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[1] A computational analysis of the accuracy of different approximations to the Stokes
equations for momentum balance used in ice sheet modeling is performed by solving a
particular tractable form of the equations appropriate for small perturbations of the ice
surface, describing the uniform flow of ice with a Glen rheology on an infinitely long and
broad section. The approximants comprise the shallow ice approximation and various
schemes for incorporating longitudinal stresses and, in one case, the horizontal gradient of
the horizontal plane shear stresses. The simplifications lead to a vertically one-dimensional
numerical problem, whose solution can be computed rapidly. The relaxation rate of
perturbations as well as other response descriptors for the stable full system and
approximants are compared. Compared with the shallow ice approximation, the inclusion
of longitudinal stresses increases accuracy at shorter wavelengths, but accuracy is poor at
wavelengths around or less than the ice sheet thickness. Even though analysis shows
that the horizontal gradients of the horizontal plane shear stresses are of similar magnitude
to longitudinal stress effects, computations show, in agreement with glaciological belief,
that longitudinal stress effects are more significant and need to be corrected for first in
practice. Two schemes, a multilayer scheme and a one-layer scheme, are particularly good
and should be investigated further in cases where perturbations from uniformity are
large. Some other apparently plausible approximations introduce nonphysical instabilities.
New schemes need to be assessed in the way described in this paper before being used in
real ice sheet models. INDEX TERMS: 1827 Hydrology: Glaciology (1863); 3210 Mathematical

Geophysics: Modeling; 3230 Mathematical Geophysics: Numerical solutions; KEYWORDS: ice sheets,

mechanics, mathematical geophysics
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1. Introduction

[2] Ice sheet models have hitherto generally used the
shallow ice approximation to the Stokes equations, but a
recent theme has been the incorporation of further me-
chanical effects, principally longitudinal stress gradients.
(When glaciologists refer to longitudinal stresses, they
mean all stress tensor components apart from the two
horizontal plane (HP) shear components.) This paper
presents a computational analysis of the accuracy of
different approximations by comparing solutions of Fou-
rier transforms of linearizations of these approximants to
those of the full momentum-balance equations. As com-
pared with solving the full nonlinear equations, the
advantage of solving Fourier transforms of the linearized
equations, which perforce must deal with small perturba-
tions, is the greatly reduced computational effort and the
certainty that horizontal discretization effects are not

contaminating the results. These analyses of linearized
equations give a definitive result regarding Stokes equa-
tions approximants; if they are not good for small
perturbations, they are useless.
[3] The approximants all in some way start from the

shallow ice approximation (SIA [Hutter, 1983]) and, like
this approximation, involve dropping terms from the
momentum balance equations and simplifying the strain
rate definitions. However, the approximants contain more
terms than the SIA under the supposition that this
decreases the error of the approximation. This paper
investigates this assumption. The SIA is a development
of earlier shallow theories [e.g., Nye, 1959] but signifi-
cantly extends their usefulness by giving explicit error
estimates. Work in the early 1980s [Hutter, 1983; Morland,
1984] showed that the SIA was an asymptotic expansion
of the Stokes equations in terms of the aspect ratio
(height/span ratio), denoted d in this paper. The SIA is
accurate to O(d2). The SIA shows clearly that for lubri-
cation flows where sliding is small the vertical gradient of
the horizontal plane shear stresses balances the pressure
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gradients and that the neglected terms (horizontal gra-
dients of all stress components) both contribute error at
second order in the relevant expansion parameter. The
SIA actually states that for no slip the inclusion of
longitudinal stress effects does not improve accuracy
unless one simultaneously considers the horizontal gra-
dients of the HP shear stresses. However, it is generally
considered by glaciologists that one needs to model
longitudinal stress gradients first [Robin, 1967; Collins,
1968; Nye, 1969; Budd, 1970; Kamb and Echelmeyer,
1986; Dahl-Jensen, 1989; Van der Veen and Whillans, 1989;
Blatter, 1995].
[4] A confounding factor is that the accuracy of the

SIA decreases as the amount of basal slip increases
[Gudmundsson, 2003]. The shallow theory for ice shelf
spreading, where the proportion of slip is very high,
balances the vertical gradient of the HP shear stresses
with the horizontal gradients of the longitudinal stresses
as well as the pressure gradient, and it is widely
acknowledged that these gradients must play a role in
well-lubricated grounded stream flows [Muszynski and
Birchfield, 1987; MacAyeal, 1989]. Further analysis
requires the introduction of one of two equivalent param-
eters, the traction number (ratio of basal tangential traction
to surface stress deviator [Hindmarsh, 1993]) or the slip
ratio (the ratio of the sliding velocity to the difference
between surface and basal velocity). Hindmarsh [1993]
and Wilchinsky and Chugonov [2000] have shown how
the approximation error depends on the degree of slip, and
they also show that a shallow long-wavelength theory
suffices for all possible slip ratios. R. C. A. Hindmarsh
(Mechanics of the sheet-stream-shelf transition, submitted
to Continuum Mechanics and Thermodynamics, 2004,
hereinafter referred to as Hindmarsh, submitted manu-
script, 2004) has produced a single-layer scheme that is
uniformly accurate at O(d2), formally of the same order
of error as the multilayer schemes alluded to above.
Hindmarsh [1993] also analyzed a simpler scheme, with
accuracy dependent on the degree of slip with maximum
error O(d).
[5] There have been few direct comparisons of the SIA

with solutions of the Stokes equations. Johannesson [1992]
and Gudmundsson [2003] both carry out linearized studies
of the free surface problem. Gudmundsson [2003] focuses
on how the slip ratio affects the validity of the SIA. This
paper is concerned with these issues but particularly con-
siders how the accuracy of the Stokes equations approx-
imants is affected by the combined effects of slip ratio and
wavelength. Leysinger Vieli and Gudmundsson [2004]
compare solutions of the Stokes equations and the SIA
for the flow of a glacier down an inclined plane. At short
wavelength, non-SIA effects become important.
[6] The computational advantage of the SIA is that it

reduces the computational problem of Stokes flow, which
is a three-dimensional problem in four variables (three
velocity components and, commonly, the pressure) to a
two-dimensional problem in the thickness. Blatter [1995]
constructed a scaling where the longitudinal stress terms
and longitudinal stress gradient terms play a significant
role and implemented this in a numerical scheme. Such
‘‘longitudinal stress schemes’’ are used widely in ice sheet
modeling [Huybrechts, 1992; Hubbard et al., 1998; Pattyn,

2003; Ritz et al., 2001; Saito et al., 2004]. Longitudinal
stress approximations introduce the two horizontal velocity
components as field variables. One therefore has to solve
elliptic systems for two rather than for four variables of the
full system at points in three-dimensional space [see, e.g.,
Pattyn, 2003, equations (18) and (19)], and the resultant
linear systems are generally better conditioned than those
resulting from the numerical analysis of the full system.
These models are termed ‘‘multilayer models.’’ There is
also a class of longitudinal stress models that solve an
elliptic system at one elevation only (generally the upper
surface), and the resulting problem is therefore computa-
tionally two-dimensional. Clearly the accuracy of such
single-layer schemes will be less than those of multilayer
schemes, but it appears from asymptotic analysis that some
single-layer schemes may be of comparable accuracy to the
multilayer schemes (Hindmarsh, submitted manuscript,
2004) as both are formally O(d2). This paper compares the
accuracy of single-layer and multilayer schemes.
[7] The means of comparison of these various schemes

with the SIA and the full Stokes equations is as follows.
Following Johannesson [1992] and Gudmundsson [2003],
the quasi-uniform Stokes flow of a fluid with a nonlinear
rheology on the infinite plane is linearized and Fourier
transformed to provide a complex one-dimensional eigen-
value problem in the vertical domain. A similar perturbation
procedure can be carried out for approximations to the
Stokes equations. The Stokes flow is stable, and the
spectrum (i.e., the dependence of the decay constant for
perturbations on the wavelengths parallel and transverse to
the main flow direction) of this flow can be compared with
spectra computed for Stokes flow approximants. Analytical
solutions have been obtained for the case of a Newtonian
rheology by Gudmundsson [2003], who provides an up-to-
date review of previous glaciological work in this area. It
will be seen that the qualitative features of the spectra for
nonlinear fluids follow examples for linear fluids given by
Gudmundsson [2003], and in particular, the qualitative
forms of the spectra he found for flow at high slip ratio
are found to also occur for nonlinear rheologies. A similar
numerical perturbation for nonlinear rheologies has been
carried out by Johannesson [1992]. Differences between his
study and the present case lie in different formulations of
the perturbation problem, different approaches to regulariz-
ing the zeroth-order problems, and in the means of solution
of the numerical eigenvalue problem. Johannesson [1992]
combines streamline and stress functions in a finite differ-
ence formulation in physical space, while the present paper
uses a primitive variable formulation in a mapped space that
follows the free surface, with a pseudo-spectral approach to
discretization.
[8] The flow of a Glen fluid down the infinite plane leads

