An Approximate Dynamic Programming
Approach to Multidimensional
Knapsack Problems

Dimitris Bertsimas ® Ramazan Demir

Sloan School of Management and Operations Research Center, E53-363, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139
Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
dbertsim@mit.edu o rdemir@alum.mit.edu

e present an Approximate Dynamic Programming (ADP) approach for the multidi-

mensional knapsack problem (MKP). We approximate the value function (a) using
parametric and nonparametric methods and (b) using a base-heuristic. We propose a new
heuristic which adaptively rounds the solution of the linear programming relaxation. Our
computational study suggests: (a) the new heuristic produces high quality solutions fast and
robustly, (b) state of the art commercial packages like CPLEX require significantly larger
computational time to achieve the same quality of solutions, (c) the ADP approach using
the new heuristic competes successfully with alternative heuristic methods such as genetic
algorithms, (d) the ADP approach based on parametric and nonparametric approximations,
while producing reasonable solutions, is not competitive. Overall, this research illustrates
that the base-heuristic approach is a promising computational approach for MKPs worthy of

further investigation.

1. Introduction
We consider the multidimensional knapsack problem
(MKP) defined as follows. A set N ={1,...,n} of
items should be packed in a set M ={1,...,m} of
knapsacks with given capacities, b, ;, i € M. Associ-
ated with every item j € N there is a value ¢; and a
weight A, which is the amount of resource used by
the item j in the ith knapsack. The goal is to find a
subset of the items that yields the maximum value
subject to the capacity constraints of the knapsacks.
The MKP arises in many real-world applications
such as combinatorial auctions (see de Vries and
Vohra 2000, Rothkopf et al. 1995), computer systems
design (see Ferreira et al. 1993), project selection (see
Peterson 1967), cutting stock and cargo-loading
(see Gilmore and Gomory 1966), capital budgeting
(see Weingartner 1966), and asset-backed securitiza-
tion (see Mansini and Speranza 1997). The set cover

MANAGEMENT ScIENCE © 2002 INFORMS
Vol. 48, No. 4, April 2002 pp. 550-565

and multicover (see Hochbaum 1996) problems can
be reformulated as the MKP through variable com-
plementing (see §2 for an illustration). In addition
to these applications, many complex problems can
be transformed to MKPs by some relaxation method-
ologies. For instance, the binary knapsack problem,
a special case of the MKP, is used as a subprob-
lem when solving the Generalized Assignment Prob-
lem, as well as the Vehicle Routing Problem (see
Laporte 1992). Because of its practical and theoreti-
cal importance, both exact and approximate solution
approaches have been applied to tackle the multidi-
mensional knapsack problem (see §2 for references).
Optimization problems can be reformulated and
solved by dynamic programming (DP). This approach
is usually impractical for large-scale problems because
of the large number of value function calculation and
state storage requirements, known as “the curse of

0025-1909/02 /4804 /0550%$5.00
1526-5501 electronic ISSN

BERTSIMAS AND DEMIR
Dynamic Programming Approach to Knapsack Problems

dimensionality.” Motivated by the need to address
the curse of dimensionality, several researchers have
proposed approximations in dynamic programming.
The collection of such methods is broadly known as
Approximate Dynamic Programming (ADP). Many
approaches such as Lagrange multiplier, successive
approximation, function approximation (e.g., neural
networks, radial basis representation, polynomial rep-
resentation) methods have been proposed to break
the curse of dimensionality while contributing diverse
approximate dynamic programming methodologies
to the literature (see for example Bellman 1957,
Morin 1978, and Cooper and Cooper 1981). Func-
tional approximations utilizing neural networks ideas
were used in Kleywegt et al. (1998) for inventory
routing problems, and in Van Roy et al. (1998) for
inventory management problems. Powell and Shapiro
(1996) introduced a DP reformulation for dynamic
resource allocation for fleet management problems
and used ADP methodologies to generate high qual-
ity solutions. Bertsekas and Tsitsiklis (1996) develop
a framework of approximate dynamic programming
primarily in the context of stochastic optimization
and include several case studies in various fields.
Sarkar et al. (1994) used greedy or approximate algo-
rithms for machine scheduling problems in a look-
ahead search mechanism in order to alleviate the
performance of the stand-alone greedy or approx-
imate methodology while Bertsimas et al. (1998)
applied a similar idea for location problems. Other
applications utilizing ADP methods are two-stage
maintenance and repair problems in Bertsekas et al.
(1997), stochastic scheduling problems in Bertsekas
and Castannon (1997), sequencing and stochastic
vehicle routing in Secomandi (1998), railroad schedul-
ing in Christodouleas (1997), deterministic supply
chain problems in Wike (1998), and revenue manage-
ment in Bertsimas and Popescu (2000).

Our objective in this paper is to examine whether
ADP methods represent a realistic alternative for
large scale MKPs. The computational evidence so far
regarding the success of ADP methods suggests that
such methods have been more successful in stochas-
tic optimization problems. Although there has been
positive evidence for deterministic problems as well
(see the literature review above), we want to examine

MANAGEMENT SCIENCE/ Vol. 48, No. 4, April 2002

ADP methods with respect to speed, quality of solu-
tions, and robustness in the context of a reasonably
rich class of integer programs like MKPs.

In §2, we provide a dynamic programming refor-
mulation of the MKP and introduce the relevant
ADP concepts. In §3, we describe an ADP algo-
rithm under which we approximate the optimal value
function by a base-heuristic. The computational evi-
dence suggests that the ADP base-heuristic approach
improves the performance of a base-heuristic and
often the improvement is significant. We also design
an adaptive-fixing heuristic for the MKP. Although
this is not the main focus of the paper, the heuristic
appears to be computationally attractive and gener-
ates high quality solutions compared to some heuris-
tics from the literature. In §4, we develop both
parametric and nonparametric approximations of the
value function for the MKP. In §5, we report exten-
sive computational results and comparisons. The evi-
dence suggests that the base-heuristic approach with
the adaptive fixing heuristic is the most promising
methodology within the ADP family for the MKP
and competes successfully with existing state-of-the-
art heuristic methodologies as well as with state-of-
the-art commercial packages like CPLEX (1998).

2. The MKP and ADP

An integer programming formulation of the MKP is
as follows:

n
maximize Z CiX;,
j=1

n
subject to Y a;x; <by ;,
j=1

x; €{0,1},

i=1,...,m, (1)

ji=1,...,mn,

with uij,boll-,cj >0fori=1,..., mandj=1,...,n
We denote by x' the transpose of a vector x. Let
A; = (aj,...,a,), by = (by,1,..., by,,), and ¢ =
(¢1, ... ,¢,). Then the problem in Equation (1) can be
written as follows:

MKP(n,b,) maximize c'x,

subject to) A;x; <b,, 2
j=1

x]-e{O,l}, ji=1,...,n

551

BERTSIMAS AND DEMIR
Dynamic Programming Approach to Knapsack Problems

The case for m =1 is the binary knapsack prob-
lem (BKP) which has been extensively studied (see
Martello and Toth 1990). For the MKP, no pseudo-
polynomial algorithm can exist unless P = NP, since
the MKP is NP-hard in the strong sense (see Martello
and Toth 1990 and Magazine and Chern 1984). For
the BKPs both polynomial time (Sahni 1976) and
fully polynomial time approximation schemes (Ibarra
and Kim 1975) have been developed. The set pack-
ing problem is a special case of the MKP with a; €
{0,1} and b, ; =1 (see Hochbaum 1996, Chapter 3).
Moreover, the set cover problem (see Hochbaum 1996,
Chapter 3),

minimize{c'x | Ax > e, x; € {0, 1}},

where e is a column vector of ones, A=[A,, ... ,A,]
is an m x n 0-1 matrix, and x = (x;, ..., x,), can be
reformulated as a MKP by substituting x; by y; =1—
x;for j=1,...,n. The set cover problem is equivalent
to the following MKP problem:

c'e++maximize{c'y | Ay <b, y; € {0, 1}},

whereb=3 A, —eand y=(y;, ..., ¥,)"

Branch-and-bound and dynamic programming
techniques have been applied to solve the MKP to
optimality but with limited success for large instances
(see Thesen 1975, Shih 1979, Weingartner and Ness
1967). Since feasible solutions are valuable for large-
scale practical problems, there has been a sizeable lit-
erature on heuristic methods for MKPs. Such methods
can be classified as follows:

(1) Greedy methods (Senju and Toyoda 1968, Toy-
oda 1975, Loulou and Michaelides 1975, Lee and
Guignard 1988, Kochenberger et al. 1974, Magazine
and Oguz 1984).

(2) Aggregation methods (Freville and Plateau
1986, 1994, Glover 1977, Gavish and Pirkul 1985).

