove the existence of a stationary policy for the
discounted infinite horizon problem and that it satisfies its
corresponding Bellman equation. We then extend the structural
results by characterizing the asymptotic behavior of the cost-
to-go function with time. Finally, we extend the results to the
average cost problem using the vanishing discount approach
(see [21]) that characterizes the asymptotic behavior of the
cost as the discount factor approaches one. A key property
that is established is that the relative difference between the
infinite horizon discounted cost from any starting state and
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some reference state is always bounded by a constant at all
discount levels.

1) Discounted finite horizon problem: Consider the dis-
counted finite horizon storage management problem with a
storage of finite size S. Using dynamic programming, the
problem can be rewritten as follows where Vα,t(Xt,Q

H
t ) is

the cost-to-go of the finite horizon problem at period t with
state {Xt,Q

H
t } and discount factor α. For all t = 1, ..., T −1,

Xt ∈ [0, ηS] and QH
t ∈ QH ,

Vα,t(Xt,Q
H
t ) = EQt/QH

t
Jα,t(Xt, Qt,Q

H
t ) (8)

where Jα,t(Xt, Qt,Q
H
t ) =

min
ut

pt

[
Yt +

ut
βt

]+

+ αVα,t+1

(
η(Xt + ut), f

(
Qt,Q

H
t

) )
s.t. −min{Xt, Ro} ≤ ut ≤ min{(S −Xt), Ri},

and Vα,T (XT ,Q
H
t ) = 0. (9)

Theorem 2. Vα,t(Xt,Q
H
t ) is a non-increasing, continuous

convex function in Xt ∈ [0, ηS] for all QH
t ∈ QH and t =

1, ..., T .

Consider the optimization problem without ramp constraints
in period t with a change of variables from ut to zt = Xt+ut:

min
zt∈[0,S]

pt

[
Yt +

zt −Xt

βt

]+

+ αVα,t+1(ηzt,Q
H
t+1). (10)

We make two observations that simplifies the first term:
suppose zt < Xt then βt = 1 and the first term is zero
when zt ≤ Xt − Yt; suppose zt ≥ Xt, then βt = ρ and
the first term is zero when zt ≤ Xt − ρYt. So, depending
on whether zt is less than or greater than Xt, we separate
the problem into two subproblems and impose that constraint
on zt accordingly. In each of the problems, incorporating the
interesting cases of Yt, we can state without loss of generality
that the first term is 0 for all zt ≤ Xt − γtYt where γt = ρ
if Yt ≤ 0 and 1 otherwise. Note that the second term is a
decreasing function of zt by Theorem 2. So, the optimum is
always higher than Xt−γtYt. We impose this as an additional
constraint and further simplify the first term. Also, note that
because the objective is a convex function in zt (first term is
convex, second term by Theorem 2 and hence the sum), the
two sub-problems can be solved as unconstrained problems
after which these constraints are imposed sequentially. With
these steps, we arrive at the following dynamic programming
algorithm for the finite horizon storage management problem.
This is illustrated when Qt is i.i.d in nature (i.e., the state is
just Xt) for the simplicity of exposition. In the general case,
all the threshold and control functions below are also functions
of the current state QH

t and the current realization Qt.

1) Solve for the two thresholds under the cases when zt < Xt

and zt ≥ Xt.

h+
t (pt) = argminzt∈[0,S] ptzt + αVα,t+1(ηzt), and (11)

h−t (pt) = argminzt∈[0,S]
pt
ρ
zt + αVα,t+1(ηzt). (12)

Note that h−t (pt) ≤ h+
t (pt). If ρ = 1, h−t (pt) = h+

t (pt).
2) Impose constraints zt < Xt and zt ≥ Xt to arrive at an
intermediate threshold,

ht(Xt, pt) =


h−t (pt) if Xt ≤ h−t (pt)
Xt if h−t (pt) < Xt ≤ h+

t (pt)
h+
t (pt) o.w.

(13)

3) Impose constraint zt ≤ Xt − γtYt to arrive at the optimal
threshold,

h∗t (Xt, Qt) = ht(Xt, pt) + [Xt − γtYt − ht(Xt, pt)]
+
, (14)

where γt =

{
ρ if Yt ≤ 0
1 otherwise.

4) Incorporate ramp and storage limit constraints to arrive at
the optimal decision, u∗t (Xt, Qt) =

min{Ri, (S −Xt),max{h∗t (Xt, Qt)−Xt,−Ro}} . (15)

Observe that the optimal policy involves computing two
threshold functions {h−t (pt), h

+
t (pt)} for the i.i.d case and

in general, {h−t (Qt,Q
H
t ), h+

t (Qt,Q
H
t )}. One is tempted to

compare these two thresholds to the base stock [s, S] policy in
inventory theory [22]. The major difference is that the lower
threshold in the [s, S] policy is because of the presence of
fixed ordering costs and in the storage management problem
is because of the presence of efficiency losses. In particular,
in the absence of ordering costs, s = 0 but in the absence of
efficiency losses (ρ = 1), h−t (pt) = h+

t (pt).

In a nutshell, the optimal policy is as follows: if there is
excess generation store all the excess and buy, if necessary, at
least up to h−t (pt); alternatively, if there is excess demand, it is
one of three possibilities: (1) extract as much as is needed but
only down to h+

t (pt) if there is sufficient energy (> h+
t (pt))

in the storage device; (2) buy and store up to h−t (pt) if there
is insufficient energy in storage (i.e., < h−t (pt)); or, (3) do
nothing if h−t (pt) ≤ Xt ≤ h+

t (pt). The exact amount to store
or extract depend on the level of energy in the storage device,
the price-dependent threshold functions, the size of storage and
the ramp constraints as described in the above equations. We
refer to the policy whenever Xt ≥ h+

t (pt) as a a threshold-
dependent balancing control or a modified greedy policy as it
reduces to the balancing/greedy policy when h+

t (pt) = 0.

Corollary 3. The thresholds, h+
t (pt) and h−t (pt), and in

general, h+
t (Qt,Q

H
t ) and h−t (Qt,Q

H
t )
)
, are 0 at the highest

price and S at zero price. This implies that the optimal control
policy at the highest price is the balancing policy and at zero
price is to fill the storage completely.

Corollary 4. Suppose Qt = {pt, Yt)} is an i.i.d. process
then the thresholds {h+

t (pt), h
−
t (pt)} and the optimal control

u∗t (Xt, Qt) are all non-increasing in price pt for all t.

2) Discounted cost infinite horizon: In this section, we are
interested in proving the existence of the stationary policy for
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the discounted cost infinite horizon problem:

V ∗α (X0,Q
H
0 ) = inf

π∈Π
Ept,Yt

{ ∞∑
t=0

αtpt

[
Yt +

ut
βt

]+
}
, (16)

where Π is the class of all feasible strategies. The reason we
study this is because the management policy for the average
cost problem is derived from the asymptotic behavior of this
cost-to-go function as the discount factor goes to one. We will
show that V ∗α (.) satisfies the following optimality equation. For
all X ∈ [0, ηS] and QH ∈ QH ,

Vα(X,QH) = EQ/QH J(X,Q,QH) (17)

where J(X,Q,QH) =

min
u

p

[
Y +

u

βu

]+

+ αVα
(
η(X + u), f

(
Q,QH

))
s.t. min{X,Ro} ≤ u ≤ min{(S −X), Ri}.

In the following when we refer to the finite horizon problem,
Vα,t(X,Q

H), we use backward numbering i.e., t periods left
till the end of the horizon with Vα,0(.)

def
= 0.

Theorem 5. For all X ∈ [0, ηS] and QH ∈ QH ,

1) 0 = Vα,0(X,QH) ≤ Vα,1(X,QH) ≤ .... and
Vα,∞(X,QH)

def
=limt→∞Vα,t(X,QH)exists and is finite.

2) Vα,∞(X,QH) satisfies Eq. (17), the optimality equation
for discounted cost infinite horizon problem.