to an infinite viscosity at the surface owing to the vanishing
of the stress. This is not physical, and various schemes for
dealing with this have been considered [Hutter, 1983;
Johannesson, 1992; Baral et al., 2001]. In this paper, an
assumption of quasi-uniform flow is used. It is assumed that
the flow is extending (positive longitudinal strain rate) in
the main direction of flow. This establishes a nonzero strain
rate and a corresponding deviatoric stress component at
the upper surface, which prevents the viscosity from being
singular. This strain rate also induces a vertical velocity that
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balances an accumulation rate. In a situation where the ice
thickness is uniform the input of snow should require the
flow to accelerate. The assumption of quasi-uniform flow
states that when sufficiently short wavelengths are being
considered, the mean flow velocity does not increase
substantially over this length scale and can be regarded as
constant. The errors associated with this assumption obvi-
ously deteriorate as wavelength increases. We shall not be
considering this in detail as at long wavelengths the SIA,
which does not explicitly need to consider this singularity,
holds anyhow.
[9] The paper plan is to present the basic equations for

slow isothermal flow, to define several Stokes flows approx-
imants, and to describe how these equations are linearized
and their relaxation spectra computed. Comparisons are
made as a function of wavelength, slip ratio, and basal
physics.

2. Stokes Equations

[10] The setup of flow down an infinite plane is illustrated
in Figure 1. Dimensional quantities are represented by a
tilde and nondimensional quantities without a tilde. Fourier
transforms are represented by a caret. The coordinates are
(~x, ~y, ~z), where ~z is perpendicular to the base plane and ~x is
in the zeroth-order flow direction. The ~z direction is called
‘‘vertical,’’ and the ~r = (~x, ~y) plane is called ‘‘horizontal.’’
The upper and lower surfaces are given by ~z = ~s(~r, ~t) and
~z = ~b(~r, ~t), respectively, the thickness of the ice is given
by ~H(~r, ~t) = ~s(~r, ~t) � ~b(~r, ~t), and ~t represents time.
Subscripts (b) and (s) indicate evaluation at the surface or
base, respectively. The operators rrrH and rrrH� represent the
horizontal gradient and divergence, respectively.
[11] The three-dimensional velocity field is conveniently

represented by the vertical velocity ~w and the horizontal

velocity vector ~u = (~ux, ~uy), and we also use ~v = (~ux, ~uy, ~w).
The governing equations, which apply to all ~r, are

rrrrH�~uþ @~z~w ¼ 0; ~b � ~z � ~s; ð1Þ

rrrr � ~Sþ ~r~g ¼ 0; ~b � ~z � ~s; ð2Þ

~S sð Þ � n sð Þ ¼ 0; ~z ¼ ~s; ð3Þ

v bð Þ ¼ 0; no slip;

equation 6ð Þ; n bð Þ � v bð Þ ¼ 0; sliding;

9=
; ~z ¼ ~b: ð4Þ

Here, equation (1) expresses conservation of mass in the ice;
equations (2), (3), and (4) describe conservation of
momentum in the ice, where ~S is the stress tensor, ~r is
the density of ice, ~g = ~g(�, 0, �1) is the gravitational
acceleration vector, and n is the normal vector at the
indicated surface. The horizontal component of gravity �~g is
functionally equivalent to a slope of �. The constitutive
relations comprise (1) a nonlinear viscous relationship
within the ice:

~e ¼ ~Ac ~tj jn�1 ~T; ð5Þ

where ~e is the strain rate tensor, ~t is a second invariant of
the deviator stress tensor, ~T, n is the Glen index, and Ãc is a
rate factor; and (2) an isotropic sliding relation of the form

~uk bð Þ ¼ ~As
~Tt bð Þ
�� ��‘�1~Tt bð Þ=~p

n
e ; ð6Þ

Figure 1. Illustration of the problem setup and coordinate system.
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where ~uk(b) is the sliding velocity, ~Tt(b) is the basal
tangential traction, ‘ is the sliding index, Ãs is the sliding
rate factor, ~pe = �~Tn � ~pw is the effective pressure, ~Tn is the
normal traction, ~pw is the subglacial water pressure, and n is
a further index.
[12] The assumption of quasi-uniform flow states that

such a flow ~v(SQU) is given by

~v SQUð Þ ¼ ~v
SQUð Þ
~x ; 0;~v

SQUð Þ
~z

� �
; rrrr � ~v SQUð Þ ¼ 0; ð7Þ

where ~v(SQU) is treated as being independent of ~r, but
@~x~v

SQUð Þ
~x may be nonzero. Essentially, it is being assumed

that over one wavelength @~x~v
SQUð Þ
~x is sufficiently small that

the ~r independence of ~v(SQU) is a valid assumption. This
assumption is applied to the base flow about which
linearization is performed.

3. Stokes Equations Approximants

[13] We now define several Stokes equations approxim-
ants. The continuity equation rrrr � ~v = 0 is satisfied in all the
approximations. The assumption of quasi-uniform flow is
used in all cases apart from the SIA. The following notation
is used:

~t �ð Þ2
s ¼ ~t �ð Þ2

xz þ ~t �ð Þ2
yz ; 2~t �ð Þ2

‘ ¼ ~t �ð Þ2
xx þ ~t �ð Þ2

yy þ ~t �ð Þ2
zz þ 2~t �ð Þ2

xy ; ð8Þ

j ¼ x; yð Þ; k ¼ x; yð Þ; ð9Þ

and the non-HP strain rate components are always defined:

ejk ¼
1

2
@k~vj þ @j~vk
� �

: ð10Þ

The center dot is used as a ‘‘wild card’’ to represent missing
letters from items contained in the following set A =
{S, L1S1, L1S2, L1L1, L1L2, LMLa, LMLb, LTSML},
e.g., the center dot represents the whole set, L1� represents
{L1S1, L1S2, L1L1, L1L2}, etc. These abbreviations refer
to Stokes equations approximants that will be defined in
sections 3.1 and 3.2. Superscripts give information about
the approximant being used. A superscript in parentheses
containing a member of the set A shows that the
superscripted quantity has been computed according to the
corresponding approximation scheme.

3.1. Lubrication Theory Approximations

[14] In this class of approximations, vertical HP shear
stress gradients are balanced by the pressure gradients and
the downstream body force. Thus the field equations are
approximated by

@~z~t Sð Þ
xz ¼ @~x~p

Sð Þ � ~r~g�; @~z~t Sð Þ
yz ¼ @~y~p

Sð Þ;

�@~z~p
Sð Þ ¼ ~r~g;

~t Sð Þ2 ¼ ~t Sð Þ2
xz þ ~t Sð Þ2

yz ; ~e
Sð Þ
jz ¼ 1

2
@~z~u

Sð Þ
j :

9>>>>=
>>>>;

ð11Þ

where ~p is the pressure, with boundary tractions given by

~t Sð Þ
jz sð Þ ¼ 0; ~s Sð Þ

zz sð Þ ¼ 0;

~t Sð Þ
jz bð Þ ¼ ~T

Sð Þ
tj bð Þ; ~s Sð Þ

zz bð Þ ¼ �~p Sð Þ:

9>=
>; ð12Þ

3.1.1. (S): Shallow Ice Approximations
[15] This is the standard shallow ice approximation (11)

and (12).
3.1.2. (SQU): Shallow Ice Approximation With
Quasi-Uniform Flow
[16] This is as the shallow ice approximation, except

~t SQUð Þ2 ¼ t SQUð Þ2
s þ t SQUð Þ2

‘ : ð13Þ

3.2. Longitudinal Stress Approximations

[17] This class of approximations introduces horizontal
gradients of longitudinal (i.e., non-HP shear stress) compo-
nents into the momentum balance equations. The main
differences between the class members are the ways in
which these stresses are approximated. Horizontal gradients
of HP shear stresses are not included apart from one case
where they are approximated, and the horizontal gradient of
the vertical velocity is also neglected apart from one case.
Thus in all but one member of this class the field equations
are approximated by

