
Customized Virtual Machines for Software Provisioning in Scientific Clouds

Wei Chen, Junwei Cao, and Ziyang Li
Research Institute of Information Technology

Tsinghua National Laboratory for Information Science and Technology
Tsinghua University, Beijing 10084, P. R. China

e-mail: jcao@tsinghua.edu.cn

Abstract—Scientific applications require special data
computing and analysis software, which may not mature
enough at a production level. Software provisioning, especially
in a cloud computing environment, bring new challenges. In
this work, software package management systems are
summarized. A customized software provisioning service is
developed using virtualization technology. According to users’
requirements, virtual machines with required software
deployed ready-for-use can be obtained in a very
straightforward way. This work is being applied in the LIGO
(Laser Interferometer Gravitational-wave Observatory)
Scientific Collaboration for gravitational-wave data analysis.
With software virtual machines available, scientific
applications can benefit from cloud computing technology and
resouces.

Keywords-cloud computing; scientific applications; virtual
machines; software provisioning

I. INTRODUCTION
Modern scientific applications, e.g. high energy physics

and astrophysics, require specially designed software
packages for massive data computing and analysis. These
software are developed by research scientists instead of
private companies, so can be only supported and maintained
by the research community. The main problem is that other
research scientists except the software developers may find it
very difficult to get these software deployed.

For example, LIGO (Laser Interferometer Gravitational-
wave Observatory) [1] is an astrophysical experiment aiming
at direct detection of gravitational waves predicted by
Einstein’s General Theory of Relativity. There are two LIGO
observatories, one at Hanford, Washington State and the
other at Livingston, Louisiana State. LIGO Scientific
Collaboration (LSC) [2] is a world-wide international
academic organization, including over 700 research scientists
from over 60 research institutes all over the world. LSC
members share LIGO data and carry out data analysis in a
close collaborative way. LIGO produces terabytes of
experimental data per day and LIGO data analysis require
large amount of CPU cycles and data storage [3].

The LIGO project is funded by the National Science
Foundation, starting from 1990’s. Before that many
researchers from Caltech and MIT have been working on the
design since 1960’s. Over several decades’ development,
there are many software systems available for LIGO data
analysis, including LDAS, LAL, LIGOtools, LSCsoft, LDG,

DMT, etc. [4]. These software are developed in different
languages, e.g. Python, C++ and Matlab, have dependency
with external software packages, e.g. Condor [5], Globus [6],
and ROOT [7], are maintained by different organizations.
Astrophysicists have to rely on these software packages for
LIGO data analysis [8]. Unfortunately it is very difficult for
newbie to handle the complexity of software installation and
deployment.

There are many existing software package management
and distribution methods and tools. In this work,
virtualization technology is utilized for software deployment
and distribution. Virtual machines are self-contained
environments that software can be pre-installed in before
distribution. This provides a neat solution especially for
users without many computer skills to handle complex
software usage. Also the emerging cloud computing
paradigm is also mainly enabled by virtualization technology.
Virtual machines make it very straightforward for users to
benefit from resources and services provided by a cloud
environment. In this work, we use LSC software package
management as a case study and we develop LIGO software
virtual machines. A web-based user interface is also
implemented and an online virtual machine generation
system is available so that users can place customized order
for software virtual machines for downloading.

The rest of the paper is organized as follows: LIGO
software packages and existing distribution methods are
summarized in Section 2; software virtual machines are
introduced in Section 3 and web-based customization system
is presented in Section 4; the paper concludes in Section 5.

II. SOFTWARE PACKAGE MANAGEMENT
In this section, a brief summarization of LIGO software

packages and existing distribution methods is given.

A. LIGO Software Packages
• LDAS [9]
LDAS (LIGO Data Analysis System) is a software

package for online achieving system of real-time LIGO data.
LIGO data are stored in binary files, called frame files, in a
special Gravitational Wave Format (gwf). The package also
includes software tools for follow-up data analysis, using
message passing interfaces (MPI) and LIGO algorithm
library (LAL). These are developed in C/C++ and there are
also application interfaces available for extended
implementation. The LDAS diagram is illustrated in Fig. 1.