(3) Tabu search methods (Hanafi and Freville 1998,
Glover and Kochenberger 1996, Aboudi and Jornsten
1984, and Lokketangen and Glover 1998).

(4) Genetic algorithms (Chu and Beasley 1998).

Computational experience reported in the litera-
ture suggests that genetic algorithms seem to produce
high-quality solutions for large-scale problems. For
this reason, in some of our computational results we
compare the ADP approach with genetic algorithms.

552

Dynamic Programming Formulation

In order to reformulate the MKP(#, b)) in Equation (2)
as a dynamic program, we consider the subproblem
MKP(k, b) which includes the first k variables with
the right-hand side b. Let x°T(k, b) = (x}, ..., x}) and
F(k,b) be an optimal solution and the optimal value
for the subproblem MKP(k, b), respectively. We set
F(k,b) = —oo if the subproblem MKP(k,b) is infea-
sible. In the optimal solution to MKP(k, b), the x; is
either set to zero or one. If we set x; to zero, the objec-
tive value equals F(k —1, b), the optimal value of the
subproblem MKP(k —1,b). If we set x; to one, the
objective value equals F(k—1, b—A;)+¢,, the optimal
value of the subproblem MKP(k—1,b—A,) plus c.
Taking the maximum of the preceding objective val-
ues gives the optimal value F(k, b) to the subproblem
MKP(k, b). Thus, the dynamic programming recur-
sion can be stated as

F(k,b) =max{F(k—1,b), F(k—1,b—A,) +c,}] (3)

for k =2,...,n, with an initial condition F(1,b).
Starting with x°T(1, b) and using

xp =argmax ., {F(k—1,b—Ax) +cx}, (4)

we calculate x°FT(k,b) = (x°*T(k — 1, b — Ax}), x7)
for k =2,...,n. It is easy to see that exact DP
requires O(n(b*)") calculations for MKP(, b,) where
b* =max{by i, ..., b, ,}. Space requirements and value
function computations become impractical for even
moderate m. Thus, exact DP is not a practical method-
ology particularly for large-scale optimization prob-
lems. The basic idea behind approximate DP is to
approximate the optimal value function F(k,b) and
to construct a suboptimal solution using Equations (3)
and (4). In the next two sections, we approximate the
optimal value function using (a) a base-heuristic and
(b) parametric and nonparametric methods.

3. The ADP Base-Heuristic
Approach

This section introduces the ADP Base-Heuristic (ADP-

BH) approach for the MKP. The basic idea of ADP-BH

is estimating the optimal value function F(k, b) by the

solution value of a suboptimal methodology to the

MANAGEMENT ScIENCE/ Vol. 48, No. 4, April 2002

BERTSIMAS AND DEMIR
Dynamic Programming Approach to Knapsack Problems

corresponding subproblem MKP(k, b) and construct-
ing a solution through Equation (4). This suboptimal
methodology is called the base-heuristic approach. We
also propose a new heuristic that constructs solutions
by adaptively fixing variables through solving linear
programming relaxations iteratively, which we name
the adaptive fixing heuristic. Let BH(k, b) be a base-
heuristic for the subproblem MKP(k, b). Let x®"(k, b)
be the corresponding heuristic solution and H(k, b)
be the heuristic value, i.e., an estimate of the optimal
value F(k, b).

The ADP-BH algorithm starts by applying BH(n,
b,) to the problem MKP(n, b,) and getting x®" (1, b).
If the solution xP"(n,b,) is optimal, the algorithm
terminates with an optimal solution. If the prob-
lem is infeasible, the algorithm terminates without a
solution. Otherwise, the algorithm sets the variables
best-solution xPT = xBH(n, by) and best-solution-value
ZB5T = H(n, by) (Step 2 in Figure 1). The algorithm
proceeds by applying reduced cost fixing as described
below to fix some of the variables to the correspond-
ing values (0 or 1) in an optimal solution to the prob-
lem MKP(n,b,) (Step 3 in Figure 1). Reduced cost
fixing might effectively reduce the number of vari-
ables in advance. Let F denote the set of indices of
the fixable variables by the reduced cost criterion. We
denote by x" the corresponding fixed values, that is,
xf=0or1, forall jeF.

The algorithm iteratively sets the variables to 0 or
1 as described in Step 4 of Figure 1. At each iteration,
we update the best-solution, xP¥T and best-solution-
value, zP*T. We check if early termination is possible
(true) or not (false). We also allow fixing a set of vari-
ables, which we name lag-variable-fixing. At the final
step, we set the first variable to the optimal solution of
the reduced problem (Step 5 of Figure 1) and the algo-
rithm returns xP¥T and zPFT. We provide the details
of ADP Base-Heuristic algorithm in Figure 1.

Reduced-Cost Fixing. At optimality of the linear
programming relaxation (LP), LP(n, by), of the prob-
lem MKP(n, by), the objective function can be written
as

ZLP(n,bo) =2zy+ Z C_jxj + Z C_jxj’
jeL jel

LP(n, by LP(n, by)

where x) and z are the LP solution and
value, respectively, L denotes the set of nonbasic

MANAGEMENT SCIENCE/ Vol. 48, No. 4, April 2002

variables at their lower bound, U denotes the set

of nonbasic variables at their upper bounds and ¢;
denotes the reduced cost of the variable j e {1, ..., n}.
Reduced cost fixing sets the variable x; at its optimal
LP solution value if |¢,| > z7("P) — 2 where z€ is a
lower bound to the problem MKP(#, b;) (Nemhauser
and Wolsey 1988, p. 389). In our algorithm, we use
H(n,by) as z€. Thus, F ={j: |¢;| > "7 ™) — H(n, b,)}

].LP(”’ ® for all j € F.

where x; = x

Variable Assignment. To calculate x{*°" for a vari-
able k ¢ F, we employ Equation (4) but with estimated
values, F (k, b), instead of optimal ones, F(k, b). This
is the basic idea in ADP-BH. In our computations, we
noted that the following estimation generated better
solutions in comparison to a straightforward estima-
tion by a base-heuristic value H(k, b). We denote by
U(k, b) an upper bound to the problem MKP(k, b). In
our computations, we set the upper bound U(k, b) to
|ztPkD) | that is, the truncated LP solution value of
the associated subproblem. Let €, denote the percent-
age deviation of H(k —1, b — A;x) with respect to the
upper bound U(k—1,b—Ax) for x=0, 1 and also let
€* be the minimum of ¢; and €;. We estimate the opti-
mal values, F(k—1,b—A;x), by F(k—1,b—A.x) =
(1-e9U(k—1,b—A.x) for x =0, 1. By the definition
of €*, the optimal values are approximated such that
the percentage deviations of the estimate values are
the same with respect to the associated upper bounds.
Finally, we set x;°" by Equation (4), replacing the
optimal values by the estimated ones.

Update Best-Known Solution and Value. Once we
set xfPP, if necessary, we update the best-solution,
xPEST and best-solution-value, zP¥7, as follows. Let b =
by — X7, A;x?P". Because of the construction of x#™°
for j in [k, n], x¢ = (x®(k —1,b), xP7, ..., x2PP) is
a feasible solution to the problem MKP(n, b,), where
objective value of the solution x¢ equals z = H(k —
1,b)+ X7 ¢;xP". We update x"*" to x© and z*" to
z€, respectively, if z© is larger than zP5T.

Early Termination. The ADP base-heuristic algo-
rithm can be terminated early while setting xP" if
we determine that we find an optimal solution to
the problem MKP(k, b), where b=b,—>_7_; .| Ajx/*™".
We apply the following tests to determine whether
we have an optimal solution or not to the problem

553

BERTSIMAS AND DEMIR
Dynamic Programming Approach to Knapsack Problems

Figure 1

The ADP Base-Heuristic Algorithm for the MKP

1: Initialization:
k=n, b=b,, F=2

early — termination = false
2: Apply BH(k, b) and get x®(k, b), H(k,b)
Problem infeasible — exit, the problem is infeasible
xPH(k, b) optimal — exit, an optimal solution available
xBEST « xBH(k, b), zBEST « H(k, b)

3: Apply reduced cost fixing and get F, x*

4: While (k > 2) and (early — termination = false) do

if (k € F) then
xfPP — xf

else

Calculate x{*P" by calling variable assignment

Update best-solution and best-solution-value and get x

BEST . BEST
’

z

Check early termination criterion and get the status (true or false)

Fix variables by lag variable fixing and get F, xt

b < b—Ax"

k<~k-1

5: Set x{PF to the optimal solution of MKP(1, b)

6: Output: x*¥T and zB&T

MKP(k, b): (a) We check if x®(k —1,b) and xB"(k —
1,b—A;) are optimal solutions to the subproblems
MKP(k —1,b) and MKP(k —1,b — A;), respectively.
We conclude that an optimal solution exists if H(k —
1,b)=U(k—1,b) and H(k—1,b—A;)=U(k—1,b—
A,); (b) We conclude that x®"(k, b) = (x®"(k—1, b), 0)
is an optimal solution if H(k —1,b) is greater than
U(k—-1,b—A;)+c, and H(k—1,b) =U(k—1,b); (c)
Similarly, we conclude that x®"(k, b) = (x®"(k—1,b—
A,;), 1) is an optimal solution if H(k—1,b—A;)+¢; is
greater than U(k—1,b) and H(k—1,b—A;) =U(k—
1,b—A)).