@~z~t L�ð Þ
xz þ @~x~t L�ð Þ

xx þ @~y~t L�ð Þ
xy ¼ @~x~p

L�ð Þ � ~r~ge;

@~z~t L�ð Þ
yz þ @~y~t L�ð Þ

yy þ @~x~t L�ð Þ
xy ¼ @~y~p

L�ð Þ;

@~z~t L�ð Þ
zz ¼ @~z~p

L�ð Þ þ ~r~g;

9>>>>=
>>>>;

ð14Þ

with boundary tractions given by

~t L�ð Þ
xz sð Þ þ 2@x~s~t

L�ð Þ
xx sð Þ þ @y~s~t

L�ð Þ
xy sð Þ ¼ 0;

~t L�ð Þ
yz sð Þ þ @x~s~t

L�ð Þ
xy sð Þ þ 2@y~s~t

L�ð Þ
yy sð Þ ¼ 0;

~s L�ð Þ
zz sð Þ ¼ 0;

~t L�ð Þ
xz bð Þ þ 2@x~b~t

L�ð Þ
xx bð Þ þ @y~b~t

L�ð Þ
xy bð Þ ¼ ~T

L�ð Þ
tx bð Þ;

~t L�ð Þ
yz bð Þ þ @x~b~t

L�ð Þ
xy bð Þ þ 2@y~b~t

L�ð Þ
yy bð Þ ¼ ~T

L�ð Þ
ty bð Þ;

~s L�ð Þ
zz bð Þ ¼ ~t L�ð Þ

zz bð Þ � ~p L�ð Þ:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð15Þ

3.2.1. (L1S1): One-Layer Longitudinal Stresses Using
Txx at Surface Computed According to Shallow Ice
Approximation
[18] In this approximation, longitudinal stresses are ap-

proximated by their values at the surface using a surface
velocity field computed according the shallow approxima-
tion. Thus the momentum balance equations are approxi-
mated by equations (14) and (15), and the strain definitions
and constitutive relationships are

~e
Sð Þ
jkðsÞ ¼ ~Ac~t

L1S1ð Þn�1

‘ ~t L1S1ð Þ
jk ;

~e
L1S1ð Þ
jz ¼ 1

2
@~z~u

L1S1ð Þ
j ;

~e
L1S1ð Þ
jz ¼ ~Ac~t L1S1ð Þn�1

s ~t L1S1ð Þ
jz :

9>>>>=
>>>>;

ð16Þ
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3.2.2. (L1S2): One-Layer Longitudinal Stresses Using
exx at Surface Computed According to Shallow Ice
Approximation, Vertical Correction of Txx

[19] In this approximation, non-HP strain rates are ap-
proximated by their values at the surface using a surface
velocity field computed according the shallow approxima-
tion. Non-HP stresses are given by inserting the surface
strain rate into the constitutive relationship, using the SIA
horizontal plane shear stresses in the invariant and using the
resulting nonlinear equation to solve for the longitudinal
stress. This means that the momentum balance equations are
approximated by equations (14) and (15), but the stretching
relationships of equation (16) are replaced by

~t L1S2að Þ2 ¼ ~t Sð Þ2
s þ ~t L1S2ð Þ2

‘ ;

u zð Þ~e Sð Þ
jk sð Þ ¼ ~Ac~t L1S2að Þn�1~t L1S2ð Þ

jk ;

~t L1S2bð Þ2 ¼ ~t L1S2ð Þ2
s þ ~t L1S2ð Þ2

‘ ;

~e
L1S2ð Þ
jz ¼ 1

2
@~z~u

L1S2ð Þ
j ;

~e
L1S2ð Þ
jz ¼ ~Ac~t L1S2bð Þn�1~t L1S2ð Þ

jz :

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð17Þ

Here, u is a shape factor describing how the velocity might
vary with depth. It is set to unity in the numerical
computations for L1S2 in this paper.
3.2.3. (L1L1): One-Layer Longitudinal Stresses Using
Txx at Surface Computed by Solving Elliptic Equations
[20] Here, the surface velocities used in computing the

non-HP stresses are computed using the shear stresses
~tjz

(L1L1) in the shear strain relationship and in the sliding
relationship, but otherwise, the algorithm is the same as for
L1S1. If one excludes the within-ice deformational compo-
nent of velocity, L1L1 is identical to the approximation used
by MacAyeal [1989]. The momentum balance equations are
thus approximated by equations (14) and (15), but the
stretching relationships of equation (16) are replaced by

~e
L1L1ð Þ
jk sð Þ ¼ ~Ac~t

L1L1ð Þn�1

‘ ~t L1L1ð Þ
jk ;

~e
L1L1ð Þ
jz ¼ 1

2
@~z~u

L1L1ð Þ
j ;

~e
L1L1ð Þ
jz ¼ ~Ac~t L1L1ð Þn�1

s ~t L1L1ð Þ
jz :

9>>>>=
>>>>;

ð18Þ

3.2.4. (L1L2): One-Layer Longitudinal Stresses Using
Exx at Surface Computed by Solving Elliptic Equations,
Vertical Correction of Txx

[21] Here, the surface velocities used in computing the
non-HP stresses are computed using the shear stresses ~tjz

(S)

in the shear strain relationship and in the sliding relation-
ship, but otherwise, the algorithm is the same as for L1S2.
The momentum balance equations are thus approximated by
equations (14) and (15), but the stretching relationships of
equation (16) are replaced by

~t L1L2að Þ2 ¼ ~t Sð Þ2
s þ ~t L1L2ð Þ2

‘ ;

u zð Þ~e L1L2ð Þ
jk sð Þ ¼ ~Ac~t L1L2að Þn�1~t L1L2ð Þ

jk ;

~t L1L2bð Þ2 ¼ ~t L1L2ð Þ2
s þ ~t L1L2ð Þ2

‘ ;

~e
L1L2ð Þ
jz ¼ 1

2
@~z~u

L1L2ð Þ
j ;

~e
L1L2ð Þ
jz ¼ ~Ac~t L1L2bð Þn�1~t L1L2ð Þ

jz :

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð19Þ

Hindmarsh (submitted manuscript, 2004) shows that u = 1
is sufficient to produce a scheme with O(d2) accuracy. This
value is used in the paper. A very slightly more accurate
choice is u = ux

(SIA)/ux(s)
(SIA), but the gain in accuracy is small

compared with the other errors.
3.2.5. (LMLa): Multilayer Longitudinal Stresses
[22] This is the classic longitudinal stress scheme as used

by Blatter [1995] and by Pattyn [2003]. The momentum
balance equations are thus approximated by equations (14)
and (15), but the stretching relationships of equation (16)
are replaced by

~t LML�ð Þ2 ¼ ~t LML�ð Þ2
s þ ~t LML�ð Þ2

‘ ;

~e
LML�ð Þ
jk ¼ ~Ac~t LML�ð Þn�1~t LML�ð Þ

jk ;

~e
LMLað Þ
jz ¼ 1

2
@~z~u

LMLað Þ
j ;

~e
LML�ð Þ
jz ¼ ~Ac~t LML�ð Þn�1~t LML�ð Þ

jz :

9>>>>>>>>>=
>>>>>>>>>;

ð20Þ

[23] Compared with L1L2, the longitudinal stresses use
the velocity at the corresponding elevations rather than at
the surface, and the stress-invariant calculations are self-
consistent rather than using the SIA stress.
3.2.6. (LMLb): Multilayer Longitudinal Stresses With
Full Shear Strain Relationship
[24] This is the same as LMLa, but the stretching relation-

ships of equation (16) now include the horizontal gradient
of ~w, and thus the shear strain definition is replaced by

~e
LMLbð Þ
jz ¼ 1

2
@~z~u

LMLbð Þ
j þ @~j~w

LMLbð Þ
� �

: ð21Þ

3.2.7. (LTSML): Multilayer Longitudinal Stresses
With Horizontal Shear Stress Gradient Approximated
by SIA
[25] Horizontal gradients of vertical velocity are

neglected, so the shear relations are as equation (20). HP
shear stresses, when needed to compute the horizontal
gradient of such shear stresses, are approximated by SIA
values. In consequence, the vertical momentum balance
equation in the set of equation (14) is replaced by

@~x~t Sð Þ
xz þ @~y~t Sð Þ

yz þ @~z~t LTSMLð Þ
zz ¼ @~z~p

LTSMLð Þ þ ~r~g; ð22Þ

while the boundary conditions remain equation (15).