3) Vα,∞(X,QH) = V ∗α (X,QH).

4) V ∗α (X,QH) is a non-increasing continuous convex func-
tion in X .

The above theorem proves the existence of a stationary
policy u∗(X,Q,QH) that is optimal and that it satisfies the
optimality condition with Vα(X,QH) = Vα,∞(X,QH) =
V ∗α (X,QH). Although the optimal policy of this problem is
not the focus of this paper, it is easy to see the solution of
the Bellman equation (17) has a stationary dual threshold
structure similar to the finite horizon problem where we
replace Vα,t(X,QH) by V ∗α (X,QH). Similarly, Corollaries 3-
4 can be easily extended to this case.

3) Average cost: In this section, we are interested in
characterizing the optimal policy for average cost infinite
horizon problem as follows:

F ∗(X0,Q
H
0 )=min

π∈Π
lim
T→∞

sup
1

T
Ept,Yt

T∑
t=1

pt

[
Yt+

ut
βt

]+

, (18)

where Π is the class of all feasible strategies. We will first
show that there exists a constant g∗ such that F ∗(X0,Q

H
0 ) =

g∗ for all {X0,Q
H
0 }. This constant, g∗, and the optimal

policy can be identified using the infinite horizon average
cost optimality equation given below. For all X ∈ [0, ηS] and

QH ∈ QH ,

w(X,QH) + g∗ = EQ/QH v(X,Q,QH), where (19)

v(X,Q,QH)=min
u
p

[
Y +

u

βu

]+

+w
(
η(X + u), f(Q,QH)

)
s.t. −min{X,Ro} ≤ u ≤ min{(S −X), Ri}.

Here w is referred to as the relative cost function. In con-
structing the solution, we adopt the vanishing discount factor
approach. Here, we start with a reference state {X̃, Q̃H}. We
chose X̃ to be the zero storage level value and Q̃H to be
some nominal value. We define V̄α(X,QH) = V ∗α (X,QH)−
V ∗α (0, Q̃H) and show that that there exists a sequence αn that
converges to 1 such that w(X,QH) = limn→∞ V̄αn

(X,QH)
exists and is a solution to the optimality condition.

We make the following assumptions in order to prove the
main result.

Assumption 6. There is a strictly positive probability that
the net load, Yt is strictly positive i.e., P [Yt > 0] > 0 and
strictly negative i.e., P [Yt < 0] > 0.

Assumption 7. The exogenous stochastic process Qt =
{pt, Yt} has a discrete support in general and can have a
continuous support if i.i.d.

The above assumptions aid in bounding the term
V̄α(X,QH) independent of the discount factor α in the fol-
lowing theorem. The bounding procedure involves two steps:
ensuring that the reference state is reached with probability 1
from an arbitrary state (and vice versa) and that the expected
cost taken to get there is bounded. The first assumption
is related to the endogenous state X and allows a specific
choice of actions to reach and get from any arbitrary state
to the reference state. The second assumption relates to the
exogenous state QH and simplifies the proof when it is
discrete and hence the assumption.

Theorem 8.
1) There exists a constant g∗ and a continuous function

w(X,QH) in the storage level X which satisfies Eq. (19),
the infinite horizon average cost optimality equation.

2) g∗ = F ∗(X,QH) for all X ∈ [0, ηS] and QH ∈ QH .
3) Any stationary policy that achieves the minimum to the

optimality equation (19) is also optimal to the average
cost criterion.

4) w(X,QH) is a non-increasing continuous convex func-
tion in X for all QH ∈ QH .

The above theorem proves the existence of a stationary
policy u∗(X,Q,QH) that is optimal and satisfies the
optimality conditions. Using ideas similar to those discussed
for the finite horizon problem, it is easy to show that
the optimal policy has a dual threshold structure with
stationary thresholds {h−(pt), h

+(pt)} when Qt is i.i.d
and {h−(Q,QH), h+(Q,QH)} in general. We illustrate the
details of deriving the thresholds below when Qt is i.i.d
(i.e., Xt is the only state of the system). In general, all the
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threshold and control functions below are also functions of
the current state QH

t and the current realization Qt.

1) Solve for {h−(pt), h
+(pt)} as follows:

h+(pt) = argminz∈[0,S] ptz + w(ηz), and (20)

h−(pt) = argminz∈[0,S]
pt
ρ
z + w(ηz). (21)

Note that h−(pt) ≤ h+(pt). If ρ = 1, h−(pt) = h+(pt).
2) Arrive at the next intermediate threshold:

h(Xt, pt) =

 h−(pt) if Xt ≤ h−(pt)
Xt if h−(pt) < Xt ≤ h+(pt)
h+(pt) o.w.

(22)

3) Optimal threshold,

h∗(Xt, Qt)=h(Xt, pt) + [Xt − γYt − h(Xt, pt)]
+
, (23)

where γt =

{
ρ if Yt ≤ 0
1 otherwise.

4) Incorporate ramp and storage limit constraints to
arrive at the optimal decision, u∗(Xt, Qt) =

min {Ri, (S −Xt),max{h∗(Xt, Qt)−Xt,−Ro}} . (24)

X

p

p
max

0,0 S

h−(p) h+(p)

Store excess
Case 1: Excess Wind

Case 2: Excess Demand

Optimal Policy

Buy up Extract, if necessary,
nothing down to h+(p)

Do
to h−(p)

buy up to h−(p)
Store excess and

Fig. 1: Structure of the optimal storage management policy
when Qt = {pt, Yt} is an i.i.d. process.

Corollaries 3-4 can be easily extended to the average cost
infinite horizon problem and we state them as corollaries
without proof.

Corollary 9. The thresholds, h+(p) and h−(p), and in gen-
eral, h+(Q,QH) and h−(Q,QH), are 0 at the highest price
and S at zero price. This implies that the optimal control policy
at the highest price is the balancing policy and at zero price
is to fill the storage completely.

Corollary 10. Suppose Qt = {pt, Yt(pt)} is an i.i.d. process
then the thresholds {h−(p), h+(p)} and the optimal control

u∗(X,Q) are non-increasing in price p.

Fig. 1 provides a pictorial representation of the threshold
functions and the optimal stationary storage management
policy under different scenarios when Qt = {pt, Yt(pt)} is an
i.i.d. process. Observe that the threshold-dependent balancing
control is optimal above h+(pt).

C. Some remarks on the computation of the optimal policy

The optimal policy and the cost-to-go functions can be com-
putationally evaluated using standard dynamic programming
techniques such as value/policy iteration or solving a linear
program [20]. The run times of these methods can be enhanced
by hard-coding the results of Corollaries (9–10) whenever
applicable. The optimal policy derived from these methods
encode the dual-threshold policy (e.g., output of Eq. (24)).
The dual-thresholds themselves can be derived by solving
Eqs. (20–21) with those cost-to-go functions.

An interesting property about the dual-threshold policy
structure is that even if the cost-to-go functions are approx-
imately evaluated, as long as they are non-increasing and
convex in X for all QH , the policy evaluated from these cost-
to-go functions (even though approximate) are dual-threshold.
The reasoning is exactly along the lines of the discussion
below Eq. (10). Note that this property holds even when X
takes only discrete values.

The above property raises the following question: can the
optimal dual thresholds be obtained with a restricted policy
iteration method where one restricts the search in the policy
improvement step in the policy iteration algorithm to the set
of dual threshold policies only. Clearly, such an algorithm
will lead to significant computational speed-up over standard
methods. We observe in several instances that an arbitrary
dual threshold policy (i.e., not the optimal) results in cost-
to-go functions that are not convex in X for some QH .
These cost-to-go functions are obtained by solving the steady
state equations Eq. (19) for the chosen policy. This implies
a restricted policy iteration method may converge to a local
optima. Further research is needed to address the computa-
tional aspects of the energy storage management problem in
the presence of large state space.