Lag Variable Fixing. To allow the ADP base-
heuristic to generate solutions in significantly shorter
times (possibly of lower quality), we allow fixing a set
of variables x; for jin [k—I,k—1] and j ¢ F. We name
the method Iag-variable-fixing and those variables as
lag-fixable variables. We denote by FLASk ={j:je k-1,

554

k—1] and j ¢ F}. Once the kth variable is assigned
to 0 or 1, the variables x| are set to x}"(k—1,b)
or xP(k—1,b — A,), respectively, for all j e FXA%F,
We update the set F by including those indices in
FRAGE xAPP are assigned to xj for all j € FXA%F in
Step 4 of Figure 1. Lag-size parameter [/ specifies the
number of variables to be fixed lagging from the kth
variable while setting x/"" through the relationship,
I = |k/lag-time], where lag-time is a user-specified
parameter.

3.1. Base-Heuristic Selection

The selection of the base-heuristic is important in
the proposed ADP base-heuristic framework. Since
we employ the base-heuristic many times within
the ADP base heuristic framework, we focus on
heuristic methodologies with small computation time
requirements. Based on the available computational
experience reported in the literature, we consider

MANAGEMENT ScIENCE/ Vol. 48, No. 4, April 2002

BERTSIMAS AND DEMIR
Dynamic Programming Approach to Knapsack Problems

the following heuristic methodologies as the base-
heuristic for the MKP: Senju and Toyoda’s (1968) Dual
Gradient Algorithm, which starts from an infeasible
solution and constructs a feasible solution by setting
variables to zero with the lowest gradient. The gra-
dient of variable j is calculated as the ratio of ¢;
and penalty of the jth variable, which is A; times
the excess capacity usage by those variables at one.
Toyoda’s (1975) Primal Gradient Algorithm, which con-
structs a feasible solution from the all-zero solution
by setting variables to one with the largest gradient.
Loulou and Michaelides’ (1979) Greedy-like Heuristics,
a variation of primal gradient with complicated gra-
dient computation and Kochenberger et al.’s (1974)
Incremental Heuristic, a variant of primal gradient
designed for generic integer programming problems.
We also propose a new heuristic that constructs solu-
tions by adaptively fixing variables through solving
linear programming relaxations iteratively, which we
name adaptive fixing heuristic. We describe the details
of this base-heuristic next.

3.1.1. A New Base-Heuristic: Adaptive Fixing.
We denote by LP(k, b) the linear programming relax-
ation (LP) of the problem MKP(k, b). We use X, and
X, to denote the set of variables that are set to 0 and 1,
respectively. We also define by LP“ = [LP(k, b)|X,, X;]
the LP(k, b) with the constraints of x; =0, j € X, and
X; = 1, j € X;. The optimal solution of the linear pro-
gram LPC is denoted by x'** .

The adaptive fixing (AF) heuristic, at first, assumes
both X, and X, are empty sets, meaning that none
of the variables x,...,x; are assigned to a value.
We solve LPC = [LP(k, b)|X,, X,] and get the optimal
solution x*°. We fix variables x; to 0if 0 < x].LPC <,
where 7y is a user-specified parameter, and x; to 1 if
x]LPC =1. X, and X, are updated accordingly (Step 3
in Figure 2). We iteratively fix variables (Step 4 in Fig-
ure 2): Once we solve LP® = [LP(k, b)|X,, X;] and get
xLP we find the fractional variable with the lowest
value, if any exists, and set it to 0. We also include
those variables to X, and X;, if x].LPC =0 and x}“PC =1,
respectively. We repeat this process until no fractional
variable exists when solving the adaptively changed
linear program LP¢ =[LP(k, b)|X,, X,], meaning that
all the variables are either assigned to 0 or 1. We

MANAGEMENT SCIENCE/ Vol. 48, No. 4, April 2002

Figure 2 Description of the Adaptive Fixing Heuristic for the MKP(k, b)

1: Initialization:
v=025 X, =9, X, =92
2: Solve LP¢ = [LP(k, b)|X,, X,] and get X1
3: Update X, and X;
Xy < X, U{jl OSXJLPC <7l
X, < X, U{j| 2 = 1)
4: While (x** includes fractional values) do
Solve LPC = [LP(k, b)|X,, X,] and get x*
X, < X, U{j| xF° =0}
X, < X, U{j| 2 =1)

j* = argmin {x].LPC}
0P
j
Xo < X, U{j"}
5. Compute the AF solution and value: x*F, zAF

Set x/' =0, forall jeX,and x/'=1, foralljeX,

k
AF _ AF
Calculate z*F =} " ¢;x]
j=1

define by x*F and zA" the heuristic solution and value,
respectively, returned by the adaptive fixing heuristic
(Step 5 in Figure 2). We set x*" =0 and x/'" =1 for all
j in X, and X, respectively. Thus, the solution value
is zAF = Z;‘Zl cjx]{*F.

Our computational study suggests adaptive fixing
with low vy (e.g., ¥ =0.05, 0.10) values generates usu-
ally better solutions. On the other hand, it uses more
computation time. Thus, in order to balance the trade-
off between solution time and quality we set y =0.25
in our computational study.

We consider the special case y =1 of the AF heuris-
tic, which we name truncation heuristic. We denote
by x" and z' the truncation heuristic solution and
value, respectively. We first solve the linear program
LP(n, by) and obtain the optimal solution x"". Then,
we setxf:OifOfx]-LP<1 and ijzl iijLpzl for
j in [1, n]. The corresponding heuristic value is z” =
Z;;l cjx].T.

555

BERTSIMAS AND DEMIR
Dynamic Programming Approach to Knapsack Problems

4. ADP-Parametric and
ADP-Nonparametric

In this section, we describe our parametric and non-
parametric approach to approximating optimal value
functions. The basic motivation is to estimate F(k, b)
using a set of F(k,b’) values (or possibly estimates
of them) where b’ = (b{, e, b;n)’ i=1,...,s are sam-
pled from the state space) = {b € R"|0 < b < by}
for a given capacity by = (by , ..., by) of the MKP
problem. Let S={b' € Qli=1,...,s} be a sample of
the state space (), which we chose in our computa-
tional study as follows: b’ = (i|by 1/s], ..., ilby, ,/S])
fori=1,...,s—1 and b° = b,. We name this sam-
ple S the uniform sample. We also enlarge the uni-
form sample by taking additional sample points b =
(by,...,b,) such that b* < b < b, where b; ~

U(b¥, b5 (i.e., uniformly distributed between b* and
bi™) and b*,b**!' € S, which we name the strati-
fied sample. In our computations, we found that the
stratified sample does not necessarily generate bet-
ter solutions than the uniform sample. An alternative
to selecting the uniform sample is to choose the set
S randomly over the state space 2. We have found,
however, that this choice is inferior to selecting the set
S as outlined above. Thus, we fix uniform sampling as
our sampling scheme. We define by stage k the num-
ber of first k variables of the MKP problem. We denote
by Q, ={(k, b)|b € Q} and S, = {(k, b)|b € S}, the state
space and the sample for a given stage k in [1, n].
The estimate of F(k, b) : ; — 3 is denoted by f(k, b).

4.1. ADP-Parametric Algorithm

We motivate the parametric approximation method
using research results from the probabilistic analysis
of the MKP (see Frieze and Clarke 1984, Meanti et al.
1990, Dyer and Frieze 1989, Szkatuta 1994, Piersma
1993). Let A; = (ay,;,...,4,,;)" be nonnegative i.i.d.
random vectors and suppose that ¢; are i.i.d. random
variables, with j € {1, n}, that are independent
of the A;. Let b; = n7; for some fixed m-vector 7 =
(1y,...,7,) . The solution value of the MKP, defined
by the random variables A; and c¢; and by the con-
stants b; > 0 is denoted by Z}MXF. Let us denote by Z.*
the solution value of the LP relaxation of the MKP.
Piersma (1993) and Meanti et al. (1990) show that with
probability 1, ZL¥/n and ZMXP /n converge, as n — oo

556

and m remains fixed, to the same constant p that
depends on the parameters b; and on the expected
values E[g; ;] and E[c,],

p= f/{liglEf,\(le Ay),

fl\(to, t) = Z/\iTi—i_maX(O, tO - Z)\iti>‘
i=1

i=1
Thus, the previous results suggest that ZM<P scales
linearly with n when the vector b =nr.

