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The presentation is based on:

”Uniform Post Selection Inference for LAD Regression and
Other Z-estimation problems”
Oberwolfach, 2012; ArXiv, 2013; published by Biometrika, 2014

1. Develop uniformly valid confidence regions for a target regression
coefficient in a high-dimensional sparse median regression model
(extends our earlier work in ArXiv 2010, 2011).

2. New methods are based on Z-estimation using scores that are
Neyman-orthogonalized with respect to perturbations of nuisance
parameters.

3. The estimator of a target regression coefficient is root-n consistent
and asymptotically normal, uniformly with respect to the
underlying sparse model, and is semi-parametrically efficient.

4. Extend methods and results to general Z-estimation problems with
orthogonal scores and many target parameters p1 � n, and
construct joint confidence rectangles on all target coefficients and
control Family-Wise Error Rate.
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Outline

1. Z-problems like mean, median, logistic regressions and the
associated scores

2. Problems with naive plug-in inference (where we plug-in
regularized or post-selection estimators)

3. Problems can be fixed by using Neyman-orthogonal scores,
which differ from original scores in most problems

4. Generalization to many target coefficients

5. Literature: orthogonal scores vs. debiasing

6. Conclusion
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1. Z-problems

I Consider examples with yi response, di the target regressor,
and xi covariates, with p = dim(xi )� n

I Least squares projection:

IE[(yi − diα0 − x ′iβ0)(di , x
′
i )
′] = 0

I LAD regression:

IE[{1(yi ≤ diα0 + x ′iβ0)− 1/2}(di , x ′i )′] = 0

I Logistic Regression:

IE[{yi − Λ(diα0 + x ′iβ0)}wi (di , x
′
i )
′] = 0,

where Λ(t) = exp(t)/{1 + exp(t)}, wi = 1/Λi (1− Λi ), and
Λi = Λ(diα0 + x ′iβ0).
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1. Z-problems

I In all cases have the Z-problem (focusing on a subset of
equations that identify α0 given β0):

IE[ϕ( W︸︷︷︸
data

, α0︸︷︷︸
target parameter

, β0︸︷︷︸
high−dim nuisance parameter

)] = 0

with non-orthogonal scores (check!):

∂βIE[ϕ(W , α0, β)]
∣∣∣
β=β0

6= 0.

I Can we use plug-in estimators β̂, based on regularization via
penalization or selection, to form Z-estimators of α0?

IEn[ϕ(W , α̂, β̂)] = 0

I The answer is NO!
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2. Problems with naive plug-in inference: MC Example

I In this simulation we used: p = 200, n = 100, α0 = .5

yi = diα0 + x ′iβ0 + ζi , ζi ∼ N(0, 1)

di = x ′i γ0 + vi , vi ∼ N(0, 1)

I approximately sparse model

|β0j | ∝ 1/j2, |γ0j | ∝ 1/j2

→ so can use L1-penalization

I R2 = .5 in each equation

I regressors are correlated Gaussians:

x ∼ N(0,Σ), Σkj = (0.5)|j−k|.
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2.a. Distribution of The Naive Plug-in Z-Estimator

p = 200 and n = 100

(the picture is roughly the same for median and mean problems)

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
0

=⇒ badly biased, misleading confidence intervals;
predicted by “impossibility theorems” in Leeb and Pötscher (2009)
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2.b. Regularization Bias of The Naive Plug-in Z-Estimator

I β̂ is a plug-in for β0; bias in estimating equations:

√
nIEϕ(W , α0, β)

∣∣
β=β̂

=

=0︷ ︸︸ ︷√
nIEϕ(W , α0, β0)

+ ∂βIEϕ(W , α0, β)
∣∣∣
β=β0

√
n(β̂ − β0)︸ ︷︷ ︸

=:I→∞

+O(
√
n‖β̂ − β0‖2)︸ ︷︷ ︸
=:II→0

I II → 0 under sparsity conditions

‖β0‖0 ≤ s = o(
√

n/ log p)

or approximate sparsity (more generally) since
√
n‖β̂ − β0‖2 .