IV. OPTIMAL STORAGE SIZING UNDER OPTIMAL
MANAGEMENT SCHEME

In this section, we are interested to find the optimal invest-
ment in storage, S∗, in problem I under the optimal stationary
storage management policy derived in Section III-B3.

Let g(S) correspond to the average cost of energy drawn
from the grid under the optimal management policy for a stor-
age of size S. Suppose the optimal stationary dual thresholds
are h+(Qt,Q

H
t ), h−(Qt,Q

H
t ), denoted in short by h+, h−

respectively. Then the storage level state update equation under
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this policy is

Xt+1 = ηmin
{
Ri +Xt, S, ĥ(Xt, Qt,Q

H
t )
}

(25)

where ĥ(Xt, Qt,Q
H
t ) =max{h−, Xt − ρYt} if Xt ≤ h−

Xt + [−ρYt]+ if h− ≤ Xt ≤ h+

max{h+, Xt − γtYt, Xt −Ro} o.w.

and γt =

{
ρ if Yt ≤ 0
1 otherwise.

Let L(Xt, Qt,Q
H
t ) be the optimal one period cost for a

storage of size S. Then,

L(Xt, Qt,Q
H
t ) = pt

[
Yt +

Xt+1 −Xt

β(Xt+1−Xt)

]+

, (26)

and the average cost is

g(S) = lim
T→∞

1

T

T∑
t=1

EQt/QH
t
L(Xt, Qt,Q

H
t ). (27)

Theorem 11. g(S) is non-increasing in S with ramps (i.e.,
RSi , R

S
o ) that are non-decreasing with size S .

Theorem 12. g(S) is convex in S with ramps (i.e., RSi , R
S
o )

that satisfy the convexity property with size S.

The above structural results imply that the marginal value
from storage is a decreasing function of the storage size. With
a strictly-increasing linear amortized capital cost function for
storage, it is easy to see that the objective of the optimal sizing
problem under the optimal management policy is convex. Thus
there exists an optimum S∗ (not necessarily unique) and this
can be evaluated efficiently using any gradient descent method.
These result holds even when investment cost functions are
strictly increasing and convex in S.

V. VALUE OF STORAGE AND THE FUNDAMENTAL LIMIT ON
THE COST OF STORAGE UNDER A CONSTANT PRICE AND AN

I.I.D NET DEMAND PROCESS

Theorem 13. Under a constant price, the i.i.d. process for
Yt that provides maximum value from a storage of size S has
equal weights at −Sρ and S. This distribution results in a value
of pS

4 over zero storage.

Corollary 14. Under a constant price and an i.i.d. Yt process,
if storage is a profitable investment then c

p ≤ 1
4 .

Note that the statement and proofs of the above results have
been modified from their earlier versions that we provided
in [9] for the purpose of correctness and completeness.

The above theorem and corollary together show that any
investment in storage is profitable only if the ratio of the
amortized capital cost of storage to the constant price of
energy is less than 1

4 under i.i.d. processes of net-demand,
Yt. To the best of our knowledge this is the first theoretical
(tight) upper bound on the cost of storage. An i.i.d. assumption

on net-demand Yt can be viewed as the random prediction
error on net-load after balancing that is managed with storage
operations. Note that 1

4 is an upper bound and that for many
i.i.d. distributions of the net load the c

p bound may be even
smaller (see observation 15).

VI. SENSITIVITY ANALYSIS FOR OPTIMAL STORAGE SIZE
AND ITS GAIN THROUGH A SIMPLE CASE STUDY

In this section, we study the tradeoffs between the different
parameters/settings of the problem and the optimal size of
storage and its corresponding gain. Recall that we defined gain
as the decrease in the total cost of problem I by investing in
storage. For characterizing our results, we consider a setting
where Yt = Ỹt − ε(pt − p̃) where p̃ is some nominal price,
Ỹt is a uniform i.i.d. process with mean m and width u (i.e.,
variance is u2

12 ) and ε is the price elasticity of demand.
We first consider the case of a constant price with no losses

or ramp constraints. We derive the optimal storage size and
its corresponding gain in closed form and study the impact of
the mean and standard deviation of the net load on them. This
is our baseline case which we then extend to two cases: when
there are (a) ramp constraints and losses and (b) two price
levels. In both these extensions, it is not easy to derive the
optimal storage size in closed form. We therefore compute it
numerically and present the results. In particular, we discretize
the net load Yt and the level in storage Xt and solve a linear
program to identify the optimal policy and the associated
infinite horizon average cost. We use the fact that the balancing
policy is optimal for the baseline case, case (a) and the high
price in case (b). The optimal policy for the lower price in case
(b) are deduced from the solution of the linear program where
it is verified to be dual threshold. The thresholds themselves
are deduced when the demand is high and the storage is empty
or full (as ramp constraints are absent in (b)).

A. Explicit expression for optimal storage under a constant
price, no losses and no ramp constraints

Consider the case of a constant price for electricity,
denoted by p, no losses (ρ, η = 1) and no ramp constraints
(Ri, Ro ≥ S) with zero price elasticity (ε = 0). In this setting,
we proved that the balancing policy is optimal. We use this to
derive the steady state distribution, fX(x), for storage of size
S using the following equation:∫ S

0

fX(y) [(1− FY (y))δ(x) + fY (y − x)I(0 < x < S)

+FY (y − S)δ(x− S)] dy = fX(x), (28)

where δ(x) is a dirac-delta function that is 1 when the x = 0
and 0 otherwise and I(0 < x < S) is the unit function which
is 1 if 0 < x < S and 0 otherwise. Since Y has a uniform
distribution, FY (y) =

y−m+ u
2

u ∀ m − u
2 ≤ y ≤ m + u

2 .
Substituting x = 0, x = S and x s.t 0 < x < S, in the
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Fig. 2: Percentage gain from optimal storage investment, S∗ with mean and standard deviation for uniform net load Yt under
a constant price and no losses.

integral equation, we get fX(x) as follows:

fX(x) =
m+ u

2 − E[X]

u
δ(x) +

1

u
I(0 < x < S)

+
E[X]− (S +m− u

2 )

u
δ(x− S), (29)

where E[X] = −S(S+2m−u)
2(u−S) . We can now estimate the

objective function Z(S) = g(S) + cS where g(.) is the cost
associated with electricity from the grid and cS refers to the
investment cost as follows:

Z(S) = cS + p

∫
Y

∫
X

(y − x)+fY (y)fX(x) dx dy. (30)

Substituting the density functions, Z(S) takes the form

p

4u2

[
−S

3

3
− uS(u− S) +

4m2uS

u− S + (2m+ u)2u

2

]
+ cS.

Taking derivatives and picking the solution such that Z ′(S) =
0 and Z ′′(S) < 0 gives the optimal storage as follows:

S∗ = max

0, u

1−

√√√√2c

p

(
1 +

√
1 +

m2p2

u2c2

) . (31)

Observation 15. S∗ > 0 if and only if c
p <

1
4 −

(
m
u

)2
.

This observation strengthens the result of Theorem 14 for
the case of the uniform distribution in the following ways: (a)
the uniform distribution with 0 mean is a class of distribution
for which the 1

4 bound is tight; (b) the bound is smaller for
larger m

u values; and, (c) it proves converse of the theorem as
well. A simple application of the central limit theorem extends
this observation when m = 0 to the case where Yt has a
Gaussian distribution with 0 mean i.e., S∗G(0,σ2) > 0 if and
only if c

p <
1
4 .

Observation 16. For a given u and c
p , S∗ is maximum at 0

mean decreases in the O(
√
m) symmetrically around 0.

Observation 17. For a given m and u with m << u, S∗

decreases in the O
(√

c
p

)
.

Observation 18. For a given m and c
p ratio with m << u,

S∗ increases linearly with respect to u, the standard deviation
whenever S∗ > 0.

