Ria Das

riadas@mit.edu · https://riadas.github.io

EDUCATION

Massachusetts Institute of Technology

Candidate for M.Eng. in Computer Science. GPA: 5.0/5.0.

Massachusetts Institute of Technology

S.B. in Computer Science and Engineering, S.B. in Mathematics. GPA: 4.96/5.00. Relevant Coursework: Inference and Information*, Theory of Computation*, Advances in Computer Vision*, Quantum Computing*, Computational Cognitive Science, Software Studio, Abstract Algebra. *Graduate.

Research Experience

Computer-Aided Programming and Computational Cognitive Science Groups (CSAIL) March 2020 – Present Undergraduate Research Assistant March 2020 - Dec. 2020

- Designed and implemented AUTUMN, a functional reactive programming language for expressing causal dynamics in Atari-style, interactive, time-varying grid worlds.
- Developed benchmark suite of AUTUMN programs, called the Causal Inductive Synthesis Corpus (CISC), to evaluate inductive program synthesis algorithms and perform human cognitive experiments.
- Built web interface that allows users to interact with AUTUMN programs in the benchmark suite, as well as write, compile, and run their own AUTUMN programs.

Graduate Research Assistant

- (M.Eng. Thesis) Led the development of a novel, cognitive-inspired program synthesis algorithm capable of synthesizing an AUTUMN program given observation data (sequence of grid frames and user actions).
- Approach is based on a new method of combining functional synthesis and automata synthesis to efficiently discover (stateless) functional data transformations along with time-varying latent program state.
- Overcame inability of Sketch-based automata synthesis implementation to scale to large automata by designing new heuristic-driven algorithm that scales well.
- · Currently thinking about extensions to synthesizing probabilistic AUTUMN programs, finishing first implementation, and preparing manuscript.
- (Side Proj.) Briefly paused M.Eng. work to help post-doc run ICML experiments: trained a neural ODE model to predict blood glucose monitoring data and implemented ray marching for an inverse graphics problem.
- PIs: Armando Solar-Lezama, Joshua B. Tenenbaum, Zenna Tavares.

Coley Research Group (MIT Department of Chemical Engineering)

Undergraduate Research Assistant

- Performed variety of statistical analyses (k-means, hierarchical clustering, etc.) to explain performance of machine learning models that predict enzyme activity given an enzyme-substrate pair.
- Explored whether existing models for predicting protein-ligand binding affinity could be transferred to predict enzyme activity.
- · PI: Connor Coley.

PAPERS

- 1. Ria Das, Joshua B. Tenenbaum, Armando Solar-Lezama, Zenna Tavares. AUTUMNSYNTH: Synthesis of Reactive Programs with Structured Latent State. Advances in Programming Languages and Neurosymbolic Systems (AIPLANS) Workshop and Causal Inference and Machine Learning (WHY-21) Workshop, Neural Information Processing Systems (NIPS) 2021. To appear.
- 2. Samuel Goldman, Ria Das, Kevin K. Yang, Connor W. Coley. Machine learning modeling of family wide enzyme-substrate specificity screens. https://arxiv.org/abs/2109.03900. In submission.

Jan. 2021 - Present

Sept. 2017 – June 2021

Jan. 2021 - Present

April 2021 – June 2021

- 3. Zenna Tavares, James Koppel, Xin Zhang, **Ria Das**, Armando Solar-Lezama. A Language for Counterfactual Generative Models. *International Conference on Machine Learning (ICML)* 2021.
- 4. Zenna Tavares, **Ria Das**, Elizabeth Weeks, Kate S. Lin, Joshua B. Tenenbaum, Armando Solar-Lezama. Causal Inductive Synthesis Corpus. *Computer-Assisted Programming Workshop, Neural Information Processing Systems (NIPS)* 2020.

PRESENTATIONS

- 1. Causal Inductive Synthesis Corpus. Computer-Assisted Programming Workshop Poster Session, NIPS 2020.
- 2. (Scheduled) AUTUMNSYNTH: Synthesis of Reactive Programs with Structured Latent State. Advances in Programming Languages and Neurosymbolic Systems (AIPLANS) Workshop Poster Session, NIPS 2021. Causal Inference and Machine Learning (WHY-21) Workshop Poster Session, NIPS 2021.

PROJECTS

- 1. A Projection-Based Asymmetric Similarity Measure for Distributional Semantic Models. *Final Project for 6.804 Computational Cognitive Science (Fall 2018).*
- 2. Experiments in Automatic Gaze Estimation for the Lookit Developmental Research Platform. *Final Project for 6.869 Advances in Computer Vision (Fall 2019).* Co-author: Jack Cook.
- 3. Whome (Who's home?): Tracking physical presence via WiFi connection. *Fun mini-project to exercise web development skills (and recover from concussion; Spring 2020).*

AWARDS

3rd Place Team Website, 6.170 Software Studio Competition	2019
Bronze Medalist, Math Prize for Girls (MPfG) Olympiad	2016
Bronze Medalist, Math Prize for Girls (MPfG) Olympiad	2015
Industry	

Software Engineering Intern, Palantir Technologies.	Summer 2019
Software Engineering Intern, Optum (UnitedHealth Group).	Summer 2018

ACTIVITIES

Floor Chair for Burton Conner Dorm (C5), Intramural Sports (Ice Hockey, Unified Hockey, Soccer).