4. Scaling, Mapping, and Linearizations

[26] This paper deals with many distinct but closely
related quantities, and the notation follows a fairly strict
system. As explained in section 3, superscripts give infor-
mation about the approximant being used, and readers are
reminded that a superscript in parentheses containing a
member of the set A shows that the superscripted quantity
has been computed according to the corresponding approx-
imation scheme. A superscript with parentheses containing
0 or 1 refers to the perturbation order in the linearization
parameter m introduced below in equation (24). These
superscripts may appear together, in separate parentheses.
Superscripts without parentheses always occur at the right-
most end of the superscript chain and are exponents. Sub-
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scripts without parentheses occur at the leftmost end of the
subscript chain. These can refer to tensor or vector compo-
nents or to other quantities, which will be clear from the
context. Parenthetic subscripts are either (s) or (b) and refer
to evaluation of the quantity at the surface and the base,
respectively. For example, t Sð Þ 1ð Þ2

xz bð Þ is the dimensionless
first-order horizontal plane shear stress in the x direction,
raised to the power 2 and computed according to approx-
imation scheme S (actually the SIA), evaluated at the base.
[27] The variables are nondimensionalized as follows.

Thicknesses H, elevations z, s, and b, and horizontal
positions r = (x, y) are scaled by ~H* (asterisk subscripts
imply a scale magnitude). Dimensionless field quantities
within the ice are expressed in a normalized vertical
coordinate z, defined by

0 � z ¼ ~H�1 ~z� ~b
� �

¼ H�1 z� bð Þ � 1: ð23Þ

Hindmarsh and Hutter [1988] and Hindmarsh [1999] write
out the associated differential transforms. In physical units
the operators rrrrH� and rrrrH act in the (~r, ~z) coordinate
system, while in the dimensionless system they act in the
(r, z) system. Pressure and stresses are scaled by e~r~g ~H*,
where ~g = j~gj is the acceleration due to gravity. In
dimensionless form the gravity vector g has components
(e, 0, �1), where e2 � 1. The velocity scale ~v* is chosen
so as to set u

Sð Þ 0ð Þ
x sð Þ = 1. The accumulation rate a and the

velocity v are scaled by ~v*, the flux has scale given by ~q* =
~v*

~H*, and time is scaled by ~t* = ~H*/~v*. These scalings
imply Ãc* = ~v*/(

~H*~t*
n) and Ãs* = ~v*/~t*

(‘�n).
[28] The relevant field variables are subsequently linear-

ized with a small parameter m about a base case solution
(steady uniform flow down the infinite plane), for example,

H ¼ H 0ð Þ þ mH 1ð Þ r; tð Þ; v ¼ v 0ð Þ þ mv 1ð Þ r; z; tð Þ; ð24Þ

etc. These are used to derive a set of zeroth-order and first-
order equations expressing conservation of mass and
momentum. A Fourier transform in the horizontal plane is
then applied to the first-order equations, and the first-order
fields can be expressed as plane waves:

H 1ð Þ ¼ < Ĥ 1ð Þ exp lt � ik � rð Þ

 �

;

v 1ð Þ ¼ < v̂ 1ð Þ zð Þ exp lt � ik � rð Þ

 �

;

9=
; ð25Þ

etc. In particular, Ĥ (1) = ŝ(1) � b̂(1). In equation (25), l is the
eigenvalue, the wave numbers are given by k = (kx, ky), and
the caret indicates the Fourier coefficient of the transform
over the r-plane only. The scaling is constructed to ensure
that H0 and as many as is possible of the other zeroth-order
quantities are unity. The eigenvalue l is, in general, a
complex number. The real part gives the growth rate, with
negative values indicating decay. The imaginary part, when
divided by the wave number, gives the wave speed.
[29] After applying the linearization of equation (24), with

the assumption of quasi-uniform base flow, one finds that

T 0ð Þ ¼

t 0ð Þ
xx 0 t 0ð Þ

xz

0 0 0

t 0ð Þ
xz 0 t 0ð Þ

zz

2
66664

3
77775: ð26Þ

The zeroth-order momentum balance equations are

@zt 0ð Þ
xz ¼ �1; @zp

0ð Þ ¼ �1=e; ð27Þ

and the linearized zeroth-order strain-rates are

e 0ð Þ ¼

au 0ð Þ
x 0 1

2
@zu

0ð Þ
x

0 0 0

1
2
@zu

0ð Þ
x 0 �au 0ð Þ

x

2
66664

3
77775: ð28Þ

The strain rates exx and ezz are therefore directly proportional
to the horizontal velocity. The quantity a is chosen to
ensure that ws

(0) + a = 0. The strain rate invariants e and e(0)

are given by

2e2 ¼ 2e2xz þ 2e2yz þ 2e2xy þ e2xx þ e2yy þ e2zz;

e 0ð Þ2 ¼ e 0ð Þ2
xz þ e 0ð Þ2

xx ;

9=
; ð29Þ

and constitutive relationships are conveniently written in
terms of a viscosity

T ¼ 2he; h ¼ Be
1
n
�1;

T 0ð Þ ¼ 2h 0ð Þe 0ð Þ; h 0ð Þ ¼ Be 0ð Þ1
n
�1;

B ¼ A
�1

n
c =2:

9>>>>=
>>>>;

ð30Þ

At the surface the zeroth-order boundary conditions are

t 0ð Þ
xz sð Þ ¼ 0; t 0ð Þ

yz sð Þ ¼ 0; s 0ð Þ
zz sð Þ ¼ 0; ð31Þ

while at the base they are

t 0ð Þ
jz bð Þ ¼ T

0ð Þ
tj bð Þ;

s 0ð Þ
zz bð Þ ¼ T

0ð Þ
n bð Þ; w

0ð Þ
bð Þ ¼ 0;

u
0ð Þ
bð Þ ¼ Ac T

0ð Þ
t bð Þ

��� ���‘�1

T
0ð Þ
t bð Þ=p

0ð Þl
e :

9>>>>>=
>>>>>;

ð32Þ

The zeroth-order solution is similar to the shallow ice
approximation, but the assumption of quasi-uniform flow
creates some differences as the tensor components txx

(0), tzz
(0),

exx
(0), and ezz

(0) contribute to the respective invariants and
hence to the viscosity. The nonlinear equation set

t 0ð Þ
xz ¼ 1� z; h 0ð Þ ¼ Be 0ð Þ1

n
�1;

e 0ð Þ2 ¼ e 0ð Þ2
xz þ e 0ð Þ2

xx ; e 0ð Þ
xx ¼ au 0ð Þ=u

0ð Þ
sð Þ ;

u 0ð Þ ¼
R z
0

t 0ð Þ
xz

h 0ð Þ dzþ u
0ð Þ
bð Þ;

w 0ð Þ ¼
R z
0
e 0ð Þ
xx dz; w

0ð Þ
sð Þ ¼ �a 0ð Þ;

9>>>>>>>>>=
>>>>>>>>>;

ð33Þ

with boundary conditions equations (31) and (32) is solved
by a direct iteration starting from the shallow ice
approximation. The computation of a forms part of the
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iteration, ensuring that the vertical velocity balances the
accumulation rate at the upper surface. This procedure also
incorporates longitudinal stretching into the viscosity
calculation. The assumption of quasi-uniform flow means
that we treat ux

(0) as being independent of x, even though it is
not; @xux

(0) is actually nonzero, but the product of @xux
(0)

and the wavelength of interest is small. This construction
avoids the difficulties of having a singular h(0) at the upper
surface.
[30] The first-order equations are given in Appendix A.