√
n(s/n) log p = o(1).

I I →∞ generally, since
√
n(β̂ − β0) ∼

√
s log p →∞,

I due to non-regularity of β̂, arising due to regularization via
penalization or selection.
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3. Solution: Solve Z-problems with Orthogonal Scores

I In all cases, it is possible to construct Z-problems

IE[ψ( W︸︷︷︸
data

, α0︸︷︷︸
target parameter

, η0︸︷︷︸
high−dim nuisance parameter

)] = 0

with Neyman-orthogonal (or “immunized”) scores ψ:

∂ηIE[ψ(W , α0, η)]
∣∣∣
η=η0

= 0.

I Then we can simply use plug-in estimators η̂, based on
regularization via penalization or selection, to form
Z-estimators of α0:

IEn[ψ(W , α̌, η̂)] = 0.

I Note that ϕ 6= ψ + extra nuisance parameters!
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3.a. Distribution of the Z-Estimator with Orthogonal
Scores

p = 200, n = 100

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
0

=⇒ low bias, accurate confidence intervals

obtained in a series of our papers, ArXiv, 2010, 2011, ...

Chernozhukov Inference for Z-problems



3.b. Regularization Bias of The Orthogonal Plug-in
Z-Estimator

I Expand the bias in estimating equations:

√
nIEψ(W , α0, η)

∣∣
η=η̂

=

=0︷ ︸︸ ︷√
nIEψ(W , α0, η0)

+ ∂ηIEψ(W , α0, η)
∣∣∣
η=η0

√
n(η̂ − η0)︸ ︷︷ ︸

=:I=0

+O(
√
n‖η̂ − η0‖2)︸ ︷︷ ︸
=:II→0

I II → 0 under sparsity conditions

‖η0‖0 ≤ s = o(
√
n/ log p)

or approximate sparsity (more generally) since

√
n‖η̂ − η0‖2 .

√
n(s/n) log p = o(1).

I I = 0 by Neyman orthogonality.
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3c. Theoretical result I

Approximate sparsity: after sorting absolute values of
components of η0 decay fast enough:

|η0|(j) ≤ Aj−a, a > 1.

Theorem (BCK, Informal Statement)

Uniformly within a class of approximately sparse models
with restricted isometry conditions

σ−1n

√
n(α̌− α0) N(0, 1),

where σ2n is conventional variance formula for Z-estimators
assuming η0 is known. If the orthogonal score is efficient score,
then α̌ is semi-parametrically efficient.
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3.d. Neyman-Orthogonal Scores

B In low-dimensional parametric settings, it was used by Neyman
(56, 79) to deal with crudely estimated nuisance parameters.
Frisch-Waugh-Lovell partialling out goes back to the 30s.

B Newey (1990, 1994), Van der Vaart (1990), Andrews (1994),
Robins and Rotnitzky (1995), and Linton (1996) used
orthogonality in semi parametric problems.

B For p � n settings, Belloni, Chernozhukov, and Hansen
(ArXiv 2010a,b) first used Neyman-orthogonality in the
context of IV models. The η0 was the parameter of the
optimal instrument function, estimated by Lasso and
OLS-post-Lasso methods
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3.f. Examples of Orthogonal Scores: Least Squares

I Least squares:

ψ(Wi , α, η0) = {ỹi − d̃iα}d̃i ,

yi = x ′i η10 + ỹi , IE[ỹixi ] = 0,

di = x ′i η20 + d̃i , IE[d̃ixi ] = 0.

Thus the orthogonal score is constructed by Frisch-Waugh
partialling out from yi and di . Here

η0 := (η′10, η
′
20)′

can be estimated by sparsity based methods, e.g.
OLS-post-Lasso.
Semi-parametrically efficient under homoscedasticity.

I Reference: Belloni, Chernozhukov, Hansen (ArXiv, 2011a,b).
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3.f. Examples of Orthogonal Scores: LAD regression

I LAD regression:

ψ(Wi , α, η0) = {1(yi ≤ diα + x ′iβ0)− 1/2}d̃i ,

where

fidi = fix
′
i γ0 + d̃i , IE[d̃i fixi ] = 0,

fi := fyi |di ,xi (diα0 + x ′iβ0 | di , xi ).