In the above observations we restrict to the region when
m << u, i.e., m is much smaller than u. In many situations
this is exactly the region of interest as the net load, Yt, can
be viewed as the net load after balancing which usually has a
small mean and a large standard deviation.

To understand the variations in the gain from an optimal
investment in storage, S∗, we plot the percentage decrease in
the total cost, Z(0)−Z(S∗)

Z(0) with respect to m and u for different
values of c

p in Fig. 2. With respect to m and c
p , we observe

that the percentage gain from storage decreases rapidly (has
a square effect) for larger values of |m| and c

p . Note that the
absolute gain peaks at 0 mean but the slight skew is because
we are plotting the percentage gain. The percentage gain is
non-decreasing in the standard deviation and asymptotically
approaches the percentage gain at 0 mean.

B. Impact of losses and ramp constraints

In Fig. 3, we plot the variations in optimal storage size
and its corresponding percentage gain (equivalently gain as
Z(0) is fixed) as we vary each of the following: conversion
losses (ρ), dissipation losses (η) and ramp constraints (Ri =
Ro = R). Observe that the optimal storage size as well as its
corresponding gain, not surprisingly, increases with ρ, η and
R i.e., decrease in the magnitude of losses and tightness of the
ramp constraints with other factors kept the same (such as cost
of the storage). In particular, we observe that the decrease in
gain with the increase in dissipation losses (decrease in η) is at
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Fig. 3: Variation in the optimal storage size (solid line) and its corresponding percentage gain (dashed line) with conversion
losses, dissipation losses and ramp constraints. Here, E[Yt] = 0, σYt

= 8.9, c
p = 0.1.
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Fig. 4: Variation in the optimal storage size, the optimal threshold at pmin and the corresponding percentage gain as a function
of pmin

pmax
ratio for different pricing schemes: i.i.d. and TOU. Here, ε = 0, E[Yt] = 0, σYt

= 8.9, q(pmax) = 0.5 and c
pmax

= 0.1.

a much faster rate than with conversion losses (decrease in ρ).
This is because one can obtain up to S units of energy from
the storage device after conversion losses have been accounted
for but only up to ηS units after dissipation losses are account
for. This difference at all levels of ρ and η causes the higher
rate of decrease. On the other hand, with ramp constraints, the
marginal gain from investing in optimal storage by relaxing
the ramp constraints (increasing R) is decreasing till the point
there no gain, This points to the fact that the marginal value
from a storage is also decreasing as a function of R similar
to storage size as shown in Theorem 12.

C. Impact of differential pricing

In this section, we study how differential pricing and the
uncertainty in differential pricing impacts the optimal storage
size and its corresponding gain. To answer these questions,
we consider two simple differential pricing schemes: (1) i.i.d.
pricing, a proxy for real-time pricing (RTP) where the peak
price, pmax, occurs with probability q and off-peak price pmin

occurs with probability (1−q); (2) time-of-use pricing (TOU)
where the peak price is always followed by the off-peak price.
These schemes differ in the information about sequence of
future prices. We normalize pmax to be 1 and choose the
nominal price p̃ = 0.5. We also assume that there are no
losses or ramp constraints.

Fig. 4 shows how the optimal storage and its percentage
gain change as a function of pmin

pmax
ratio for the i.i.d. and TOU

pricing schemes. For an appropriate comparison between the
two schemes, we chose the q in the i.i.d. scheme to be 0.5.
We also plot the change in the optimal threshold, h+(= h−

because ρ = 1) at pmin. Observe that the storage size follows
discrete increments because we approximate Yt with a discrete
distribution. We make the following two observations from this
plot.

First the optimal storage size and the percentage gain first
decreases and then increases. In fact, after a certain point,
the values are the same for both the schemes. The former is
because at low pmin

pmax
ratio, the optimal storage management
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Fig. 5: Impact of uncertainty, q(pmax), in i.i.d. pricing scheme on the optimal storage size (solid line) and its corresponding
percentage gain (dashed line) for two different pmin

pmax
ratios. Here, ε = 0, E[Yt] = 0, σYt = 8.9 and c

pmax
= 0.1.
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Fig. 6: Variation in the optimal storage size and its corresponding percentage gain with price elasticity of demand, ε, due to
load shifting in the i.i.d. and TOU pricing schemes. Here, p̃

pmax
= 0.5, pmin

pmax
= 0, E[Ỹt] = 0, σỸt

= 8.9 and c
pmax

= 0.1.

goal in both schemes is to primarily store for the uncertainty
in net load at the peak price. But this becomes expensive as the
pmin

pmax
ratio increases. When the pmin

pmax
ratio is sufficiently high,

it is beneficial to start storing for the net load uncertainty at
the off-peak price itself. This happens when the threshold h+

at pmin decreases and is equal to 0. And from that point on,
as we increase the pmin

pmax
ratio, the optimal storage size and

percentage gain increases. This happens for both the pricing
schemes at some point (not necessarily the same). Because
q = 0.5, the two schemes under the balancing policy at both
the price levels are identical. Therefore, the optimal storage
sizes and their gains (hence the percentage gains as well) are
the same for both the schemes after a certain point.

Second the optimal storage size and its percentage gain
tends to be higher for TOU pricing compared to the i.i.d.
pricing scheme. One can attribute this to the riskier nature of

the objective with price uncertainty for the same level of price
variability. Note the opposite trend compared to the uncertainty
in Yt (see observation 18 and Fig. 2) where it is beneficial to
invest in a larger storage with larger net load uncertainty.

In Fig. 5 we plot the change in optimal storage size and
the percentage gain for the i.i.d. pricing scheme with respect
to the frequency of the high price, q(pmax) for two different
pmin

pmax
ratios. Comparing q(pmax) = 1 (constant pricing case)

with any other value of q in that plot, we observe that i.i.d.
differential pricing can sometimes increase the percentage
gain from storage but not always. This is because of the
tradeoff between how much energy is actually needed at the
peak price to support excess demand but also how often it can
be obtained at the lower price (and the corresponding value
of the lower price).

We next study the effect of varying price elasticity of
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demand on the optimal storage size and gain for the two
pricing schemes (while setting q(pmax) = 0.5). To make
the experiment interesting, we choose pmin

pmax
= 0 because

p̃
pmax

= 0.5. By doing so we are essentially simulating load
shifting from a high to low price because E[Y pmax

t +Y pmin

t ] =
2E[Ỹt] = 0. In Fig. 6, we observe that higher price elasticity
tends to decrease the optimal storage size and its percentage
gain. This is expected because both demand response (load
shifting in this context) and storage are different ways to
manage uncertainty in net load and one can compensate the
other depending on the degree of demand elasticity. The
relationship between the two pricing schemes observed here
is similar to Fig. 4.

VII. COMPUTATIONAL STUDY

In this section we present results of a computational case
study to illustrate the potential savings using energy storage on
a realistic scenario. We used the Pacific Northwest GridWise
Testbed Demonstration Project [4] data as a source for the
demand and price data and the western wind integration study
at NREL [5] for the wind data. Below we explain the details
of the data sets, the models used, the calibration techniques
and finally, discuss our results.

a) Demand and price data, models: We use the Olympic
Peninsula field demonstration data gathered from 112 residen-
tial households on the Olympic Peninsula. The demonstration
data consists of electricity prices and the demand by user
aggregated every 15 min for a period of one year from 1
April, 2006 to 31 March, 2007. In our experiments, we focus
on two groups of households (roughly 25-30 households in
each) that observed fixed prices and time-of-use prices. The
number of households varied by a very small number through
the year. So, we first normalize the consumption data to
consumption per household in each group and scaled it up
by 100 households per group to reflect the approximate size
of the demonstration. The prices for the fixed price control
group was 8.1¢ through the entire year. The prices for the
TOU group differed based on the month of the year and hour
of the day and as in Table I.