The combination of equations (30), (A1), (A3), (A8), and
(A9) leads to a linear eigenvalue problem, which is solved
using pseudo-spectral methods [Fornberg, 1996]. Details of
the implementation follow examples given by Trefethen
[2000]. The solution gives the eigenvalue l as a function
of kx, ky. Twenty-one Chebyshev points were used in the
discretization, which gives very high accuracy in the
numerical solution. The parameters of the problem are
the downstream body-force component e, the rheological
indices n, ‘, and n, the slip ratio (the ratio of the sliding
velocity to the difference between surface and basal
velocity) specified by varying Ac, and the accumulation
rate (which affects the parameter a).
[31] To compute the eigenvalue, one also needs the flux

Q̂
1ð Þ ¼ Ĥ 1ð Þ

H 0ð Þ Q
0ð Þ þ H 0ð Þ

Z 1

0

û 1ð Þdz; ð34Þ

which depends linearly upon Ĥ (1). The first-order continuity
equation in Fourier space is

lĤ 1ð Þ � ik � Q̂ 1ð Þ ¼ â 1ð Þ: ð35Þ

[32] Cases LMLa, LMLb, and LTSML can be repre-
sented in the numerical eigenvalue solver by minor code
adjustments. Cases S, L1S1, L1S2, L1L1, and L1L2 are
more conveniently performed semianalytically using
quadratures. Case S has analytical solutions discussed by,
e.g., Gudmundsson [2003]. The horizontal velocities,
which can be substituted into equation (34), are given
by equations (B5), (B18), (B4), and (B17), respectively.

5. Comparisons

5.1. Comparison With Analytical Solution for
Newtonian Rheology

[33] Gudmundsson [2003] gives a solution for the linear-
ized free-surface flow of a Newtonian fluid down the infinite
plane. Analytical spectra (i.e., the dependence of <(l) on the
wavelength vector L = (Lx, Ly)) computed using this solution
can be compared with those computed using the numerical
eigensolver described in section 4. Results of the comparison
are shown in Figure 2. In this case and in all cases reported
here the bed is assumed to be undeforming (@tb

(1)(r, t) = 0)
and the first-order accumulation rate â(1) = 0.
[34] As usually happens with free-surface flows, the slope

of the spectrum @<(l)/@Lx or @<(l)/@Ly depends upon the
wavelength, with the fastest decay (most negative value of
<(l)) occurring at wavelengths comparable with the thick-
ness of the fluid. For smaller wavelengths the slope is
negative, while for larger wavelengths the slope is positive.
This is shown in Figure 2a. An excellent fit between

analytical and numerical solutions is found, on account
of the very high accuracy spectral method being used.
Gudmundsson [2003] showed that for high slip ratio, the
maximum decay rate occurs for an extended band of wave-
lengths, starting at a wavelength around the ice sheet
thickness (Figure 2c). The eigensolver is equally accurate
under these conditions.
[35] For plane flow the kinematic wave speed is given by

=(l)/kx. At long wavelengths the kinematic wave speed is
n + 1 or n + 1 times the surface velocity (unity in the present
scaling) for the extremes of zero slip and perfect slip, while
at short wavelength, waves are passively advected, with
wave speed unity in this scaling. Figures 2b and 2d
demonstrate excellent fits between the numerical Stokes
solver and the analytical solution for the imaginary compo-
nent of the eigenvalue.
[36] Figure 2 also shows a comparison between the

numerical solution of model LMLa and an analytical
solution for this model when the rheology is linear. The
derivation is outlined in Appendix C. For the real part of the
eigenvalue (Figures 2a and 2c) the fit is excellent. When
one considers the wave velocity (Figures 2b and 2d) for
flow with no slip, the analytical solution for LMLa and the
numerical solution show some divergence at shorter (less
than unity) wavelengths, although this is not apparent for
flow with sliding. The high-accuracy spectral scheme being
used suggests that this divergence is not due to numerical
truncation error, and it should be taken as a caution that the
computation of wave motion and phasing may be more
sensitive to errors at shorter wavelengths. This will be seen
to be a general pattern.
[37] Both analytical solutions have been obtained by

applying the boundary conditions at the perturbed position
of the surfaces and do not have any coordinate stretching
terms. The closeness of fit strongly suggests that having a
perturbed coordinate system does not affect the accuracy of
the solution for the real part of the solution, although this
may not be the case for the imaginary part. From a
dynamical aspect the rapid decay of perturbations means
that kinematic waves move very short distances before
disappearing [Gudmundsson, 2003], so the relative inaccu-
racy involved in the computation of the imaginary compo-
nent is probably not important in the dynamic response.
However, the amplitude and phasing of steady surface
profiles with respect to basal profiles are, in principle,
affected by both components and will be considered more
closely in the comparisons for a nonlinear rheology that
follow (section 5.2).

5.2. Comparisons for Glen Rheologies, Varying
Slip Ratios

[38] The main purpose of this paper is now reached,
where spectra and other response descriptors from Stokes
equations approximants are compared with those for the full
Stokes equations. In all the many cases investigated (most
not reported here in detail), there is no indication of any
instability (a positive eigenvalue). Results are shown in
Figures 3 (no slip), 4 (moderate slip), and 5 (very high slip).
These cases are for a Glen rheology, with the Stokes equa-
tions spectra obtained numerically. The results are quoted in
dimensionless units but roughly correspond to a glacier with
Ãc = 5 � 10�24 Pa�3 s, ã = 0.1 m yr�1, ~r = 917 kg m�3, ~g =
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9.81 m s�2, and ~H = 2000 m. The parameters as specified
create an upper surface velocity of roughly 5 � 102 m yr�1.
[39] Four response descriptors are analyzed; the growth

rate <(l), the wave speed =(l)/jkj, the steady state surface
response js(1)(t ! 1)/b(1)j, and the steady state surface
phasing arg (s(1) (t ! 1)/b(1)). Figures 3 and 5 show these
quantities plotted as a function of Lx = 2p/kx. Figure 4
shows four spectra, two as a function of the x wavelength,
the other two as a function of the y wavelength. The
orthogonal wavelength is kept constant either at infinity or

at ten ice thicknesses. These quantities are all plotted as for
Lx � 1.
[40] In all cases shown, the general pattern of the Stokes

equation spectrum (i.e., <(l) plotted as a function of Lj) is
the same as for the linear rheology. For smaller wavelengths
the slope is negative, while for larger wavelengths the slope
is positive. For the Newtonian case the curvature (in log-log
space) is always positive, but for the Glen rheology, there
are points of inflexion on the ascending branch, at interme-
diate wavelengths. In this case the SIA is a substantially

Figure 2. Comparison of numerical solutions with analytical solutions for a Newtonian rheology, for
full Stokes systems [Gudmundsson, 2003], and for model LMLa (Appendix C). (a, c) Growth rate <(l).
(b, d) Wave speed =(l)/jkj plotted as a function of the wavelength Lx = 2p/k. The transverse wavelength
Ly = 1. Parameters n = 1, a = 0, ‘ = 1, and n = 0. Figures 2a and 2b are for no slip, � = 0.01; Figures 2c
and 2d are for slip ratio 10, � = 0.00056. Note that analytical and numerical solutions are virtually
coincident for the full Stokes system and the approximant LMLa. Also note that analytical and numerical
solutions are superimposed in all panels except Figure 2b.
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worse approximation than the Newtonian case, departing
from the Stokes spectrum at wavelengths of around 102 ice
sheet thicknesses, as compared with 101 for the Newtonian
case. This effect is even more severe for high slip ratios.
Johannesson [1992] noticed and commented on the delete-
rious effects of nonlinear rheologies on the SIA.
[41] As expected, accuracy of the L approximants com-

pared with the full Stokes equations is poor for Lx < 1.

However, apart from two cases mentioned below, where the
approximants produce spurious instabilities, for wavelengths
less than unity the decay rate is quicker for the approximants
than for the full system, a feature exhibited in Figure 2. This is
a desirable feature as it means that noise will decay more
quickly than signal.
[42] The approximants L1S1 and L1S2 are not good.

While L1S1 is better than the SIA over a certain band of

Figure 3. Response of the different indicated parameters for different approximants (see section 3 for
definitions) plotted as a function of wavelength Lx. (a) Growth rate. (b) Kinematic wave velocity.
(c) Transfer amplitude for steady flow. (d) Transfer phasing for steady flow. Flow occurs without slip and
with internal deformation according to a Glen rheology. Case L1L2 is not plotted in certain regions
because of instability (positive eigenvalue); cases L1S1, L1S2, and LMLb are not plotted in Figures 3c
and 3d. Parameters are n = 3, a = 2 � 10�4, e = 0.0079, ‘ = 3, and n = 0. Note the extensive
superimposing of different lines for wavelengths �5.
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wavelengths, at shorter wavelengths it becomes very much
more inaccurate. L1S2 is dangerous, becoming unstable at
quite long wavelengths (positive values not shown on the
log-log plot).
[43] The single-layer approximant L1L1 is stable but

generally not very accurate except at very high slip ratio.
Since this is the mechanical model used in the shelf approx-
imation, this is not unexpected. The approximation generally
underestimates the rate of decay, which means that errors will
persist. A closer investigation suggests that the problem lies
in the use of the surface viscosity, which can be far too high.