2011 Second International Conference on Networking and Distributed Computing

978-0-7695-4427-4/11 $26.00 © 2011 IEEE

DOI 10.1109/ICNDC.2011.55

240

Figure 1. LIGO data analysis system diagram.

• LIGOtools [10]
LIGOtools is another toolkit with a self-contained light-

weight distribution mechanism. LIGOtools include several C
libraries, Matlab codes and Tcl scripts, which are organized
in an uniform way. LIGOtools provides a lightweight
runtime environment with bins and libs. It also provides a
ligotools_update tool for getting the latest software package.
This is similar to yum described later. Software tools
included in LIGOtools are listed in Table I.

TABLE I. LIGOTOOLS SOFTWARE PACKAGES

Package Description

Fr C library and utilities in core Virgo distribution to
read/write data in frame format

FrContrib Additional utilities for working with frame files,
exclusive of core Virgo distribution

dataflow Raw data and metadata access utilities

detgeom Matlab routines to define and manipulate detector
geometry

guild Graphical User Interface to LIGO Databases

httptools Simple utilities to retrieve files via http

ilwdread Matlab script to read an ilwd file

ldasjob High-level interface for running LDAS jobs from Tcl
scripts

medmguide Graphical user interface to examine EPICS medm
(*.adl) files

metaio C library and utilities to read and manipulate LIGO_LW
table files

runtools Summarize status of interferometers during
science/engineering runs

segments Generate and manipulate lists of GPS time intervals

• LSCsoft [11]
LSCsoft is a software repository maintained by the Data

Analysis Software Working Group (DASWG) of the LIGO
Scientific Collaboration (LSC). Since LSC takes CentOS as
the de facto OS, LSCsoft manages software packages in
rpms and distributes software packages via yum. There
methods are described later. Here a list of software packages
included in the LSCsoft repository is provided in Table II.

TABLE II. LSCSOFT SOFTWARE PACKAGES

Package Description
FrameL for data_frame manipulation
MetaIO for LIGO_LW files metadata manipulation
LAL LIGO Algorithm Library
LALAPPS LAL based Applications
GLUE Grid LSC User Environment
FrameCPP C++ interface to access frame structures
DOL Data Monitoring Tool (DMT) Offline
GDS LIGO Global Diagnostics System

For example, Data Monitoring Tool (DMT) [12] is a
toolkit for online monitoring of LIGO data quality. It can be
also used in a offline way as a Linux-based data analysis
tools with support of remote user interfaces, as illustrated in
Fig. 2.

Figure 2. The DMT viewer

• LSC Data Grid [13]
LSC Data Grid (LDG) is a software package for LSC

members to access grid resources, including over 10
computer clusters all cross the US and Europe. Major grid
software packages, e.g. Condor and Globus, are included in
LDG. Also there are utilities for user certificate application,
renew and update. With certificates, users can access grid
resources in a uniform way. LDG is also organized and
maintained in the LSCsoft repository.

B. Software Package Distribution
• Tarballs
Tarballs are very common in Linux-based software

packages, similar to zips in Windows and sits in Mac.
Tarballs can be untarred and installed on Linux. But in
general, software dependency cannot be handled in an
automatic way. New users may become frustrated if there is
any problem during the installation process. But for
professional users, tarballs are still a straightforward way for
software distribution, since more flexibility can be provided
if required.

• Rpms and Debs
Redhad Package Manager (Rpm) is widely used in Linux

and maintained by open source community. Other Linux
providers, e.g. SuSE, also utilize rpms. Similarly, Debian
uses Debs. There are several types of rpms, e.g. binary,
source and delta. For each rpm, there is a XML descriptor,
including all the package related information. Especially,

241

software dependency and version management can be
handled in an automatic way when applied together with
yum or apt. These provide a neat solution for software
management and distribution.