Season Period Times Price
¢/kWh

Spring, Fall/Winter off-peak 9a-6p; 9p-6a 4.119
(Apr-Jul; Oct-Mar) peak 6a-9p; 6p-9a 12.15

Summer off-peak 9p-3p 5
(Jul-Sep) peak 3p-9p 13.5

TABLE I: TOU pricing in the demonstration.

Fig. 7 provides an example of the aggregate estimated
demand by hour of day for a typical day in the month
of March. Even though the consumption pattern differed by
group, the net consumption of the two groups differed in total
across all months by less than 0.5% implying that the TOU
consumers primarily shifted their consumption from peak to
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Fig. 7: Aggregate estimated demand by hour of day for a
typical day in March by pricing group.

off-peak hours. Because prices are pre-announced in these
groups, we assume that the aggregate load can be perfectly
forecasted by hour-of-the-day differing by month to account
for changes in seasonality.

b) Wind data, model and calibration: We use the NREL
simulated western wind dataset for years 2005 and 2006. The
NREL data was generated using numerical weather prediction
models for several locations in the western United States by
recreating the historical weather data. For our study we chose
a wind farm closest to Port Angeles that consists of 10 wind
turbines of 3 MW capacity each. The data set consists of wind
production level sampled every 10 mins as a time series. Due
to a small residential sample size we scale the output of the
turbines to a 1MW capacity (a typical size of one small wind
turbine). For each year, this resulted in roughly 40% wind
penetration. We use an hourly discretization in our experiments
and hence aggregate the time series by hour.

Researchers have shown that wind speed and energy can
be modeled effectively using autoregressive (AR) processes
that have time varying parameters to account for seasonal
characteristics of wind throughout the year [23], [24]. We
model wind energy using an autoregressive process of order
one, AR(1) as follows. In order to account for seasonality, we
have a different model for each month:

Wm,t = αmWm,t−1 + βm + εm, (32)

where Wm,t is the time series for wind in month m, αm, βm
are the calibrated constants of the AR(1) model for month
m and εm is the i.i.d error term for month m. Among AR
models, our choice of an order one lag was based on the
mean absolute error (MAE) metric. An AR(2) model revealed
that it did not improve the MAE metric any further than an
AR(1) model. We use ordinary least squares to calibrate the
parameters of the model. The error distribution was chosen to
be the empirical distribution of the residuals. We use the data
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Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
αm 0.93 0.96 0.93 0.88 0.88 0.93 0.89 0.90 0.91 0.92 0.91 0.92
βm 23.2 8.1 16.0 27.7 24.8 17.0 15.5 11.0 11.9 18.8 28.9 29.5

MAE 2005 74.9 39.4 64.8 78.5 70.6 58.0 46.1 38.2 41.3 66.8 82.7 78.4
MAE 2006 93.4 77.1 67.5 54.7 61.8 52.1 53.0 41.4 45.1 60.6 112.8 85.2

TABLE II: AR(1) model by month calibrated from 2005 data set with corresponding MAE in kWh for the 2005 and 2006.

for year 2005 as the training data set and the data for year 2006
for testing purposes. Table II provides the calibrated constants
for the AR(1) model and the corresponding MAEs for the
2005 training and 2006 test data sets.

c) Experimental setup: Consider a storage with an ef-
ficiency constant ρ = 0.85, a dissipation constant η = 0.95
and ramp constraints R̂i = R̂o = 150

η kW, an investment cost
K = $1500/kWh and a lifetime of 15 years. Assume that the
annual interest rate is 8%. First we numerically compute the
long run average value of storage for different storage sizes
and next identify the optimal storage size.

We use 2005 wind training and 2006 residential demand
data as an input to our models. We note that the residential
demand data for the months January through March are
available for the year 2007 (and not 2006). We assume that
the 2007 demand data is representative of the 2006 load as
well. We solve 12 daily long-term average cost problems, one
for each month, with an hourly discretization to arrive at the
average per period (hour) value of storage. Note that this is an
approximation because we are ignoring the boundary effects
that connects the problems between consecutive months. We
make this approximation to maintain a small state space.

For the long term average cost problem each month, the
state space is (ht, Xt,Wt−1) where ht is the hour of the day,
Xt is the level of energy in the storage device and Wt−1 wind
energy in the previous hour. We discretize demand and wind
at a δ = 50kWh granularity and choose a δ

η granularity for
the energy level Xt in storage.

We use linear programming (LP) to solve each average cost
problem. We implemented the balancing policy at the high
price to reduce the size of the problem and verify that at the
lower prices, we observe a dual-threshold policy. On a laptop
with 2.2GHz Intel Core i7 processor and an 8GB memory,
the time to solve the average cost problem each month for the
constant price case varied from 0.1 to 9 minutes depending
on the size of storage (2.8 minutes on average) and similarly
varied from 0.3 minutes to 4 hours (45 minutes on average)
for the TOU case. This drastic difference for larger storage
sizes is because at lower prices for the TOU case the LP is
searching to find the optimal policy whereas for the case with
a constant price the structure of the policy is encoded.

d) Results - savings in electricity cost with storage:
In Fig. 8, we plot the percentage savings in the cost of
electricity from the grid over zero storage (without including
the investment cost) for the two residential groups for different
storage sizes. The metric that is plotted is g(0)−g(S)

g(0) where
g(.) is the cost associated with electricity from the grid.

0 100 200 300 400
0

5

10

15

20

25

P
er

ce
nt

ag
e 

sa
vi

ng
s 

in
 e

le
ct

ric
ity

 c
os

t o
ve

r 
0 

st
or

ag
e

Size of storage, Smax, in kWh

 

 

Constant pricing − training data
TOU pricing − training data
Constant pricing − test data
TOU pricing − test data

Fig. 8: Predicted (2005) and actual (2006) percentage savings
in the cost of electricity over zero storage as a function of
storage size for the constant and time-of-use pricing groups.

For each group, we compute the value based on the optimal
dual-threshold policy on the training and test data sets. First
we observe that the savings increases as a function of the
storage size and the marginal savings decreases as proved in
Theorem 11-12.

Suppose we refer to size of storage relative to the total
annual load as storage penetration then our study predicts
from the 2005 training data that a 2.2% (100kWh) and 4.4%
(200kWh) level of storage penetration results in an savings of
about 2.6% and a 4.4% for the constant price group and more
than double for the TOU group of about 7.3% and a 12.9%
respectively. We note that the actual savings computed from
the 2006 test data are relatively close to those in the training
data set data.

Observe that the percentage savings for the TOU group is
much higher than the group with a constant price. This may
not be surprising but it certainly depends on the choice of
prices. The savings of the TOU pricing group over the group
with a constant price is purely the savings from differential
pricing and this is observed to increase in the size of storage.

In Table III, we provide results for the 2006 test data on
actual energy consumption in addition to the savings for the
two residential groups for different scenarios (with and without
wind energy and with and without storage for two storage
sizes). Not surprisingly, the scenario without wind indicates
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No wind No storage With storage
100 kWh storage 200kWh storage

C TOU C TOU C TOU
Energy from the grid (MWh) 1806 1827 1806 1844 1806 1866

% savings in cost - - - 4.1% - 7.8%

With wind No storage With storage
100 kWh storage 200kWh storage

C TOU C TOU C TOU
Energy from the grid (MWh) 832.2 825.5 808.5 810.6 792.5 807.4
% of wind generation used 43.5% 44.8% 45.6% 47.3% 47.7% 49.0%

% savings in cost - - 2.8% 7.6% 4.8% 13.2%

TABLE III: Energy consumption, percentage wind penetration and savings in cost of electricity for different scenarios based
on the 2006 test data. C and TOU refer to the constant and time-of-use pricing groups.

that storage provides value only in the presence of differential
pricing. In this data, because wind penetration is more than
40%, the savings from wind penetration is much higher than
the savings from storage penetration. But storage further aids
in the increase in wind penetration for constant pricing group
and much more for TOU pricing group resulting in significant
savings for both groups.

e) Results - optimal storage sizing: For the specifications
of the storage that we are considering, the hourly amortized
investment cost using Eq. (A) is c = 2¢/kWh every hour. The
optimal sizing result in this section is aimed at being a proof
of concept and can be tuned to a more robust estimate with
additional years of data. Under constant pricing, the optimal
storage size is 100kWh and under TOU pricing, it is 350kWh.
They contribute to 0.5% and 10% in total savings respectively
when we include the investment cost in storage based on the
2005 training data set.