Here
η0 := (fyi |di ,xi (·), α

′
0, β
′
0, γ
′
0)′

can be estimated by sparsity based methods, by L1-penalized
LAD and by OLS-post-Lasso. Semi-parametrically efficient.

I Reference: Belloni, Chernozhukov, Kato (ArXiv, 2013a,b).
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3.f. Examples of Orthogonal Scores: Logistic regression

I Logistic regression,

ψ(Wi , α, η0) = {yi − Λ(diα + x ′iβ0)}d̃i/
√
wi ,

√
widi =

√
wix
′
i γ0 + d̃i , IE[

√
wi d̃ixi ] = 0,

wi = Λ(diα0 + x ′iβ0)(1− Λ(diα0 + x ′iβ0))

Here
η0 := (α′0, β

′
0, γ
′
0)′

can be estimated by sparsity based methods, by L1-penalized
logistic regression and by OLS-post-Lasso.
Semi-parametrically efficient.

I Reference: Belloni, Chernozhukov, Ying (ArXiv, 2013).
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4. Generalization: Many Target Parameters

I Consider many Z-problems

IE[ψj( Wj︸︷︷︸
data

, αj0︸︷︷︸
target parameter

, ηj0︸︷︷︸
high−dim nuisance parameter

)] = 0

with Neyman-orthogonal (or “immunized”) scores:

∂ηj IE[ψj(W , αj0, ηj)]
∣∣∣
ηj=ηj0

= 0

j = 1, ..., p1 � n.

I The can simply use plug-in estimators η̂j , based on
regularization via penalization or selection, to form
Z-estimators of αj0:

IEn[ψj(W , α̌j , η̂j)] = 0, j = 1, ..., p1.
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4. Generalization: Many Target Parameters

Theorem (BCK, Informal Statement)
Uniformly within a class of approximately sparse models with
restricted isometry conditions holding uniformly in j = 1, ..., p1 and
(log p1)7 = o(n),

sup
R∈rectangles in Rp1

|P({σ−1jn

√
n(α̌j − αj0)}p1j=1 ∈ R)− P(N ∈ R)| → 0,

where σ2
jn is conventional variance formula for Z-estimators assuming ηj0

is known, and N is the normal random p1-vector that has mean zero and
matches the large sample covariance function of {σ−1jn

√
n(α̌j − αj0)}p1j=1.

Moreover, we can estimate P(N ∈ R) by Multiplier Bootstrap.

I These results allow construction of simultaneous confidence
rectangles on all target coefficients as well as control of the
family-wise-error rate (FWER) in hypothesis testing.

I Rely on Gaussian Approximation Results and Multiplier Bootstrap
proposed in Chernozhukov, Chetverikov, Kato (ArXiv 2012, 2013).
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5. Literature: Neyman-Orthogonal Scores vs. Debiasing

I ArXiv 2010-2011 – use of orthogonal scores linear models

a. Belloni, Chernozhukov, Hansen (ArXiv, 2010a, 2010b ,2011a,
2011b): use OLS-post-Lasso methods to estimate nuisance
parameters in instrumental and mean regression;

b. Zhang and Zhang (ArXiv, 2011): introduces debiasing + use
Lasso methods to estimate nuisance parameters in mean
regression;

I ArXiv 2013-2014 – non-linear models

c. Belloni, Chernozhukov, Kato (ArXiv, 2013), Belloni,
Chernozhukov, Wang(ArXiv, 2013);

d. Javanmard and Montanari (ArXiv, 2013 a,b);
van de Geer and co-authors (ArXiv, 2013);

e. Han Liu and co-authors (ArXiv 2014)

I [b,d] introduce de-biasing of an initial estimator α̂. We can interpret
“debiased” estimators= Bickel’s “one-step” correction of an initial
estimator in Z-problems with Neyman-orthogonal scores. They are
first-order-equivalent to our estimators.
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Conclusion

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
0

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
0

Without Orthogonalization With Orthogonalization
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