• Yum and Apt
In order for users to find available software package

quickly, software repository is becoming very popular
nowadays. Different versions of different software packages
are organized in a systematic way. Yum works with rpms
and Apt-get works with debs. Software repositories work
online that can provide software downloading services
according to users’ requirements. These are currently
mainstream software management tools for Linux-based
systems, very close to the idea of Software as a Service
(SaaS).

In this work, we are proposing an additional solution for
software management, software virtual machines. As
described above, LSC has many software packages
maintained and distributed in different ways. Virtual
machines can provide a self-contained way for handling all
these complexity and deliver to end users with an all-in-one
environment, which is quite essential in future cloud
computing environments.

III. SOFTWARE VIRTUAL MACHINE

A. Scientific Clouds
Cloud computing is considered as the latest wave of

computing infrastructuralization [14], after cluster computing,
utility computing, grid computing and services computing.
Clouds provide remote resources as services at different
levels, IaaS, PaaS and SaaS. Cloud computing will have a
bright future since supported strongly by industry [15].

Scientific applications can benefit a lot from cloud
computing. Most scientific applications require large-scale
CPU and storage resources on-demandingly. In a cloud
environment, many applications can share one large resource
pool so that elastic computing can be achieved, where
Virtualization plays a key role.

B. Virtualization Technology
Virtualization at the hardware layer can enable find-

grained resource sharing of a computer. Virtual machines are
isolated environments that can be customized to meet
specific application requirements. Different virtual machines
can use different OS on one physical machine. Since virtual
machines utilize hardware resources indirectly, there will be
unavoidable overhead when virtualization technology is
applied.

Virtualbox [16] is a free implementation of virtual
machines provided by Oracle. Vitualbox has an internal
modular structure with C/S supports. Configurations of
virtual machines are written in XML and can be shared
among multiple machines. Other features include supporting
share folders between hosts and virtual machines. Also
Virtualbox provides SDK for application development.

C. Automated Software Installation
In order to install software packages in existing virtual

machines, a software tool, Expect [17], is utilized to
automate the process. Expect is a tool for automating
interactive applications such as telnet, ftp, passwd, etc.
Expect is also useful for testing these same applications. And
by adding Tk, users can wrap interactive applications in X11
GUIs.

Previously installation of software in virtual machines is
an interactive process. With Expect, this process can be
scripted and enabled automatically. For example, Fig, 3
shows the automated process for installing LIGOtools and
LSCsoft to virtual machines using Expect. For LSCsoft,
users can specify which packages are required. These
information are stored in files so that corresponding Expect
scripts can act accordingly.

 Login to a virtual machine via ssh

Download and untar ligotools_init_2.4.rar

Run ligotools_init

Input dir info (e.g. base, bin, lib, include…)

Set environmental parameters

Download tclexe_8.4.7_Linux.tar.gz

ligotools_install tclexe_8.4.7_Linux.tar.gz

Run ligotools_update

Input inquery answers (default y)

Finish and enable installed packages

Logout and end of the script
(a) Installing process for LIGOtools

 Login to a virtual machine via ssh

Install Linux Enterprise extension

Are all required
packages installed?

Read a new packagename

Yum install packagename

Logout and end of the script

Y

N

(b) Installing process for LSCsoft

Figure 3. Automated software installation to virutal machines

242

IV. CUSTIMIZED SYSTEM IMPLEMENTATION
The system implementation includes several components:

web-based user interfaces, task management, a background
daemon for task execution.

As illustrated in Fig. 4, users can specify their
requirements via web-based user interfaces, where they input
the Linux version, required software packages, and contact
information. These information is maintained in a task queue.
Task management is responsible to handle different requests
from different users. A background daemon is also running
on the server. It scans the queue and put requests into an
execution mode. The daemon will call Expect scripts to start
a virtual machine, install required software packages,
retrieve corresponding Virtualbox image files, and email the
downloading link to users. Users can download and install
Virtualbox locally and run the virtual machine using the
downloaded image files. Users then have a customized LIGO
data analysis environment locally available without
bothering about details on software installation.