VIII. CONCLUSIONS

In this paper, we study the optimal energy storage manage-
ment and sizing problem in the presence of renewable energy
and dynamic pricing associated with electricity from the grid.
We formulate the problem as an infinite horizon average
cost stochastic dynamic program and obtain various structural
results. These results show that (a) the optimal storage man-
agement policy has a simple dual threshold structure, and (b)
the marginal value of storage is decreasing with storage size
and therefore the optimal size under the optimal management
policy can be computed efficiently. Through detailed compu-
tational experiments, we demonstrate that energy storage can
provide significant value and savings by integrating renewable
energy and decreasing the use of electricity from the grid. Both
of these metrics are enhanced in the presence of well-designed
dynamic pricing schemes.

Further theoretical analysis and simulation studies, will be
of considerable interest for the development storage manage-
ment and sizing strategies that extend the stationary analysis
developed in this paper for structured non-stationary distribu-
tions (for example, quasi-stationary distributions using a reced-
ing horizon control). Interesting directions for future research

include the incorporation of battery degradation and lifecycle
effects into the analysis, and the use of robust optimization
methods for storage management that would be adaptive to
limited forecast information available about renewable energy.
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APPENDIX A
A METHOD TO ESTIMATE THE AMORTIZED COST, c

One method to estimate the amortized per unit cost, c, from the
per unit capital cost, K is as follows:

c = Kr
(1 + r)n

(1 + r)n − 1

1

N
, (33)

where r is the fixed annual interest rate, n is the lifetime of the storage
device and N is the number of discretization periods considered in
a year. Typically, n is in the order of 10-20 years and N is in the
order of hours, say roughly 365*24 = 8760 hours. As can be noted,
we amortize over a finite but sufficiently large horizon which we
approximate as an infinite horizon in this paper.

APPENDIX B
PROOF OF THEOREM 2

Proof. We will prove the statement using backward induction. Be-
cause Vα,T (XT ,Q

H
t ) = 0, the statement is clearly true at T . For

the induction hypothesis, we assume that the statement is true at
some t + 1 and prove it at t. If we show that Jα,t(Xt, Qt,QH

t ) is
a non-increasing continuous convex function in Xt then the result
also holds for Vα,t(Xt,QH

t ). This is because Vα,t(Xt,Q
H
t ) =

EQt/Q
H
t
Jα,t(Xt, Qt,Q

H
t ) and Qt has an distribution that is inde-

pendent of Xt. So, using the fact that sum of convex functions is
convex, the result holds.
Continuous convex function: Consider the optimization problem
related to Jα,t(Xt, Qt,QH

t ). Here, Jα,t(Xt, Qt,QH
t ) =

min
ut

pt

[
Yt +

ut
βt

]+
+ αVα,t+1

(
η(Xt + ut), f

(
Qt,Q

H
t

))
s.t. −min{Xt, Ro} ≤ ut ≤ min{(S −Xt), Ri}.

The first term in the objective is continuous and convex in ut
and hence jointly convex in (ut, Xt). The second term is also a
continuous and convex function in Xt+1 = η(Xt + ut) because
of the induction hypothesis. This implies the second term is also
jointly convex in (ut, Xt) because it is convex composition of an
affine function. Therefore the objective is jointly convex in (ut, Xt).
This implies u∗t exists (may not be unique) because the objective is
continuous and we are optimizing on a compact set.

Note that the optimization problem has a jointly convex objective
in (ut, Xt) with affine constraints on (ut, Xt). Therefore, the result-
ing function Jα,t(Xt, Qt,QH

t ) is also continuous and convex in Xt.
(Proof sketch: Join the two independent optimization problems for
any two points X1

t and X2
t ; Say the corresponding variables are u1

t

and u2
t respectively; Use the fact the objective is convex and get a

joint objective in (X̄, ū) = (λX1
t + (1 − λ)X2

t , λu
1
t + (1 − λ)u2

t )
and independent set of constraints in (X1

t , u
1
t ) and (X2

t , u
2
t ) for

any λ ∈ [0, 1]; relax the problem by combining the affine con-
straints in a weighted average fashion to retrieve the formulation
purely in variables (X̄, ū); This is the optimization problem for
X̄ = λX1

t + (1− λ)X2
t and hence proved).

Non-increasing function: To show that Jα,t(Xt, Qt,QH
t ) is non-

increasing in Xt, it suffices to show that every feasible solution to
the optimization problem related to Jα,t(Xt, Qt,Q

H
t ) has a cost

that is greater than or equal to some feasible solution to optimization
problem related to Jα,t(Xt+δ,Qt,Q

H
t ) where 0 ≤ Xt < Xt+δ ≤

ηS. Let ut be any feasible to the optimization problem related to
Jα,t(Xt, Qt,Q

H
t ). We now consider two cases:

Case 1: Suppose ut is also feasible to Jα,t(Xt + δ,Qt,Q
H
t ).

pt

[
Yt +

ut
ρ

]+
+ αVα,t+1(η(Xt + ut),Q

H
t+1)

≥ pt
[
Yt +

ut
ρ

]+
+ αVα,t+1(η(Xt + δ + ut),Q

H
t+1) (34)

(from induction hypothesis).

Case 2: Suppose ut is infeasible to problem Jα,t(Xt + δ,Qt,Q
H
t ).

This implies (S −Xt − δ) < ut ≤ min{(S −Xt), Ri}.

pt

[
Yt +

ut
ρ

]+
+ αVα,t+1(η(Xt + ut),Q

H
t+1)

≥ pt
[
Yt +

S −Xt − δ
ρ

]+
+ αVα,t+1(η(Xt + ut),Q

H
t+1)

≥ pt
[
Yt +

S −Xt − δ
ρ

]+
+ αVα,t+1(ηS,QH

t+1) (35)

(from induction hypothesis).

Combining (34–35) completes the proof that Jα,t(Xt, Qt,QH
t ) and

hence Vα,t(Xt,QH
t ) are non-increasing in Xt.

APPENDIX C
PROOF OF COROLLARY 3

Proof. Using a simple backward induction argument over time,
it is easy to see that the maximum slope of the function,
Vα,t(Xt,Q

H
t ) is always less than the largest price, pmax. This

follows from Eq. (10) and Eq. (15) where the optimal con-
trol decision u∗t is an affine function of Xt with the absolute
value of the slope being less than 1. This means the objec-
tive of the problem corresponding to the h+

t (Qt,Q
H
t )|pt=pmax

is increasing resulting in h+
t (Qt,Q

H
t )|pt=pmax = 0 ∀ t. Be-

cause 0 ≤ h−t (Qt,Q
H
t )|pt=pmax ≤ h+

t (Qt,Q
H
t )|pt=pmax ,

h−t (Qt,Q
H
t )|pt=pmax = 0 ∀ t as well. This implies that the optimal

policy at the highest price is to just perform the balancing policy.
An analogous proof holds when the price is 0. At this price, the

objective is decreasing and the minimum is always at S. Therefore,
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h−t (Qt,Q
H
t )|pt=0 = h+

t (Qt,Q
H
t )|pt=0 = S ∀ t. This implies the

optimal control policy to fill the storage device completely.

APPENDIX D
PROOF OF COROLLARY 4

Proof. The second term of the optimization problems corresponding
to h−t (pt) and h+

t (pt) is non-increasing in the storage level zt and
independent of pt under the i.i.d assumption of the stochastic process
Qt. So together with the first term that is increasing linearly in zt with
a constant proportional to pt, the solutions to the optimization prob-
lems (i.e., the thresholds h−t (pt) and h+

t (pt)) are non-increasing in
pt. This implies that ht(Xt, pt), h∗t (Xt, Qt) and hence u∗t (Xt, Qt)
are all non-increasing in pt.