The above fact motivates us to approximate F(k, b)
for a given (k, b) € Q; by a linear functional model,
a;b + By, with parameters a; = (a1, ..., @ ,) and
Bi. We denote by &, and B, the tuned model param-
eters and we now describe how we calculate them.
Let us assume that we know @, , and B,_;, that is,
we can estimate F(k—1,b) and F(k—1,b—A,) by
F(k—1,b)= &, b+, and F(k—1,b—A,) =a; (b—
A)+Be respectively. For a given (k, b) € S;, we calcu-
late F(k, b) by applying Equation (3) and using F(k—
1,b) and l?(k —1,b—A,) values. Then, we find &,
and f; by minimizing the total absolute deviation of
Fi (k, b) from the linear model values a;b+ 8, for all
(k, b) in S, as follows:

LAD(k) minimize Y |a;b+pB,—F(k,b)|. (5)

ay, B (k, b)eS,

In our computations, we reformulate LAD(k) as a lin-
ear program (see Bertsimas and Tsitsiklis 1997) and
use CPLEX to find @, and B, values. We name tun-
ing the model parameters the learning-phase of ADP-P
algorithm. To start the learning phase, we first calcu-
late F(1,b) for all (k,b) € S, and we find &, and S,
using Equation (5). We iteratively tune model param-
eters as described above and store them in a look-
up table. We now describe how we construct ADP-
P solution x*PP = (x{*P?, ... xAPP) which we name
ADP-P solution construction phase. We initialize b =b,
and k =n (Step 1 in Figure 3). To calculate x;*"" (Step
2 in Figure 3): We calculate P(k 1,b)=a,_ 1b+,8k 1
and F(k 1,b—A)=a;_ 1b+,3k 1 by retrieving a;_;
and f;_, from the look-up table. We set x*°" accord-
ing to Equation (4), in which we use estimated values,
and we update b by b — A xP". We iteratively find
xPP for k =n to 1, which is also described in Figure 3.

MANAGEMENT ScIENCE/ Vol. 48, No. 4, April 2002

BERTSIMAS AND DEMIR
Dynamic Programming Approach to Knapsack Problems

Figure 3 ADP-P Solution Construction Phase

1: b<b,
2: Fork=mn,...,2do
Find F(k—1,b—A.x) for x €{0,1}
Retrieve &, _, ,ék_1 from the look-up table

F(k—1,b—Ax) < (&) (b—Ax) + B,

1P« argmax | <0, 1){F(k 1,b—A;x)+cx}
b<b—AX®
3: Set xfPP to the optimal solution of the problem MKP(1, b)

Output: XADP = (xADP, , xADP)

4.2, ADP-Nonparametric Algorithm
Suppose we know F(k, b) for all (k, b) € S,. Under the
nonparametric approximation, we estimate the opti-
mal value of a problem MKP(k, b) for which (k, b) ¢
S, as follows:
f(k, b) _ Z(k, b)eS; w(b/ b)FEk/ b)) (6)
2k, b)es; w(b, b)

where w(b, b) are local weights assigned to sample
points (k, b) in S,. Given b, b, we calculate

w(b,b) = ZK('b - —b, ')
where h=(hy, ..., h,) and K(-) : R — R are user spec-
ified. We utilize K(t) = (1 —|t])I(|t| < 1) (see Fan and
Gijbels 1996), where I(-) is an indicator function, i.e.,
I(Jt] =1) =1 (0) if || <1 (otherwise). We use h=4§,+
8, through setting 6, = (|by,1/s], ..., by, m/s]) and
6, =b,—s8,, where s denotes the sample size of 5.

Let us denote by x*P" the ADP-N solution. The
key element in calculating x{*P is being able to esti-
mate the optimal values. Under the nonparametric
approximation, this corresponds to knowing a set of
optimal values for those states in the given sample
space. In our computations, we use estimated values
instead optimal ones. Initially, we calculate estimates
f(k, b) for all states (k,b) € S, for k=1, ..., n, which
we name the ADP-N learning phase. Let us assume
that f(k— 1,b) for all (k—1,b) in S, , are known.
Given (k,b) € S, in order to calculate f(k,b), we

MANAGEMENT SCIENCE/ Vol. 48, No. 4, April 2002

first estimate F(k—1,b) and F(k—1,b— A;) by
F(k—1,b) = Y1 pjes, , @(b, b)F(k—1,b) and F(k —
1,b—Ay) =341, b)es, , W(b, b)E(k—1,b—A,), respec-
tively, and then apply Equation (3), where w(b, b) =
w(b,b)/ Y41 byes,, w(b, b). In the ADP-N learning
phase, we first calculate F(1, b) for all (1,b) € S; and
then find f(k,b) for all (k,b) in S, for k=2,...,n
by using Equations (3) and (6). Finally, we store those
estimates for the sample space in a look-up table.

We construct an ADP-N solution as follows. We first
initialize b =b, and k =n (Step 1 in Figure 4). To cal-
culate x2PP (Step 2 in Figure 4), we find F(k—1,b)and
F(k—1,b—A)) by using Equation (6) and by retriev-
ing sample values Fi (k—1,b) for all (k—1,b) e S;_,4
from the look-up table. Once we set x¢°" according to
Equation (4), in which we use estimated values, we
update b by b — A, x*PF. We iteratively find x*P" for
k =n to 1, which is also described in Figure 4.

Once ADP-P or ADP-N generate a feasible solution
xAPP with X, (set of variables assigned to zero in the
solution) and X, (set of variables assigned to one in
the solution), we calculate the slack vector s = b, —
Y jex, Aj. We iteratively set a variable x;, k € X, to 1
if A; <s while updating s accordingly (i.e., s =s—A;
once x; is set to 1). This final step can be considered
as a local improvement to the solution obtained by
ADP-P or ADP-N.

Figure 4 ADP-N Solution Construction Phase

1: b <«b,
2: Fork=mn,...,2do
Find F(k—1,b—A.x) for x €{0,1}
Retrieve f(k —1,b), (k—1,b) € Si_; from
the look-up table

Z(k—l,B)esk,l w(b—Ayx,b)F(k—1,b)

2 (k-1,b)esy

(b, B) ZK(\@;M)

1

F(k—1,b—Ax) <

w(b—Ayx,b)
-1

X7 < argmax ., (F F(k—1,b—Awx)+c.x)
b < b—AxAF
3: Set xfPF to the optimal solution of the problem MKP(1, b)

Output: xAPP = (xPP, ., xAPF)

557

BERTSIMAS AND DEMIR
Dynamic Programming Approach to Knapsack Problems

5. Computational Results

In this section, we provide computational results for
all the ADP-based approaches we developed for the
MKP. We set as performance criteria for comparing
different methods: solution quality, computation time,
and robustness, i.e., the degree of deviation of the
computational resources needed to solve the prob-
lems as the instances of the same size change.

Our overall objective is to assess whether ADP is a
promising methodology for MKPs. More specifically,
we want to answer the following questions:

(1) Given that the choice of the base-heuristic is
important for the base-heuristic approach, how does
the adaptive fixing heuristic compare with alternative
approaches in the literature?

(2) How do heuristic methods based on parametric
and nonparametric value approximations perform?

(3) Is there an improvement of the base-heuristic
performance when a base-heuristic framework is
applied? How significant is such an improvement ?

(4) How does the best of the ADP-based methods
compare with the state of the art heuristics as well as
commercial packages (CPLEX)?

(5) Most importantly, is ADP for MKPs a competi-
tive method worth further study?

The instances of the MKP we used in our experi-
ments were both randomly generated as well as from
the literature. We use the notation x ~ U(1, X) to
denote an integer number that is uniformly gener-
ated in [1, X]. We construct uncorrelated (UC), weakly
correlated (WC), and strongly correlated (SC) random
MKP instances as follows. Let N ={1, ... ,n}and M =
{1,...,m}.

* Uncorrelated instances: ¢; ~ U(1,C) and a; ~
U(,A) for all ie M and j e N, ie, ¢j, a; are uni-
formly distributed in [1, C], [1, A], respectively.

* Weakly correlated instances: a; ~ U(1, A) and
¢;=max{1, U(X;a;/m—wc, 3 ;a;/m+wc)} for all i €
M and j € N, where wc is a user-specified parameter
(see Table 1).

e Strongly correlated instances: a; ~ U(1, A) and
¢j=>;a;/m+sc forallie M and j € N where sc is a
user-specified parameter (see Table 1).