[44] The multilayer approximant LMLb is generally very
good, but can become unstable at wavelengths less than the
ice thickness (not shown) and for this reason should be
avoided. Of course, one would not be using this approx-
imant to model short wavelength features, but this instabil-
ity might be expected to wreak havoc in numerical schemes.
Not shown in the graph is the approximant LTSML. This is
also unstable at wavelengths less than the ice thickness and
should also be avoided.
[45] This leaves the single-layer approximant L1L2 and

the multilayer approximant LMLa. They represent the

Figure 4. Growth rate <(l) for different approximants as a function of one of the wavelength
components (Lx, Ly) for sliding with moderate slip ratio = 1.17 � 102. Constant wavelengths and
directions are indicated in the titles: abscissae for (a and c) the x wavelength and for (b and d) the y
wavelength. Parameters are n = 3, a = 2 � 10�4, e = 0.0017, ‘ = 3, and n = 0. Note the extensive
superimposing of different lines for wavelengths �5.
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wavelength dependence of the spectrum very well to quite
near the point of maximum decay rate. Both fail to capture
the descending branch at short (subice thickness) wave-
lengths, as expected. The multilayer scheme is generally
more accurate at shorter wavelengths but not overwhelm-
ingly so. Both methods are reasonably accurate down to
about five ice sheet thicknesses.
[46] At high slip ratios the extended band of maximum

decay rate is found for nonlinear rheologies. The con-
clusions reached above about the relative merits of the

different approximation schemes hold for the high-slip
case as well.
[47] Turning now to the other response descriptors =(l)/

jkj, js(1)(t ! 1)/b(1)j, and arg (s(1) (t ! 1)/b(1)), shown in
Figures 3 and 5, one sees that only approximants LMLa and
LMLb perform consistently well for these descriptors. L1L1
is rather inaccurate at low slip ratios, while L1L2 is not of
high accuracy at very high slip ratios. This occurs at short
wavelengths, and even at high slip ratios, L1L2 looks
useable down to about ten ice sheet thicknesses or possibly

Figure 5. Response parameters ((a) growth rate, (b) kinematic wave velocity, (c) transfer amplitude for
steady flow, and (d) transfer phasing for steady flow) for different approximants plotted as a function of
wavelength Lx for sliding with very high slip ratio 6.19 � 103. Parameters are n = 3, a = 2 � 10�4, e =
0.00028, ‘ = 3, and n = 0. Other details are as for Figure 3. Note the extensive superimposing of different
lines for wavelengths �5.

F01012 HINDMARSH: HIGHER-ORDER GLACIER MODELS

11 of 15

F01012



better. In a practical implementation, L1L1 and L1L2 could
be used in different zones depending on the slip ratio.

6. Discussion and Conclusions

[48] This paper contains an analysis, somewhat more
comprehensive than previous studies, of how the inclusion
of longitudinal stress effects improve the shallow ice
approximation. In particular, it contains the first quantitative
comparison of these approximants with each other and the
full Stokes equations over the relevant wavelengths. This
has been accomplished by the solution of a numerical
eigenvalue problem. These solutions are sufficiently
accurate to be certain that the differences in the results
of the Stokes equations approximant are not contaminated
with numerical truncation error. The numerical method
has been compared with an analytical solution owing to
Gudmundsson [2003], and the good agreement with spectra
from the approximant L1L2, whose computation does not
involve the solution of a numerical eigenvalue problem, is
another source of confidence in the eigensolution.
[49] It is clear that inclusion of longitudinal stresses does

force ice sheet dynamics to be closer to those associated
with full solutions of the Stokes equations. As has been long
believed, inclusion of longitudinal stresses increases accu-
racy at shorter wavelengths. Two schemes, a multilayer
scheme and a single-layer scheme, are particularly good,
with the single-layer scheme being nearly as good as the
multilayer scheme. If this statement holds true for cases
involving larger perturbations, this will permit considerable
computational savings by reducing the dimensionality of the
computational problem. In the examples shown in this
paper, the use of longitudinal stress schemes increases
accuracy at smaller wavelengths by a factor of around 20
compared with the SIA.
[50] Even though asymptotic analysis shows that the

horizontal shear stress gradients are similarly ordered to
longitudinal stress effects in sheet flow, computations show,
in agreement with glaciological belief, that representing
longitudinal stress terms alone improves the approximation
considerably. Two longitudinal stress schemes, L1L2 and
LMLa, are adequate approximations. LMLa is the compu-
tationally three-dimensional scheme used by, e.g., Blatter
[1995] and Pattyn [2003]. It is slightly more accurate than
L1L2, but L1L2 has the advantage that it is computationally
two-dimensional as it is a vertically integrated model. More
testing is needed to see whether the slightly lesser accuracy
of L1L2 proves significantly deleterious in situations more
general than small departures from uniformity. There is also
a warning that some other plausible approximations intro-
duce nonphysical instabilities and are potentially dangerous;
approximation schemes should not be introduced without
undergoing the testing described in this paper.
[51] The SIA can be used to model long-wavelength

flows at low slip ratios. Once slip ratios become large, or
wavelengths short, longitudinal stress approximations need
to be included. This is known for the Newtonian rheology
case from work by, e.g., Gudmundsson [2003], but guidance
as to whether a particular case requires correction for
longitudinal stress effects for a nonlinear case can be
obtained by carrying out the analysis described in this
paper. At wavelengths less than around five times the ice

thickness, relaxation rates start to decrease as wavelength
decreases; the maximum wavelength for this behavior is not
strongly affected by the slip ratio. This behavior is repre-
sented by neither the SIA or with longitudinal stress
schemes, and here, the full Stokes equations must be solved.

Appendix A: Linearized Stokes Equations

[52] The equations in this section may be derived from
the governing equations by linearizing and performing a
Fourier transform. The algebraic process is straightforward,
and we simply quote the results. The first-order Fourier-
transformed momentum balance equations are

@zt̂ 1ð Þ
xz � ikxt̂ 1ð Þ

xx � ikyt̂ 1ð Þ
xy þ ikxp̂

1ð Þ

¼ �ikx@zp
0ð ÞẐ 1ð Þ þ H 1ð Þ@zt 0ð Þ

xz þ ikx@zt 0ð Þ
xx Ẑ

1ð Þ;

@zt̂ 1ð Þ
yz � ikyt̂ 1ð Þ

yy � ikxt̂ 1ð Þ
xy þ ikyp̂

1ð Þ

¼ �iky@zp
0ð ÞẐ 1ð Þ;

@zt̂ 1ð Þ
zz � ikxt̂ 1ð Þ

xz � ikyt̂ 1ð Þ
yz � @zp̂

1ð Þ

¼ �H 1ð Þ@zp
0ð Þ þ ikx@zt 0ð Þ

xz Ẑ
1ð Þ;

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ðA1Þ

where

Z 1ð Þ ¼ � zH 1ð Þ þ b 1ð Þ� �
;

@xZ
1ð Þ ¼ �@xb

1ð Þ � z@xH 1ð Þ:

9=
; ðA2Þ

The first-order Fourier-transformed strain rates are

ê 1ð Þ
xx ¼ �ikx û 1ð Þ þ 1þ að ÞÛ 1ð Þ� �

;

ê 1ð Þ
xy ¼ � i

2
kxv̂

1ð Þ þ ky û 1ð Þ þ Û 1ð Þ
 �� �
;

ê 1ð Þ
xz ¼ 1

2
@zû

1ð Þ � Û* 1ð Þ � ikx ŵ 1ð Þ þ Ŵ 1ð Þ
 �� �
;

ê 1ð Þ
yy ¼ �ikyv̂

1ð Þ;

ê 1ð Þ
yz ¼ 1

2
@zv̂

1ð Þ � iky ŵ 1ð Þ þ Ŵ 1ð Þ
 �� �
;