APPENDIX E
PROOF OF THEOREM 5

Proof. 1) Vα,t(Xt,Q
H
t ) is less than or equal to the expected cost

when nothing is stored from period t to the end of the horizon, i.e.,
t− 1, ..., 0.

Vα,t(Xt,Q
H
t ) ≤

t∑
m=0

αt−mptY
+
t ≤

1

1− αpmaxY
+
max, (36)

where pmax and Ymax are the maximum values of the respective
parameters. Note that in practice prices, renewable generation and
demand are all bounded quantities. Using induction, we now establish
monotonicity. This together with the bound, will establish that the
limit exists. 0 ≤ Vα,0(X,QH) ≤ Vα,1(X,QH) is immediate from
the description. Assume that Vα,t−1(X,QH) ≤ Vα,t(X,QH) for all
X and QH . For any u such that −min{X,Ro} ≤ u ≤ min{(S −
X), Ri},

p

[
Y +

u

βu

]+
+ αVα,t−1

(
η(X + u), f(Qt,Q

H)
)
≤

p

[
Y +

u

βu

]+
+ αVα,t

(
η(X + u), , f(Qt,Q

H)
)
. (37)

Taking the minimum over all u on both sides, we get
Jα,t(X,Q,Q

H) ≤ Jα,t+1(X,Q,QH) and hence Vα,t(X,QH) ≤
Vα,t+1(X,QH) as well.
2) This result directly follows from Theorem 8-14 in [25]. Here
we discuss and verify the four conditions of the theorem. The
first condition requires limt→∞Vα,t(X,Q

H) to exist for every
{X,QH}. This is satisfied by part (1) of this theorem. The second
condition requires the one period cost to be non-negative or non-
positive for all periods and all state-action tuples. This is true
because the one period cost is non-negative for all periods and all
(u,X,Q,QH). The third condition requires the action space to be
compact which is true. Finally, for the fourth condition requires
that Kα,t(u,X,Q,Q

H) be continuous in u for all feasible states
{X,Q,QH} where Kα,t(u,X,Q,Q

H) =

p

[
Y +

u

βu

]+
+ αVα,t

(
η(X + u), f(Q,QH)

)
.

This is true from theorem 2.
3) This is immediate from proposition 5.8 in [26]. We discuss and
verify the three conditions of the proposition. The first condition is
the uniform increase assumption that requires the sequence {Vα,t(.)}
to be non-decreasing which is true from part (1) of this theorem. The
second condition requires that for any non-decreasing sequence of
functions {Vα,t(.)}, with Vα,∞(X,QH) = limt→∞ Vα,t(X,Q

H),

EQ/QHp

[
Y +

u∗

βu∗

]+
+α lim

t→∞
EQ/QHVα,t

(
η(X + u∗), f(Q,QH)

)

= EQ/QHp

[
Y +

u∗

βu∗

]+
+ αVα,∞

(
η(X + u∗), f(Q,QH)

)
where u∗ = u(X,Q,QH). The interchange of limit and expectation
follows from the Monotone Convergence Theorem. This implies that
the second condition is also satisfied. Finally, the last condition
requires that there exists a scalar A > 0 such that for all scalars
r > 0 and Vα,0(X,QH) ≤ Vα,t(X,QH),

Kα,t(u,X,Q,Q
H) ≤ Kα,t(u,X,Q,Q

H) + αr

≤ Kα,t(u,X,Q,Q
H) +Ar.

This is trivially satisfied when A = α.
4) The limit of non-increasing continuous convex functions is a non-
increasing continuous convex function.

APPENDIX F
PROOF OF THEOREM 8

Proof. The proof of parts 1, 2 and 3 of theorem follows from theorem
5.5.4 in book by Hernández- Lerma and Lasserre [21]. Here, we
discuss and verify the conditions of that theorem. The proof of
that theorem is constructive and follows the steps of the vanishing
discount approach. All the references that we use in this proof refer
to that in book [21] except stated otherwise.

Assumption 4.2.1, the first condition in the theorem, can be
replaced with condition 3.3.2 as stated in section 5.1 in the book
because of theorem 3.3.5. Condition 3.3.2 requires the following to
hold which we verify as well: (a) the control set should be compact
which holds; (b) the one step cost function should be non-negative as
well as lower semi-continuous in the control u for all X ∈ [0, ηS] and
QH ∈ QH which is true; and, (c) one of the conditions 3.3.2(c1) or
3.3.2(c2) hold and we appeal to both the assumptions in this proof
because of the hybrid nature of the state of the system i.e., X is
continuous but QH is discrete. The condition requires that for every
bounded measurable function β(., .) on {X,QH} so that β(.,QH) is
bounded and continuous on X , EQ/QH

[
β
(
η(X + u), f(Q,QH)

)]
is l.s.c in u for any {X,QH}. This is true because the expectation
is over a discrete sum and β(.,QH) is continuous in X .

Assumption 5.5.1, the second assumption in the theorem, is
satisfied because the following:
• (1 − α)V ∗α (X,QH) should be bounded from above at the

reference state for all α ∈ (0, 1). This is true as shown in part
(1) of theorem 5 for every state and in particular the reference
state {0, Q̃H}.

• There should be a constant K ≥ 0 and a non-negative
measurable function b(.) such that −K ≤ V ∗α (X,QH) −
V ∗α (0, Q̃H) ≤ b(X,QH) for all {X,QH} and α ∈ (0, 1).
We show below that there exists a K < ∞ such that
|V ∗α (X,QH) − V ∗α (0, Q̃H)| < K for all X and α ∈ (0, 1).
We show the upper bound. The proof for the lower bound is
analogous.
Starting at state {X,QH}, we implement a (history-dependent)
policy π̃ that sets the action ut to the smallest feasible value in
each period until the reference state is achieved. This means to
set ut to −min{Y +

t , Xt, Ro} during this period. The period
is divided and analyzed in two parts: first is to hit the zero
reference storage state and then we do nothing till the reference
state Q̃H is achieved. Note that due to assumption 6 the event of
hitting the zero storage reference state happens with probability
1 as the net load has a non-zero probability of being positive.
In the event that Qt is not i.i.d, due to assumption 7, the
reference state Q̃H is reached with probability 1 because of
the stationarity assumption of the stochastic process QH

t .
Once this matching to state {0, Q̃H} is achieved, the policy
π̃ continues forward with the optimal policy of V ∗α (0, Q̃H).

16



To prove the upper bound, it suffices to bound the expected
cost till the matching is reached. Therefore, V ∗α (X,QH) −
V ∗α (0, Q̃H) ≤ pmaxY

+
max (E[τX ] + E[τQ]) where τX =

min{k|
∑k
t=1 min{Y +

t , Ro} ≥ X} and τQ is the time to
reach the reference state Q̃H from any state QH . Because
of assumption 6 E[τX ] is finite. This is because τX refers to the
number of renewals of a Markovian system (see the initial part
of the proof of theorem 4.2 in section 3.4 of [27]). Also, E[τQ]
is finite because we are focused on a discrete Markov chain
for the exogenous distributions when Qt is not i.i.d because of
assumption 7. Therefore K can be chosen to be greater than
pmaxY

+
max (E[τX ] + E[τQ]).

• Finally, because the cost-to-go function Vα(X) is convex in X ,
the sequence {V̄αn(X)} is equicontinuous in X (see remark
5.5.3 in [21]).

w(X) is continuous from part (1) of this theorem. It is also a non-
increasing convex function as it is the limit of a sequence of non-
increasing convex function. This proves part (4) of this theorem.