Given the number of constraints m and the number
of variables 1, we generate 10 test problems in each
class (uncorrelated, weakly correlated, and strongly

558

Table 1 Parameters for the Uncorrelated, Weakly, and Strongly Corre-
lated Type Problems
Uncorrelated Weakly Correlated Strongly Correlated
A c A we A sc
100 100 100 10 100 10
500 100 500 50 500 50
500 1,000 1,000 100 1,000 100
1,000 500 1,000 500 1,000 500
1,000 1,000 3,000 300 2,000 500
1,000 2,000 4,000 500 3,000 100
5,000 1,000 5,000 500 5,000 500
5,000 500 10,000 1,000 5,000 1,000
10,000 1,000 10,000 2,000 10,000 2,000
10,000 5,000 15,000 3,000 10,000 5,000

correlated) with different parameters C, A, wc, sc as
provided in Table 1. We set by ; = 053 a; 1=
1,...,m. We make our instances available on the
Internet.! All computational studies are done on a
Dell Precision 410 with Linux operating system. We
use the following notation to present the computa-
tional study.

* Let v(X) be the objective value of the solution
obtained by the methodology X, e.g., v(ADP-H) is
the objective value of the solution obtained by the
methodology ADP-H.

* Let PE(X) be the percentage deviation of v(X)
from the LP relaxation objective value v(LP), ie.,
PE(X) = (v(LP) — v(X))/v(LP) x 100.

¢ PI(X): Percentage Improvement of ADP-X over
X, i.e., (PE(X) — PE(ADP — X))/PE(X) x 100.

¢ T(X): Computation time of the methodology X in
CPU seconds.

5.1. Comparison of Base-Heuristics

In this section, we compare the proposed stand-
alone heuristics, namely the truncation heuristic H1
(see §3.1) and adaptive fixing heuristic H2 (see §3.1
and Figure 2), with some heuristics from the lit-
erature, namely the primal gradient heuristic H3
(Toyoda 1975), dual gradient heuristic H4 (Senju and
Toyoda 1968), greedy-like heuristic H5 (Loulou and
Michaelides 1979), incremental heuristic H6 (Kochen-
berger et al. 1974). We compare these heuristics on

! (http:/ /web.mit.edu/dbertsim/mkp).

MANAGEMENT ScIENCE/ Vol. 48, No. 4, April 2002

BERTSIMAS AND DEMIR
Dynamic Programming Approach to Knapsack Problems

Table 2 Base-Heuristics Results
H1 H2 H3 H4 H5 H6

m n type T PE T PE T PE T PE T PE T PE
10 100 uc 0.01 3.92 0.01 1.69 0.00 35.12 0.01 38.56 0.11 34.49 0.02 34.52
10 100 WC 0.01 8.08 0.02 2.36 0.01 18.52 0.00 20.98 0.22 19.70 0.01 16.86
10 100 SC 0.02 9.81 0.02 3.84 0.01 8.83 0.01 13.83 0.21 10.72 0.01 10.11
50 100 uc 0.02 9.59 0.07 2.13 0.03 31.77 0.02 37.79 0.76 33.67 0.07 30.96
50 100 WC 0.05 26.85 0.20 3.58 0.04 17.38 0.02 21.65 1.07 17.56 0.06 16.88
50 100 SC 0.13 50.45 0.60 4.26 0.04 10.84 0.03 14.47 1.07 11.23 0.06 10.31
100 500 uc 0.36 3.25 0.93 0.45 2.21 35.31 1.51 36.05 209.17 36.09 3.46 34.59
100 500 WC 0.97 10.29 3.25 0.85 2.42 16.97 1.28 17.25 215.00 17.67 3.41 16.88
100 500 SC 6.93 19.87 14.92 1.30 2.27 6.50 1.57 7.58 201.82 6.58 3.52 6.40
100 1000 uc 1.04 1.94 2.69 0.28 10.44 34.51 6.78 34.71 2,015.61 34.68 15.45 34.28
100 1000 WC 2.31 6.29 713 0.46 10.68 15.92 5.58 16.68 1,995.10 15.72 14.93 15.74
100 1000 SC 8.42 10.00 18.67 0.59 10.79 4.84 5.69 5.89 1,986.85 5.07 14.95 5.03

uncorrelated, weakly correlated, and strongly corre-
lated problem instances as described earlier.

The results in Table 2 suggest that H2 is the leading
algorithm among the ones we examined in terms of
both solution quality and computation time. It con-
structs high-quality solutions within short computa-
tion times for all types of instances where percentage
deviations are 1.14, 1.81, and 2.49 for uncorrelated,
weakly correlated, and strongly correlated problems,
respectively.

5.2. Computational Results for the ADP
Parametric and ADP Nonparametric

In this section, our objective is to demonstrate the per-

formance of the ADP-parametric (ADP-P) and ADP-

nonparametric (ADP-N) algorithms (see §4) on the
same uncorrelated, weakly correlated, and strongly
correlated problem instances. For a given m, n com-
bination (e.g., m =10, n = 100), we apply ADP-P or
ADP-N and get the associated solution statistics, such
as solution quality and computation time for vary-
ing sample sizes s in {5, 10,15,20,25}. We report
the associated times T and percentage deviations PEs
in Table 3. In our study, we observed that solution
qualities of ADP-N and ADP-P did not necessarily
improve on larger samples, where s was taking values
of {50,100, 150, 200, 250}.

In summary, using Table 3 and 2 statistics,
both ADP-P and ADP-N are capable of generating
solutions at least as good as the ones obtained by

Table 3 ADP-P and ADP-N Results
T(ADP-P) PE(ADP-P) T(ADP-N) PE(ADP-N)
m n type min avg max min avg max min avg max min avg max
10 100 uc 0.03 0.06 0.10 8.0118 16.8413 25.0646 0.02 0.05 0.07 3.7448 10.5054 21.9889
10 100 WC 0.03 0.06 0.09 9.7910 14.0499 226718 0.02 0.05 0.07 6.0482 11.8696 19.7634
10 100 SC 0.03 0.06 0.11 5.8559 8.6297 11.7666 0.02 0.05 0.008 5.0795 8.7346 13.5535
50 100 uc 010 0.19 0.26 10.1345 19.0510 30.6011 0.09 0.15 023 49710 144108 26.8070
50 100 WC 0.09 0.19 0.27 104399 14.0215 26.2094 0.09 0.16 0.24 9.0369 12.9657 23.3960
50 100 SC 010 0.19 0.30 75812 10.3166 12.0993 0.09 0.18 0.28 7.6882 10.4663 13.6747
100 500 uc 0.95 1.61 2.25 44152 114099 213784 096 1.62 2.33 25496 10.6635 21.8752
100 500 WC 096 1.83 2.88 5.1505 79797 107776 095 1.74 2.62 6.0106 8.4587 22.4693
100 500 SC 095 291 8.40 4.4200 5.3768 6.4244 096 295 847 41320 5.3237 6.6767
100 1000 uc 198 350 4.96 41738 7.0525 115795 198 3.42 485 3.4661 8.8820 22.9663
100 1000 WC 199 376 6.13 41417 6.8218 8.7893 2.00 3.83 6.03 3.6354 6.8907 17.0984
100 1000 SC 199 492 1211 2.8619 3.8747 53549 2.00 480 1096 29938 4.0020 5.5049
MANAGEMENT SCIENCE/ Vol. 48, No. 4, April 2002 559

BERTSIMAS AND DEMIR
Dynamic Programming Approach to Knapsack Problems

heuristics H1, H3, H4, H5, and H6. We note that
ADP-P and ADP-N need extra tuning in order to
determine the best sample size because the quality
of solutions deviates substantially for varying sam-
ple sizes. As an interesting observation, average per-
centage deviations and computation times of ADP-P
and ADP-N stayed stable across different types of
instances which illustrates robustness across uncor-
related, weakly correlated, and strongly correlated
problem instances. Overall, the adaptive fixing heuris-
tic H2 continues to be the leading heuristic com-
pared to other heuristics, namely H1, H3, H4, H5, H6,
ADP-P, and ADP-N in terms of both solution quality
and computation time.

5.3. Computational Results for the
ADP Base-Heuristic

In this section, our basic aim is to illustrate the perfor-
mance of the ADP base-heuristic algorithm. We con-
sider heuristics H1, H2, H3, H4, H5, and H6 as our
base-heuristics. Let ADP-X be the ADP base-heuristic
algorithm with the base-heuristic X (e.g., ADP-H1
is the ADP base-heuristic algorithm with the base-
heuristic H1). In this computational study, we apply
lag-variable-fixing scheme in which we set lag-time =
10 (see §3 for a description). We apply the ADP base-
heuristic algorithm to the same uncorrelated, weakly
correlated and strongly correlated problem instances
for which we present the results in Table 4.