ê 1ð Þ
zz ¼ @zŵ

1ð Þ � Ŵ* 1ð Þ þ ikxaÛ 1ð Þ;

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ðA3Þ

where

Û 1ð Þ ¼ @zu
0ð ÞẐ 1ð Þ; Ŵ 1ð Þ ¼ @zw

0ð ÞẐ 1ð Þ;

Û* 1ð Þ ¼ @zu
0ð ÞĤ 1ð Þ; Ŵ* 1ð Þ ¼ @zw

0ð ÞĤ 1ð Þ:

9=
; ðA4Þ

At first order the strain rate invariant is

2e 0ð Þê 1ð Þ ¼ 2e 0ð Þ
xz ê

1ð Þ
xz þ e 0ð Þ

xx ê
1ð Þ
xx � e 0ð Þ

xx ê
1ð Þ
zz ; ðA5Þ

and the first-order viscosity is given by

ĥ 1ð Þ ¼ 1� n

n

h 0ð Þ

e 0ð Þ2 e 0ð Þ
xz ê

1ð Þ
xz þ 1

2
e 0ð Þ
xx ê 1ð Þ

xx � ê 1ð Þ
zz

� �� �
: ðA6Þ
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The first-order constitutive relationship is

T 1ð Þ ¼ 2h 0ð Þe 1ð Þ þ 2h 1ð Þe 0ð Þ: ðA7Þ

The first-order Fourier-transformed upper-surface boundary
conditions are

t̂ 1ð Þ
xz sð Þ þ 2ikxŝ

1ð Þt 0ð Þ
xx sð Þ ¼ 0;

t 1ð Þ
yz sð Þ ¼ 0;

ŝ 1ð Þ
zz sð Þ þ 2ikxŝ

1ð Þt 0ð Þ
xz sð Þ ¼ 0;

9>>>>>=
>>>>>;

ðA8Þ

while the first-order Fourier-transformed basal boundary
conditions are

T̂
1ð Þ

tx bð Þ ¼ t̂ 1ð Þ
xz bð Þ þ 2ikxb̂

1ð Þt 0ð Þ
xx bð Þ; T̂

1ð Þ
ty bð Þ ¼ t 1ð Þ

yz bð Þ;

T̂
1ð Þ

n bð Þ ¼ ŝ 1ð Þ
zz bð Þ þ 2ikxb̂

1ð Þt 0ð Þ
xz bð Þ;

û
1ð Þ
bð Þ ¼ RtT̂

1ð Þ
t bð Þ þ RnT̂

1ð Þ
n bð Þ; ŵ

1ð Þ
bð Þ ¼ �ib̂ 1ð Þu

0ð Þ
bð Þ � k;

9>>>>>=
>>>>>;

ðA9Þ

where the quantities Rt = (Rtx, Rty), Rn are the linearized
coefficients for the sliding law, as given by Hindmarsh
[1998, equation (19)].

Appendix B: Spectra for Stokes Equations
Approximants

[53] In this document, some single-layer longitudinal
stress theories are subjected to a first-order perturbation.
Where results are quoted explicitly as integrals, this indi-
cates that they were evaluated numerically using spectral
integration [Trefethen, 2000].

B1. LIL1, L1S1

[54] Linearizing and dropping the (L1L1) superscripts,
the first-order equations momentum balance equations in
Fourier space are

@zt̂ 1ð Þ
xz � 2ikxt̂

1ð Þ
xx sð Þ � ikyt̂

1ð Þ
xy sð Þ ¼

�ikxrgŝ 1ð Þ þ Ĥ 1ð Þ@zt 0ð Þ
xz ;

@zt̂ 1ð Þ
yz � 2ikyt̂

1ð Þ
yy sð Þ � ikxt̂

1ð Þ
xy sð Þ ¼

�ikyrgŝ 1ð Þ;

9>>>>>>>>=
>>>>>>>>;

ðB1Þ

and the constitutive relationships are

t̂ 1ð Þ
jk ¼ 1

n
Be

0ð Þm
xx sð Þê

1ð Þ
jk sð Þ;

@zû
1ð Þ
x ¼ 2nAt 0ð Þn�1

xz t̂ 1ð Þ
xz þ Ĥ 1ð Þ@zu

0ð Þ
x ;

@zû
1ð Þ
y ¼ 2At 0ð Þn�1

xz t̂ 1ð Þ
yz ;

m ¼ 1
n
� 1:

9>>>>>>>>=
>>>>>>>>;

ðB2Þ

Letting

Qx � Rtx þ n u 0ð Þ
x � u

0ð Þ
x bð Þ

� �
;

Qy � Rty þ u 0ð Þ
y � u

0ð Þ
y bð Þ

� �
;

9>=
>; ðB3Þ

the integration of equations (B2) and (B3) together with the
definitions of the strain rate components and the boundary
conditions of equations (A8) and (A9) yields

û 1ð Þ þ LLLLû 1ð Þ
sð Þ ¼ û Sð Þ 1ð Þ;

LLLL ¼ h0 sð Þ

Qx
4
n
k2x þ k2y

� �
Qxkxky

Qykykx Qy 4k2y þ k2x

� �
2
664

3
775;

which yields this matrix equation for the surface velocities:

LLLL sð Þ þ I
� �

û
1ð Þ
sð Þ ¼ û

Sð Þ 1ð Þ
sð Þ ;

and this expression for the horizontal velocity vector:

û 1ð Þ ¼ û Sð Þ 1ð Þ � LLLL Iþ LLLL sð Þ
� ��1

û
Sð Þ 1ð Þ
sð Þ : ðB4Þ

The above is the corrected perturbed velocity using the O(d)
correction.
[55] A less accurate variant is to use the SIA to compute

the surface velocity used in the longitudinal stress correc-
tion. This is given by the formula

û L1S1ð Þ 1ð Þ ¼ û Sð Þ 1ð Þ � LLLL I� LLLL sð Þ
� �

û
Sð Þ 1ð Þ
sð Þ : ðB5Þ

B2. L1L2, L1S2

[56] This uses a different expression for computing the
longitudinal stresses. The mechanical equations are the
same, but the invariant/viscosity approximations are some-
what different:

@zt 0ð Þ
xz ¼ �1; t 0ð Þ

jk ¼ Be
0ð Þm
sð Þ e

0ð Þ
jk ;

@zu
0ð Þ
j ¼ At 0ð Þnt 0ð Þ

jz ; t 0ð Þ2 ¼ t 0ð Þ2
s þ t 0ð Þ2

‘ :

9=
; ðB6Þ

The first-order momentum balance equations are equa-
tion (14), and the first-order shear relationships are

@zû
1ð Þ
x ¼ C 0ð Þ

xzxzt̂
1ð Þ
xz þ C 0ð Þ

xzxxt̂
1ð Þ
xx þ Ĥ 1ð Þ@zu

0ð Þ
x ;

C 0ð Þ
xzxz ¼ 1

h 0ð Þ 1þ n� 1ð Þ t
0ð Þ2
xz

t 0ð Þ2

� �
;

C 0ð Þ
xzxx ¼

n�1ð Þ
h 0ð Þ

t 0ð Þ
xx t

0ð Þ
xz

t 0ð Þ2

� �
;

@zû
1ð Þ
y ¼ 1

h 0ð Þ t̂ 1ð Þ
yz ;

uê 1ð Þ
xx sð Þ ¼ C 0ð Þ

xxxxt̂
1ð Þ
xx þ C 0ð Þ

xxxzt̂
Sð Þ 1ð Þ
xz ;

t̂ Sð Þ 1ð Þ
xz ¼ t Sð Þ 0ð Þ

xz ikxŝ
1ð Þ þ H 1ð Þ� �

;

C 0ð Þ
xxxx ¼ 1

2h 0ð Þ 1þ n� 1ð Þ t 0ð Þ2
xx

t 0ð Þ2

� �� �
;

C 0ð Þ
xxxz ¼

n�1ð Þ
2h 0ð Þ

t 0ð Þ
xx t

0ð Þ
xz

t 0ð Þ2

� �
:

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;

ðB7Þ

Also, the following form is useful:

t̂ 1ð Þ
xx ¼ 1

C
0ð Þ
xxxx

uê 1ð Þ
xx sð Þ � C

0ð Þ
2 t̂ Sð Þ 1ð Þ

xz ;

C
0ð Þ
2 ¼ C

0ð Þ
xxxz

C
0ð Þ
xxxx

:

9>=
>; ðB8Þ
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The remaining statements of the constitutive relationships
are

@zû
1ð Þ
y ¼ 1

h 0ð Þ t̂ 1ð Þ
yz ;

1
h 0ð Þ ¼ 2At 0ð Þ n�1ð Þ;

uê 1ð Þ
yy sð Þ ¼

1
2h 0ð Þ t̂ 1ð Þ

yy ; uê 1ð Þ
xy sð Þ ¼

1
2h 0ð Þ t̂ 1ð Þ

xy :

9=
; ðB9Þ

Defining

yx ¼ 2ikx
R 1

z
udz0

C
0ð Þ
xxxx

;

yz ¼ 1� zð Þ þ 2ikx
R 1

z C
0ð Þ
2 1� z0ð Þdz0;

yH ¼ �ikx
R 1

z @zt 0ð Þ
xx z

0dz0;

yb ¼ �ikx t 0ð Þ
xx sð Þ � t 0ð Þ

xx

� �
;yy ¼ 2

R 1

z uh 0ð Þdz0;

Fx ¼
R z
0

C 0ð Þ
xzxzyx � C

0ð Þ
xzxx

C
0ð Þ
xxxx

� �
dz0 þ Rtxyx bð Þ;

Fz ¼
R z
0

C 0ð Þ
xzxzyz � C 0ð Þ

xzxxC
0ð Þ
2

� �
dz0 þ Rtxyz bð Þ;

Fy ¼
R z
0
C 0ð Þ
xzxzyydz

0 þ Rtxyy bð Þ;

FH ¼
R z
0
C 0ð Þ
xzxzyHdz

0 þ RtxyH bð Þ;

Fb ¼
R z
0
C 0ð Þ
xzxzybdz

0 þ Rtxyb bð Þ;

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ðB10Þ

integration of equations (14) and (B7) and the boundary
conditions of equations (A8) and (A9) yields

u 1ð Þ
x þ ê

1ð Þ
xx sð ÞFx þ ikyê

1ð Þ
xy sð ÞFy ¼ Fzt̂

Sð Þ 1ð Þ
xz bð Þ þ FHĤ

1ð Þ þ Fbb̂
1ð Þ

þ Ĥ 1ð Þ u 0ð Þ � u
0ð Þ
bð Þ

� �
: ðB11Þ

The solution for the transverse component of the horizontal
velocity is given by

Gx ¼
R z
0

1
h 0ð Þ yydz

0 þ Rtyyy bð Þ;

Gy ¼ 2
R z
0

1
h 0ð Þ yydz

0 þ 2Rtyyy bð Þ;

û 1ð Þ
y ¼ � k2y Gy þ 1

2
k2x Gx

� �
û

1ð Þ
y sð Þ�

1
2
kykxGxû

1ð Þ
x sð Þ þ û SQUð Þ 1ð Þ

y ;

9>>>>>>>>>=
>>>>>>>>>;

ðB12Þ

and the following equation for the velocity field emerges:

û 1ð Þ þ &û
1ð Þ
sð Þ ¼ r; ðB13Þ

where

r ¼
Fzt̂

Sð Þ 1ð Þ
xz bð Þ þ FHĤ

1ð Þ þ Ĥ 1ð Þ u
0ð Þ
x sð Þ � u

0ð Þ
x bð Þ

� �

û
SQUð Þ 1ð Þ
y sð Þ

2
64

3
75; ðB14Þ

& ¼
�ikxFx þ 1

2
k2y Fy

� �
1
2
kxkyFy

1
2
kxkyGx k2y Gy þ 1

2
k2x Gx

� �
2
64

3
75: ðB15Þ

In addition, the surface velocities may be computed to give
the complete velocity field:

u
1ð Þ
sð Þ ¼ Iþ & sð Þ

� ��1
r sð Þ ðB16Þ

u 1ð Þ ¼ r� & Iþ & sð Þ
� ��1

r sð Þ ðB17Þ

if we use the SIA mechanics and shear relationship for the
surface velocity, u

Sð Þ 1ð Þ
sð Þ , which can be substituted for the

surface velocity in equation (B13) to get

û 1ð Þ ¼ r� &û
Sð Þ 1ð Þ
sð Þ : ðB18Þ

This turns out to be unstable, at least some of the time.

Appendix C: Analytical Solution for LMLa

[57] When the rheology is Newtonian, the model LMLa,
defined by equations (14), (15), and (20), can be perturbed
about the zeroth-order solution (equation (33)) to yield
some first-order equations. In this Appendix an analytical
solution of these equations for the case of plane flow is
presented. The procedure of Gudmundsson [2003] is fol-
lowed, and a transformed coordinate system is not used.
Thus, instead of equation (25), one has

H 1ð Þ ¼ < Ĥ 1ð Þ exp lt � ik � rð Þ

 �

;

v 1ð Þ ¼ < v̂ 1ð Þ zð Þ exp lt � ik � rð Þ

 �

:

9=
; ðC1Þ

[58] The scaling is specified such that in the zeroth-order
flow the base and upper surface are at z = 0 and z = 1,
respectively. This means that the derivatives with respect to
z in equation (33) are numerically equal to derivatives with
respect to z (for the zeroth-order equations only). The first-
order boundary conditions are applied at z = b(1) and z = s(1),
respectively. The field equations are

@zt 1ð Þ
xz þ @xt 1ð Þ

xx ¼ @xp
1ð Þ; �@zt 1ð Þ

xx ¼ @zp
1ð Þ;

e 1ð Þ
xz ¼ 1

2
@zu

1ð Þ; e 1ð Þ
xx ¼ @xu

1ð Þ;

t 1ð Þ
xz ¼ h@zu 1ð Þ; t 1ð Þ

xx ¼ 2h@xu 1ð Þ

9>>>>=
>>>>;

ðC2Þ

applied in b(1) � z � s(1), and therefore

h@2
z u

1ð Þ þ 2h@2
x u

1ð Þ ¼ @xp
1ð Þ; �2h@x@zu 1ð Þ ¼ @zp

1ð Þ; ðC3Þ

which in Fourier space can be written

hd2z û
1ð Þ � 2k2x hû

1ð Þ ¼ �ikxp̂
1ð Þ; 2ikxhdzû 1ð Þ ¼ dzp̂

1ð Þ; ðC4Þ

which has solution

û 1ð Þ ¼ U1 exp �2kxzð Þ þ U2 exp 2kxzð Þ þ U3;

p̂ 1ð Þ ¼ 2ikxh U1 exp �2kxzð Þ þ U2 exp 2kxzð Þ � U3ð Þ;

ŵ 1ð Þ ¼ � i
2
U1 exp �2kxzð Þ þ i

2
U2 exp 2kxzð Þ þ iU3zþW1;

9>>>>=
>>>>;
ðC5Þ
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where the constants U1, U2, U3, and W1 are given by the
boundary conditions. The first-order Fourier-transformed
boundary conditions evaluated at s(1) and b(1), correspond-
ing to equations (A8) and (A9), are

t̂ 1ð Þ
xz sð Þ þ s 1ð Þ@zt

0ð Þ
xz sð Þ ¼ 0;

ŝ 1ð Þ
zz sð Þ ¼ s 1ð Þ@zp

0ð Þ
sð Þ ;

T̂
1ð Þ

tx bð Þ ¼ t̂ 1ð Þ
xz bð Þ þ b 1ð Þ@zt

0ð Þ
xz bð Þ;

T̂
1ð Þ

n bð Þ ¼ ŝ 1ð Þ
zz bð Þ � b 1ð Þ@zp

0ð Þ
bð Þ;

û
1ð Þ
bð Þ þ b 1ð Þ@zu

0ð Þ
bð Þ ¼ RtT̂

1ð Þ
tx bð Þ þ RnT̂

1ð Þ
n bð Þ;

ŵ
1ð Þ
bð Þ ¼ �ib̂ 1ð Þu

0ð Þ
bð Þkx:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ðC6Þ

Substitution of the solutions of equation (C5) into equation
(C6) yields four linear equations in U1, U2, U3, and W1. The
solutions are rather lengthy and consequently are not
presented here, but they are readily obtainable using
computer algebra software.

[59] Acknowledgments. Thanks to Hilmar Gueth Mundsson for
many discussions and to the referees and editors for identifying and
clarifying many ambiguities.
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