APPENDIX G
PROOF OF THEOREM 11

Proof. Consider two storage facilities of sizes S and S′ where S ≥
S′. At time 0, we assume without loss of generality that the storage
facilities are both empty. Let ω be any instance of the sequence Qt =
{pt, Yt} for t = 1, 2, .... Suppose we implement the optimal storage
management policy for S′ denoted by uS

′
t even for storage with size

S. Note that with induction it is easy to see that XS
t = XS′

t ∀t and
that this policy is feasible for the storage of size S because S ≥ S′,
RSi ≥ RS

′
i , RSo ≥ RS

′
o . Therefore,

LS
′
t (XS′

t , Qt,Q
H
t ) = L̃St (XS

t , Qt,Q
H
t ). (38)

We place a tilde on L when storage is S to remember that we are
considering a feasible but possibly suboptimal policy for this storage.
This implies from Eq. (27) that g(S′) = g̃(S) ≥ g(S). The first
(in)equality is because the limits exists under a stationary policy and
it is independent of the initial state. The second inequality holds
because we switch from a feasible, possibly suboptimal, policy to an
optimal policy for the storage with size S.

APPENDIX H
PROOF OF THEOREM 12

Proof. Consider three storage facilities of sizes S1, S3 and S2 =
λS1 + (1− λ)S3 respectively where S1 ≥ S3 and λ ∈ [0, 1].

Let ω be any instance of the sequence Qt = {pt, Yt} for
t = 1, 2, .... We assume without loss of generality that the storage
facilities are all empty to begin with. We implement the optimal
management strategy for storages of size S1 and S3. For S2 we use a
superposition of the two schemes i.e., uS2

t = λuS1
t + (1−λ)uS3

t ∀t.
Using induction it is easy to see that (a) XS2

t = λXS1
t + (1 −

λ)XS3
t ∀ t and (b) that the proposed control is feasible for a storage

of size S2 because S2 = λS1+(1−λ)S3, RS2
i = λRS1

i +(1−λ)RS3
i

and RS2
o = λRS1

o + (1− λ)RS3
o . This implies for any t,

λ

[
Yt +

uS1
t

β1
t

]+
+(1− λ)

[
Yt +

uS3
t

β3
t

]+
≥[

Yt +
uS2
t

β2
t

]+
, (39)

where βit equals ρ if the control corresponding to that storage Si is
positive and 1 otherwise. The statement is obvious when uS1

t and uS3
t

have the same sign and hence uS2
t . On the other hand when uS1

t ≥ 0
and uS3

t < 0 or the vice-versa it is not obvious and the reasoning
is as follows. Consider the case when uS1

t ≥ 0 and uS3
t < 0 (an

analogous argument holds in the other case). Here, u
S1
t
ρ
≥ uS1

t and

uS3
t ≥

u
S3
t
ρ

. Therefore, λu
S1
t
ρ

+(1−λ)uS3
t ≥

λu
S1
t +(1−λ)uS3

t
ρ

=
u
S2
t
ρ

and λu
S1
t
ρ

+(1−λ)uS3
t ≥ λu

S1
t +(1−λ)uS3

t = uS2
t . Hence, Eq. (39)

is true. Substituting in Eq. (26), we get

λLS1
t (XS1

t , Qt,Q
H
t ) + (1− λ)LS3

t (XS3
t , Qt,Q

H
t )

≥ L̃S2
t (XS2

t , Qt,Q
H
t ). (40)

We use a tilde for L when the storage size is S2 to denote the fact
that we have used a feasible, possibly suboptimal, policy for S2. This
implies from Eq. (27) that λg(S1)+(1−λ)g(S3) ≥ g̃(S2) ≥ g(S2).
The first inequality is because the limits exists under a stationary
policy and it is independent of the initial state. The second inequality
holds because we switch from a feasible, possibly suboptimal, policy
to an optimal policy for the storage with size S2.

APPENDIX I
PROOF OF THEOREM 13

Proof. Let VD(S) refer to the optimal cost of the storage manage-
ment problem for a storage of size S for some i.i.d. process D of net
demand under a constant price. The value of storage is defined as
VD(0) − VD(S). Suppose D∗ = argmaxD VD(0) − VD(S). We
first show that D∗ has the following structure: P

(
Yt = −S

ρ

)
=

α−S , P (Yt = S) = αS where α−S + αS = 1. Then, in
particular, we show that the maximum value from storage is when
α−S = αS = 1

2
.

We prove this result by contradiction. Suppose there exists one
state j different from S or −S

ρ
such that P (Yt = y) = 1 − α−S −

αS > 0. Note that without loss of generality it suffices to study the
case when η = 1 because dissipation losses just scale the steady states
of the storage level by η. Similarly, it suffices to study the problem
in the absence of the ramp constraints as j can be appropriately
increased (or decreased when j > 0) depended the ramp constraints.
Case 1: Suppose y < 0 and j = ρ|y|. Here the interesting states of
storage level that will have non-zero probability under the balancing
policy are 0, j, 2j, ..., nj, S where (n + 1)j > S. It is easy to see
that the transition matrix, P has the following structure where β =
1− αS − α−S .

P =



αS β 0 ... 0 α−S
αS 0 β ... 0 α−S

...
...

...
. . .

...
...

αS 0 0 ... β α−S
αS 0 0 ... 0 1− αS
αS 0 0 ... 0 1− αS

 (41)

Therefore the steady state distribution of storage level when solving
πP = π and

∑
i πi = 1 is as follows:

π0 = αS , πS = 1− αS

(
n∑
k=0

βk
)
, πkj = βkαS

where k ∈ {1, ..., n}.

VD(0)− VD(S)

= p

∫
Y

fY (y)

∫ S

X=0

(
y+ − (y − x)+

)
fX(x) dx dy (42)

= p P (Yt = S)

∫ S

X=0

xfX(x) dx (43)

= pαS

[
n∑
k=1

βkαSkj + S

(
1− αS

(
n∑
k=0

βk
))]

(44)
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= pαS

[
S(1− αS) + αS

(
n∑
k=1

βk(kj − S)

)]
(45)

Since kj ≤ S ∀k, maxD VD(0) − VD(S) occurs when β = 0 and
in particular, when αS = α−S = 1

2
.

Case 2: Suppose j > 0. Here the interesting states of storage level
that will have non-zero probability are 0, S−nj, ..., S−2j, S− j, S
where (n + 1)j > S. It is easy to see that the transition matrix, P
has the following structure where β = 1− αS − α−S .

P =



1− α−S 0 ... 0 0 α−S
1− α−S 0 ... 0 0 α−S
αS β ... 0 0 α−S

...
...

. . .
...

...
...

αS 0 ... β 0 α−S
αS 0 ... 0 β α−S

 (46)

Therefore the steady state distribution of storage level when solving
πP = π and

∑
i πi = 1 is as follows:

πS = α−S , π0 = 1− α−S

(
n∑
k=0

βk
)
, πS−kj = βkα−S

where k =∈ {1, ..., n}.

VD(0)− VD(S) = pβα−S

[
(S − nj)βn + j

n−1∑
k=0

βk
]

+ pαSα−S

[
n∑
k=1

βk(S − kj) + S

]
(47)

= pα−S

[
S(1− α−S)− α−S

n∑
k=1

βk(S − kj)

]
(48)

Since kj ≤ S ∀k, maxD ZD(0) − ZD(S) occurs when β = 0 and
in particular, when αS = α−S = 1

2
.

APPENDIX J
PROOF OF COROLLARY 14

Proof. Consider a storage of size S. Let ZD(S) refer to the total
optimal cost for a storage of size S (i.e., VD(S) + cS) for some
distribution D of the exogenous parameters. Storage is a profitable
investment only if ZD(0)−ZD(S) ≥ 0. For the latter to be true, it has
to be the case that maxD ZD(0)−ZD(S) ≥ 0 =⇒ maxD VD(0)−
VD(S) − cS ≥ 0 =⇒ pS

4
− cS ≥ 0 (from theorem 13) =⇒

c
p
≤ 1

4
.
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