Our available computational study illustrates that
ADP with adaptive fixing heuristic, ADP-H2, is the
most promising methodology in terms of both solu-
tion quality and computation time. ADP-H2 gener-
ated near-optimal solutions in modest computation
times for large-scale instances with thousands of vari-
ables. The average percentage deviations of ADP-H2
are 0.68, 1.11, and 1.51 for uncorrelated, weakly corre-
lated, and strongly correlated instances, respectively.
We also observe that solution qualities of ADP-H2 do
not deviate from one another. As an example, for the
problems of size m =100, n = 1,000, the average per-
centage deviations of ADP-H2 are 0.17, 0.34, and 0.47
for uncorrelated, weakly correlated, and strongly cor-
related problem instances, respectively. An important
observation is that the ADP base-heuristic algorithm

560

provides a framework that exploits a certain base-
heuristic to generate higher quality solutions than
those obtained by the corresponding base-heuristic
at an additional computation time. We measure the
corresponding enhancement in the quality of solu-
tions through percentage improvements as provided
in Table 4. For instance, average percentage improve-
ments of ADP-H2 over H2 are 30.38, 31.62, and 29.73
for uncorrelated, weakly correlated, and strongly cor-
related problems, respectively.

5.4. Test Problems from the Literature

In this section, our aim is to compare the most promis-
ing ADP methodology, ADP-H2, with one of the
best heuristics in the recent literature for MKPs. In
recent research, Chu and Beasley (1998) developed a
genetic algorithm (GA) to solve MKPs. Their com-
putational study shows that GA provides high qual-
ity solutions at modest computation time to some
large MKPs. In addition, to our knowledge, they
attempted to solve the largest instances in the litera-
ture. We compare H2 and ADP-H2 with GA on their
largest instances.? Their problem generation scheme
is as follows: a; ~ U(1,1000), ¢; = ;a;/m + 500g;
where g, ~ U(0,1) for all i € M and j € N. For each
(m, n) € {(30,250), (30,500)} combination, the right-
hand side coefficients (b;s for all i € M) were set using
by =73 a; where 7 is a user-specified tightness
ratio taking values 0.25,0.50, and 0.75. Their compu-
tations are conducted on a Silicon Indigo workstation
which is supposed to be two times slower than our
machine Dell Precision 410. So, we divide the GA’s
computation times by two in our reporting.

We provide computational results for the adaptive-
fixing heuristic H2, ADP-H2 (ADP-H2 under no
lag-variable-fixing), ADP-H2* (ADP-H2 under lag-
variable-fixing with lag-time = 100), and ADP-H2*
(ADP-H2 under lag-variable-fizing with lag-time =
200) on Chu and Beasley’s (1998) data set in Table 5.
We denote by PI(H2)* and PI(H2)** the percentage
improvements of ADP-H2* and ADP-H2** over H2,
respectively. We observe H2 generated good solutions
(with an average PE of 1.20) in very small computa-
tion times (with an average T of 0.3 CPU seconds).

2 (http:/ /mscmga.ms.ic.ac.uk/jeb/orlib/mknapinfo.html).

MANAGEMENT ScIENCE/ Vol. 48, No. 4, April 2002

BERTSIMAS AND DEMIR
Dynamic Programming Approach to Knapsack Problems

€6°Ck 0€Y 690k 9EHI 6Y'vy 0T HLE'S ¥6'8 GEG ZL0S OFLL /Z¥ G9E8 6002 b0 Ov892L 08'€8 L9 LE69L IS 000+ OOL
209 ¥9YL LL'20F ¥6'E v6¥L 09°G08'8 60°L B6GGH 959y <299 G8YL 98°0L L0992 ¥EO0 88E€LS ¢0ZL 8FL 008HL OM 000k 0O
8/t 862 95¢k 90F 9z'ee 09°0vG'0L €0V [2ES 129 68€ YLEE 298 2€TE LLO LLE9L 66, Ov0 0.85 ON 000+ 00
€9 286 0L0S GOEl 69°G 09°/92°h 80Ch €99 128L [¥9L WS 09€C 98¥Z G60 ZEVIS I9°€8 1Z’€ 6G0LL OS 00S 00
90, ¢rSL 2lve 286 98°GL 09'L06 ZVL G6'GL 202k 86 8LGL KLLL 28/2 190 /9682 62€L LT G909 OM 005 00k
€89 ¥L'ZE 97¢E 8L9 v2'ee 0T IGL'L 12’8 00€E v6E€L v0L €.2¢ ¥L0Z ML¥Z 2E0 €288 €6/, 00 88€c ON 005 00k
81'€2 6L, 1€ 0282 66, LL6S /8GE 688 0LL §Cl¢c €8. 69T 9Lve E€LFE 0269 ?8//. 860L /€0L OS 00L 0§
289¢ ¢0CL 8¢ ¥0'9Z 62C 826 0KSE L0V 18 608 98Tk €9C YIVE 62C 8ELC 00+ 882k ¥S5Z OM 00k 0§
90°/6 09'8L Ev lzTE G2 1188 9¢'Sy Sy'02 ¥LL ¢L6E 088k L0C 80LE €€t 2L9 2059 S0C 95 on 00L 0
6865 ¢L'G 8.0 [ZOF €6 619 6E/y 869 8€0 ¢66E 82G 190 1Z6F S8Vl 62T 696 G/'G 080 29S8 00+ 0L
€162 G9HL €80 cEHY 1G0F €29 ¥8'6€ 00CF OV0 8€6S ¥90L 090 €28 6L STl 9y 067 290 OM 00F Ol
7868 ¥50C ¥60 289 62k 98'S €Yy vL'le 220 €¢0v G602 1S0 00FE 680 .0 928G €91 /¥ oan 00L 0L
(9H)Id 3d L (SH)Id id L (bHId 3d L (eHd 3 L (eHid 1d 1 (LH)Id 3d 1 adfy w w
9H-dav GH-dav vH-dav ¢H-dav ZH-dav LH-dav
s|nsay salsunay-aseg day ¥ 8|qelL

561

MANAGEMENT SCIENCE/ Vol. 48, No. 4, April 2002

BERTSIMAS AND DEMIR
Dynamic Programming Approach to Knapsack Problems

Table 5 Comparison of H2, ADP-H2, ADP-H2*, and ADP-H2** with Chu and Beasley’s (1998) GA on Their Test Problems
GA ADP-H2 ADP-H2* ADP-H2**
m n T T PE T PE T PE PI(H2) T PE PI(H2)* T PE PI(H2)**
30 250 0.25 74975 119 021 2.73 69.64 1.61 39.39 2580 1.74 34.87 3168 1.64 38.51
0.50 990.03 053 019 1.31 63.62 0.69 44,59 2344 0.82 35.05 29.71 0.72 42.22
0.75 1,220.70 0.61 020 0.76 55.51 0.58 22.15 20.39 053 26.98 26.20 0.54 26.62
30 500 0.25 1,218.85 0.61 040 139 28473 098 25.50 7423 097 25.03 99.90 0.81 37.45
0.50 1,599.45 026 0.41 0.65 24147 043 28.41 63.30 0.46 24.19 8797 045 25.77
0.75 1,94410 017 039 035 22390 0.29 15.07 61.48 0.30 14.60 84.08 029 15.09

ADP base-heuristic algorithms (ADP-H2, ADP-H2¥,
and ADP-H2**) significantly improve the perfor-
mance of H2 to construct higher quality of solu-
tions with an average PI of 28.97. Average PEs of
ADP-H2, ADP-H2*, and ADP-H2** are 0.76, 0.80, and
0.74, respectively. Interestingly, ADP-H2** generated,
on average, higher quality solutions than the ones by
ADP-H2 at smaller computation times. Even though
GA (with an average PE of 0.56) provides slightly bet-
ter solutions than ADP-H2s, its average computation
time, 1,287.15, is an order of magnitude larger than
the one of ADP-H2s, 87.06 (average of average times
T(ADP-H2), T(ADP-H2*), and T(ADP-H2**)). Overall,
ADP-H2 algorithms achieved high quality solutions
to some of the test problems from the literature in
short computation times.