Figure 4. Web-base user interfaces.

V. CONCLUSIONS
In this work, LIGO data analysis software is taken as a

case study for demonstration of software virtual machines. A
web-based customization system is also developed for end
users. Scientific applications that require specific software
support for data computing and analysis will in particular
benefit from techniques proposed in this work.

Taking advantage of software virtual machines and cloud
computing technology, future work will focus on hosted

virtual machines. Instead of downloading image files and
enabling virtual machines locally, cloud servers could
actually provide hardware resources and host these virtual
machines, and users could access resources via virtual
desktop technology. Scientific clouds aims to enable
scientific applications by providing both software virtual
machines and hardware computational resources.

ACKNOWLEDGMENT
This work was supported by National Science

Foundation of China (grant No. 60803017) and Ministry of
Science and Technology of China under National 973 Basic
Research Program (grants No. 2011CB302505 and No.
2011CB302805).

REFERENCES
[1] A. Abramovici, W. E. Althouse, et. al., “LIGO: The Laser

Interferometer Gravitational-Wave Observatory”, Science, Vol. 256,
No. 5055, pp. 325 – 333, 1992.

[2] LIGO Scientific Collaboration. http://www.ligo.org.
[3] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L. Pearlman, K.

Blackburn, P. Ehrens, A. Lazzarini, R. Williams, and S. Koranda,
“GriPhyN and LIGO, Building a Virtual Data Grid for Gravitational
Wave Scientists”, Proc. 11th IEEE Int. Symp. on High Performance
Distributed Computing, pp. 225-234, 2002.

[4] DASWG, LIGO Data Analysis Software Working Group.
https://www.lsc-group.phys.uwm.edu/daswg/.

[5] M. Litzkow, M. Livny, and Matt Mutka, “Condor – A Hunter of Idle
Workstations”, in Proc. of 8th Int. Conf. on Distributed Computing
Systems, pp. 104-111, 1988.

[6] I. Foster and C. Kesselman, “Globus: A Metacomputing
Infrastructure Toolkit”, Int. J. Supercomputer Applications, Vol. 11,
No. 2, pp. 115-128, 1997.

[7] ROOT, A Data Analysis Framework. http://root.cern.ch.
[8] D. A. Brown, P. R. Brady, A. Dietz, J. Cao, B. Johnson, and J.

McNabb, “A Case Study on the Use of Workflow Technologies for
Scientific Analysis: Gravitational Wave Data Analysis”, in I. J.
Taylor, D. Gannon, E. Deelman, and M. S. Shields (Eds.), Workflows
for eScience: Scientific Workflows for Grids, Springer Verlag, pp.
39-59, 2007.

[9] LDAS, LIGO Data Analysis System. http://www.ldas-
sw.ligo.caltech.edu/doc_index/.

[10] LIGOtools. http://www.ldas-sw.ligo.caltech.edu/ligotools/.
[11] LSCsoft repository. https://www.lsc-

group.phys.uwm.edu/daswg/download/repositories.html.
[12] J. Cao, E. Katsavounidis, and J. Zweizig, “Grid Enabled LIGO Data

Monitoring”, Proc. IEEE/ACM Supercomputing Conf., Seattle, WA,
USA, 2005.

[13] LDG, LSC Data Grid. https://www.lsc-
group.phys.uwm.edu/lscdatagrid/.

[14] D. E. Atkins, K. K. Droegemeier, S. I. Feldman, H. GarciaMolina, M.
L. Klein, D. G. Messerschmitt, P. Messina, et. al., Revolutionizing
Science and Engineering through Cyberinfrastructure, National
Science Foundation Blue - Ribbon Advisory Panel on
Cyberinfrastructure, 2003.

[15] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, et, al. “Above the
Clouds: A Berkeley View of Cloud Computing”, Univ. of California,
Berkerley, Berkerley, CA, Technical Report No. UCB/EECS-2009-
28, 2009.

[16] Virtualbox. http://www.virtualbox.org/.
[17] Expect. http://expect.nist.gov/.

243