5.5. Comparison of the Most Promising ADP
Algorithm with CPLEX
In this section, we study the performance of CPLEX
6.0 (1998) on the same randomly generated prob-
lems. We also present minimum, average, and max-
imum computation times (Ts) and minimum, aver-
age, and maximum percentage deviations (PEs) of the
most promising ADP algorithm, ADP-H2 (ADP with
adaptive-fixing heuristic), for each problem instance.
CPLEX allows a variety of options in its tree search
such as node selection strategy, cover cuts generation,
clique cuts generation and heuristic frequency. Differ-
ent settings might change the performance of CPLEX
significantly in terms of both solution time and qual-
ity. In our computations, we study the performance
of CPLEX under both default setting (denoted by
CPLEX-D), and new settings (denoted by CPLEX-N),
which we describe below. In either case, we use the

562

following setup in our study. We set CPLEX tolerance
parameter CPX_PARAM_EPGAP to PE(ADP-H2)/100 to
achieve the same quality solutions as those obtained
by ADP-H2. We also set the tree-memory limit and
time-limit to 250 MB and 6,000 CPU seconds, respec-
tively. Once CPLEX terminates (possibly by reach-
ing the specified time-limit), we retrieve the solu-
tion value and calculate its percentage deviation from
the LP objective value. Let C denote the number of
instances for which CPLEX found a solution within
PE(ADP-H2) below the specified time-limit. For these
instances, we use T and PE to denote average CPLEX
computation time and percentage deviations from LP,
respectively. We denote by C* the number of instances
for which CPLEX could not find a solution within
PE(ADP-H2) below the time-limit. T* and PE* are
used to report average CPLEX time and percentage
deviations.

Under CPLEX with new settings (CPLEX-N), we
turned off both clique and cover cut generations
in comparison to default settings in which cuts are
automatically generated. We turned on the periodic
heuristic and set the parameter CPX_PARAM_HEURFREQ
to 25 to help CPLEX find more feasible solutions. We
also set node selection strategy to depth first search
allowing CPLEX to dive deeper in the tree where inte-
ger feasible solutions are more likely to be found. We
provide our computational results both for CPLEX-D
and CPLEX-N in Table 6 where we put the symbol
“—" (dash) when CPLEX results do not apply. For the
instances where both CPLEX-D and CPLEX-N find
solutions within PE(ADP-H?2) below the time-limit of
6,000 CPU seconds, we observe that both CPLEX-D
(with average T of 565.84) and CPLEX-N (with aver-
age T of 592.19) use significantly larger computation

MANAGEMENT ScIENCE/ Vol. 48, No. 4, April 2002

BERTSIMAS AND DEMIR
Dynamic Programming Approach to Knapsack Problems

8/00C €£/26°000C 6 690 00°}S Wl b

v169C €EEVEE8LL Hwi-sw 0} — — — 0

€620'L 08'105'8¢. Huwi-swiy 0ol — — — 0

296G 0E'GLE'E86 L Hui-swn 0l — — — 0

8088'C W¥'6E2ER0L Hwi-swn 6 91€€0 00°G0L°'LEL 86'GE9°C b

69Y9°0 00°G82'Gr8 Huwi-swn -/ 99G€°0 00°€G€'08S 10°€06°€ €

1212y 02°18v'929°9 wi-swn Qf — — - 0

25e€’c 00828'G9e’€ Nwi-ewn 9 1022 0S¥8L'80L‘} €8°018°} 14

— — — — pISFL 000697k 168 0}

€266 09°€h.2e00L Hwi-ewn G 68/9'L OV'SLy'Gee’lL ¢6'19. S

— — — — G98¢’L 0¥ 0cL'6vet €6°L.8 0t

— — — — €960 0£656°C Ge't 0l

+3d +S8p0U JO # <L i id s8pou Jo # 1 #

N-X31d9
G8¥8'c 0¥'060°0¢ Huwi-swn - 0} — — — 0 €S6v'0 1S9Y'0 /SEF0 ¥SE2EL 697¢2e L 989801 OS 000°L 00}
18€6'¢ 06'¥91'0S Huwip-swn - 0} — — — 0 eviv0 19EE0 IEVL'0 L07¢EL ¥G'0¢S €0°LE} OM 000+ 00}
05/9¢ 08°055°G6L Huwi-swn - 0} — — — 0 99Lc0 OK.LL'0 Pevl'0 tL'c6l ¢8'ralk A an 000°L 00l
€00y OL'LLL'OY Huwi-swn - 0} — — — 0 ¢ve0’l €196'0 €€98°0 86168 byl 056°¢69 JS 008 001
8886'€ 0EGHY ¥l Huwi-swn - 0t — — — 0 l6¥2°0 16090 8ELE0 ¢l'SEE 6.'8€¢ 60°9S IM 00§ 00}
961€'¢ 00'8¥0°08% Huwi-swn 0} — — — 0 088y'0 Glce'0 LOLCO 6668 8689 o€l an - 00S 00}
0¥€L'S 05219618 Huwi-swn - 0l — — — 0 698FE€ 6¢EL'E 68¢6'¢c 819 7,69 86'¢9 JS 00} 08
0802°€ 00¢vll/2'L Hwi-swl 9 Y91GC GZ'€E8°LCS G/0I8F ¥ 29LL'E O0l6Ce 1€8¢1L 899¢ 181¢ 16t IM 00t 08
— — — — ¥929'L 06'191 ‘€S 0v'00} 0L GS%¥8'} G8ce't 8¢G80 €20l 66'G 860 an ook 05
— — — — ohvl'L 08'Gpe'eelt 0002l OF 1820C G28¥'L ¥690°L €.°¢C 18¢ 700 JS 00} 0k
— — — — LBL'L 08'96CCHEL 08'¥6EL 0L 89.G'L 6L6LL ¥90L0 6¥¢C 9t 200 IM 00t 0k
— — — — 9660 0¥ceLElL 0¢¢ch 0L LeEFL /y68°0 ¥08Y'0 L't ¢l0 910 an ook 0k
.Ad LS9poU JO # «l) d S9pOU JO # 1 9 xewl ‘Bae Ui xewl ‘Bae uiw adfy u w
0-X31d9 (¢H-dav)d (¢H-dav)L

N-X31d9 pue a-X31d9 Yum ZH-day jo uosiiedwoy 9 3jqeL

563

MANAGEMENT SCIENCE/ Vol. 48, No. 4, April 2002

BERTSIMAS AND DEMIR
Dynamic Programming Approach to Knapsack Problems

time to reach the same quality solutions as the ones
obtained by ADP-H2 (with an average T of 7.52). In
addition, the quality of solutions obtained by CPLEX-
D (with average PE* 3.9388) and CPLEX-N (with aver-
age PE* 2.3508) are lower than the ones by ADP-H2
(average PE 0.9337) when CPLEX terminates because
of time limit 6,000 CPU seconds, where average time
of ADP-H2 is 380.26 CPU seconds. Overall, CPLEX-N
returned better solutions than the ones by CPLEX-D.
For those instances that are solved both by CPLEX-D
(44 out of 120) and CPLEX-N (45 out of 120) below
the time limit, average (T and PE) of CPLEX-D and
CPLEX-N are (565.84 and 1.6515) and (1,312.68 and
1.0960), respectively. Furthermore, for those instances
for which CPLEX-D and CPLEX-N reach time limit,
average PE* of CPLEX-D and CPLEX-N are 3.9388
and 2.3508, respectively. We also observe that ADP-H2
performed quite robustly in terms of solution quality
and time, since T and PEs of ADP-H2 did not deviate
significantly from one another for a certain problem
size (m, n).

6. Summary and Conclusions
Based on the computational evidence from §5, we
offer the following conclusions:

(1) Although not the main focus of the paper the
adaptive fixing heuristic for the MKP was surpris-
ingly strong. It is fast and accurate.

(2) The ADP base-heuristic methodology is encour-
aging. It improves the solution quality, it is flexible as
it works with an arbitrary base-heuristic. The compu-
tational evidence suggests that the heuristic ADP-H2
competes successfully with state-of-the-art heuristic
and commercial software.

(3) Approximating the value function with either
parametric and nonparametric methods is not com-
petitive with the best heuristic methods for MKP
including base-heuristic methods.

In summary, the computational evidence suggests
that the ADP base-heuristic approach for the MKP
seems an attractive alternative to existing methodolo-
gies as it produces near optimal solutions fast and
robustly. In Bertsimas and Demir (2001), we apply
ADP-based approaches on generic binary integer pro-
gramming problems.

564

Acknowledgments
The research of this author was partially supported by NSF grant
DMI-9610486, and the MIT-Singapore alliance.

References

Aboudi, R., K. Jérnsten. 1984. Tabu search for general zero-one inte-
ger programs using the pivot and complement heuristic. ORSA
J. Comput. 6 82-93.

Bellman, R. E. 1957. Dynamic Programming. Princeton University
Press, Princeton, NJ.

Bertsekas, D. P, D. A. Castanon. 1997. Rollout algorithms for
stochastic scheduling problems. Technical report LIDS-P-2413,
MIT, Cambridge, MA.

——, J. N. Tsitsiklis. 1996. Neuro-Dynamic Programming. Athena-
Scientific, Belmont, MA.

——, ——, C. Wu. 1997. Rollout algorithms for combinatorial opti-
mization. . Heuristics 3 245-262.

Bertsimas, D., R. Demir. 2001. An approximate dynamic pro-
gramming approach to binary integer programming. Technical
report, Operations Research Center, MIT, Cambridge, MA.

——, 1. Popescu. 2000. Revenue management in a dynamic network
environment. Transportation Sci. Forthcoming.

——, J. N. Tsitsiklis. 1997. Introduction to Linear Optimization.
Athena-Scientific, Belmont, MA.

——, C. P. Teo, R. Vohra. 1998. Greedy, randomized and approx-
imate dynamic programming algorithms for facility location
problems. Technical report, MIT, Cambridge, MA.

Christodouleas, J. D. 1997. Solution methods for multiprocessor net-
work scheduling problems with application to railroad opera-
tions. Ph.D. thesis, MIT, Cambridge, MA.

Chu, P. C,, J. E. Beasley. 1998. A genetic algorithm for the multidi-
mensional knapsack problem. J. Heuristics 4 63-86.

Cooper, L., M. W. Cooper. 1981. Introduction to Dynamic Program-
ming. Pergamon Press, Elmsford, NY.

DeVries, S., R. Vohra. 2000. Combinatorial auctions: A survey. Tech-
nical report, Northwestern University, Evanston, IL.

CPLEX Division, ILOG Inc. 1998. Using the CPLEX Callable Libraries,
Version 6.0. 889 Alder Avenue, Suite 200, Incline Village, NV.

Dyer, M. E., A. M. Frieze. 1989. Probabilistic analysis of the multi-
dimensional knapsack problem. Math. Oper. Res. 14 162-176.

Fan, J., . Gijbels. 1996. Local Polynomial Modeling and Its Applications.
Chapman & Hall, London, UK.

Ferreira, C., M. Grotschel, S. Kiefl, C. Krispenz, A. Martin, R. Weis-
mantel. 1993. Some integer programs arising in the design of
mainframe computers. ZOR—Methods Models Oper. Res. 38(1)
77-110.

Freville, A., G. Plateau. 1986. Heuristics and reduction methods for
multiple constraints 0-1 linear programming problems. Eur. |.
Oper. Res. 24 206-215.

JR— . 1994. An efficient preprocessing procedure for the mul-
tidimensional 0-1 knapsack problem. Discrete Appl. Math. 48
189-212.

MANAGEMENT ScIENCE/ Vol. 48, No. 4, April 2002

BERTSIMAS AND DEMIR
Dynamic Programming Approach to Knapsack Problems

Frieze, A. M., M. R. B. Clarke. 1984. Approximation algorithms
for the m-dimensional 0-1 knapsack problem: Worst case and
probabilistic analysis. Eur.]. Oper. Res. 15 100-109.

McCarl, B. A, G. A. Kochenberger, F. P. Wymann. 1974. A heuristic
for general integer programming. Decision Sci. 5 36-44.

Gavish, B., H. Pirkul. 1985. Efficient algorithms for solving mul-
ticonstraint zero-one knapsack problems to optimality. Math.
Programming 31 78-105.

Gilmore, P. C., R. E. Gomory. 1966. The theory and computation of
knapsack functions. Oper. Res. 14 1045-1075.

Glover, E. W. 1977. Heuristics for integer programming using sur-
rogate constraints. Decision Sci. 8 156-166.

——, G. A. Kochenberger. 1996. Critical event tabu search for
multidimensional knapsack problems. Meta-Heuristics: Theory
and Applications. Kluwer Academic Publishers, Boston, MA,
407-427.

Hanafi, S., A. Freville. 1998. An efficient tabu search approach for
the 0-1 multidimensional knapsack problem. Eur. |. Oper. Res.
106 659-675.

Hochbaum, D. S. 1996. Approximation Algorithms for NP-Hard Prob-
lems. PWS Publishing Company, New York.

Ibarra, O. H., C. E. Kim. 1975. Fast approximation algorithms for
the knapsack and sum of subset problem.]. ACM 22 463-468.

Kleywegt, A.J., V. S. Nori, M. W. P. Savelsbergh. 1998. A compu-
tational approach for the inventory routing problem. Technical
report, School of Industrial and Systems Engineering, Georgia
Institute of Technology, Atlanta, GA.

Laporte, G. 1992. The vehicle routing problem: An overview of
exact and approximate algorithms. Eur. J. Oper. Res. 59 345-358.

Lee, J. S, M. Guignard. 1988. An approximate algorithm for
multidimensional zero-one knapsack problems—a parametric
approach. Management Sci. 34 402-410.

Lokketangen, A., F. W. Glover. 1998. Solving zero-one mixed integer
programming problems using tabu search. Eur. |. Oper. Res. 106
624-658.

Loulou, R., E. Michaelides. New greedy-like heuristics for the mul-
tidimensional 0-1 knapsack problem. Oper. Res. 27 1101-1114.

Magazine, M. J., M. S. Chern. 1984. A fully polynomial approxima-

tion schemes for multidimensional knapsack problem. Math.

Oper. Res. 9 244-247.

, O. Oguz. 1984. A heuristic algorithm for the multidimen-

sional zero-one knapsack problem. Eur. |. Oper. Res. 16 319-326.

Mansini, R.,, M. G. Speranza. 1997. A multidimensional knap-
sack model for the asset-backed securitization. Unpublished

manuscript.

Martello, S., P. Toth. 1990. Knapsack Problems: Algorithms and Com-
puter Implementation. Wiley, Chichester, U.K.

Meanti, M., A. H. G. Rinnooy Kan, L. Stougie, C. Vercellis. 1990.
A probabilistic analysis of the multiknapsack value function.
Math. Programming 46 237-247.

Morin, T. L. 1978. Dynamic programming and Its applications.
M. L. Puterman, ed. Computational Advances in Dynamic Pro-
gramming. Academic Press, NY, 53-90.

Nembhauser, G. L., L. A. Wolsey. 1988. Integer and Combinatorial Opti-
mization. Wiley, NY.

Peterson, C. C. 1967. Computational experience with variants of
the Balas algorithm applied to the selection of research and
development projects. Management Sci. 13 736-750.

Piersma, N. 1993. Combinatorial optimization and empirical processes.
Ph.D. thesis, The Tinbergen Institute, The Netherlands.

Powell, W. P, J. A. Shapiro. 1996. A dynamic programming approx-
imation for ultra largescale dynamic Resource allocation prob-
lems. Technical report SOR-96-06, Statistics and Operations
Research, Princeton University, Princeton, NJ.

Rothkopf, M. H., A. Pekec, R. M. Harstad. 1995. Computationally
manageable combinatorial auctions. Technical report 95-09,
Rutgers University, Piscataway, NJ.

Sahni, S. 1976. Approximate algorithms for the 0-1 knapsack prob-
lem. J. ACM 22 115-124.

Sarkar, U. K., P. P. Chakrabarti, S. Ghose, S. C. DeSarkar. 1994.
Improving greedy algorithms by lookahead-search. J. Algo-
rithms 16 1-23.

Secomandi, N. 1998. Exact and heuristic dynamic programming
algorithms for the vehicle routing problem with stochastic
demand. Ph.D. thesis, Faculty of the College of Business
Administration, University of Houston, Houston, TX.

Senju, S., Y. Toyoda. 1968. An approach to linear programming with
0-1 linear variables. Management Sci. 15 196-207.

Shih, W. 1979. A branch and bound method for the multiconstraint
zero-one knapsack problem. J. Oper. Res. Soc. 30 369-378.
Szkatula, K. 1994. The growth of multi-constraint random knap-
sacks with various right-hand sides of the constraints. Eur. .

Oper. Res. 73 199-204.

Thesen, A. 1975. A recursive branch and bound algorithm for mul-
tidimensional knapsack problem. Naval Res. Logist. 22 341-353.

Toyoda, Y. 1975. A simplified algorithm for obtaining approximate
solutions to zero-one programming problems. Management Sci.
21 1417-1427.

Van Roy, B., D. Bertsekas, Y. Lee,]J. N. Tsitsiklis. 1998. A neuro-
dynamic programming approach to retailer inventory manage-
ment. IEEE Tran. Control 16 1-23.

Weingartner, H. M. 1966. Capital budgeting of interrelated projects:
survey and synthesis. Oper. Res. 12 485-516.

Weingartner, H. M., D. N. Ness. 1967. Methods for the solution
of the multidimensional 0/1 knapsack problem. Oper. Res. 15
83-103.

Wike, E. 1998. Supply chain optimization: Formulations and algo-
rithms. Master’s thesis, MIT, Cambridge, MA.

Accepted by Thomas M. Liebling; received September 2000. This paper was with the authors 10 months for 2 revisions.

MANAGEMENT SCIENCE/ Vol. 48, No. 4, April 2002

565

