Uniform Post Selection Inference for LAD Regression and Other Z-estimation problems.
ArXiv: 1304.0282

Victor Chernozhukov
MIT, Economics + Center for Statistics

Co-authors:
Alexandre Belloni (Duke) + Kengo Kato (Tokyo)

August 12, 2015
The presentation is based on:

"Uniform Post Selection Inference for LAD Regression and Other Z-estimation problems"
Oberwolfach, 2012; ArXiv, 2013; published by Biometrika, 2014

1. Develop uniformly valid confidence regions for a target regression coefficient in a high-dimensional sparse median regression model (extends our earlier work in ArXiv 2010, 2011).
The presentation is based on:

"Uniform Post Selection Inference for LAD Regression and Other Z-estimation problems"
Oberwolfach, 2012; ArXiv, 2013; published by Biometrika, 2014

1. Develop uniformly valid confidence regions for a target regression coefficient in a high-dimensional sparse median regression model (extends our earlier work in ArXiv 2010, 2011).

2. New methods are based on Z-estimation using scores that are Neyman-orthogonalized with respect to perturbations of nuisance parameters.
The presentation is based on:

”Uniform Post Selection Inference for LAD Regression and Other Z-estimation problems”
Oberwolfach, 2012; ArXiv, 2013; published by Biometrika, 2014

1. Develop uniformly valid confidence regions for a target regression coefficient in a high-dimensional sparse median regression model (extends our earlier work in ArXiv 2010, 2011).

2. New methods are based on Z-estimation using scores that are Neyman-orthogonalized with respect to perturbations of nuisance parameters.

3. The estimator of a target regression coefficient is root-n consistent and asymptotically normal, \textit{uniformly} with respect to the underlying sparse model, and is semi-parametrically efficient.
The presentation is based on:

"Uniform Post Selection Inference for LAD Regression and Other Z-estimation problems"
Oberwolfach, 2012; ArXiv, 2013; published by Biometrika, 2014

1. Develop uniformly valid confidence regions for a target regression coefficient in a high-dimensional sparse median regression model (extends our earlier work in ArXiv 2010, 2011).

2. New methods are based on Z-estimation using scores that are Neyman-orthogonalized with respect to perturbations of nuisance parameters.

3. The estimator of a target regression coefficient is root-n consistent and asymptotically normal, uniformly with respect to the underlying sparse model, and is semi-parametrically efficient.

4. Extend methods and results to general Z-estimation problems with orthogonal scores and many target parameters $p_1 \gg n$, and construct joint confidence rectangles on all target coefficients and control Family-Wise Error Rate.
1. Z-problems like mean, median, logistic regressions and the associated scores
2. Problems with naive plug-in inference (where we plug-in regularized or post-selection estimators)
3. Problems can be fixed by using Neyman-orthogonal scores, which differ from original scores in most problems
4. Generalization to many target coefficients
5. Literature: orthogonal scores vs. debiasing
6. Conclusion
1. Z-problems

- Consider examples with y_i response, d_i the target regressor, and x_i covariates, with $p = \text{dim}(x_i) \gg n$

- Least squares projection:

$$\mathbb{E}[(y_i - d_i \alpha_0 - x_i' \beta_0)(d_i, x_i')] = 0$$

- LAD regression:

$$\mathbb{E}[\{1(y_i \leq d_i \alpha_0 + x_i' \beta_0) - 1/2\}(d_i, x_i')] = 0$$

- Logistic Regression:

$$\mathbb{E}[\{y_i - \Lambda(d_i \alpha_0 + x_i' \beta_0)\}w_i(d_i, x_i')] = 0,$$

where $\Lambda(t) = \exp(t)/\{1 + \exp(t)\}$, $w_i = 1/\Lambda_i(1 - \Lambda_i)$, and $\Lambda_i = \Lambda(d_i \alpha_0 + x_i' \beta_0)$.
1. Z-problems

- In all cases have the Z-problem (focusing on a subset of equations that identify α_0 given β_0):

\[\mathbb{E}[\varphi(\mathcal{W}, \alpha_0, \beta_0)] = 0 \]

with non-orthogonal scores (check!):

\[\partial_\beta \mathbb{E}[\varphi(\mathcal{W}, \alpha_0, \beta)] \bigg|_{\beta=\beta_0} \neq 0. \]

- Can we use plug-in estimators $\hat{\beta}$, based on regularization via penalization or selection, to form Z-estimators of α_0?

\[\mathbb{E}_n[\varphi(\mathcal{W}, \hat{\alpha}, \hat{\beta})] = 0 \]
1. **Z-problems**

- In all cases have the Z-problem (focusing on a subset of equations that identify α_0 given β_0):

$$\mathbb{E}[\varphi(W, \alpha_0, \beta_0)] = 0$$

with non-orthogonal scores (check!):

$$\partial_\beta \mathbb{E}[\varphi(W, \alpha_0, \beta)]_{\beta = \beta_0} \neq 0.$$

- Can we use plug-in estimators $\hat{\beta}$, based on regularization via penalization or selection, to form Z-estimators of α_0?

$$\mathbb{E}_n[\varphi(W, \hat{\alpha}, \hat{\beta})] = 0$$

- The answer is **NO!**
2. Problems with naive plug-in inference: MC Example

- In this simulation we used: \(p = 200, \quad n = 100, \quad \alpha_0 = .5 \)

\[
y_i = d_i \alpha_0 + x_i' \beta_0 + \zeta_i, \quad \zeta_i \sim N(0, 1)
\]

\[
d_i = x_i' \gamma_0 + v_i, \quad v_i \sim N(0, 1)
\]

- approximately sparse model

\[
|\beta_{0j}| \propto 1/j^2, \quad |\gamma_{0j}| \propto 1/j^2
\]

→ so can use L1-penalization

- \(R^2 = .5 \) in each equation

- regressors are correlated Gaussians:

\[
x \sim N(0, \Sigma), \quad \Sigma_{kj} = (0.5)^{|j-k|}.
\]
2.a. Distribution of The Naive Plug-in Z-Estimator

\[p = 200 \text{ and } n = 100 \]

(the picture is roughly the same for median and mean problems)

\[\Rightarrow \text{badly biased, misleading confidence intervals; predicted by “impossibility theorems” in Leeb and Pötscher (2009)} \]
2.b. Regularization Bias of The Naive Plug-in Z-Estimator

- \(\hat{\beta} \) is a plug-in for \(\beta_0 \); bias in estimating equations:

\[
\sqrt{n} \mathbb{E} \varphi(W, \alpha_0, \beta) \bigg|_{\beta = \hat{\beta}} = \sqrt{n} \mathbb{E} \varphi(W, \alpha_0, \beta_0) = 0 \\
+ \partial_{\beta} \mathbb{E} \varphi(W, \alpha_0, \beta) \bigg|_{\beta = \beta_0} \sqrt{n}(\hat{\beta} - \beta_0) + O(\sqrt{n}\|\hat{\beta} - \beta_0\|^2)
\]

- \(II \to 0 \) under sparsity conditions

\[\|\beta_0\|_0 \leq s = o\left(\sqrt{n}/\log p\right)\]

or approximate sparsity (more generally) since

\[\sqrt{n}\|\hat{\beta} - \beta_0\|^2 \lesssim \sqrt{n}(s/n) \log p = o(1)\]

- \(I \to \infty \) generally, since

\[\sqrt{n}(\hat{\beta} - \beta_0) \sim \sqrt{s \log p} \to \infty,\]

- due to non-regularity of \(\hat{\beta} \), arising due to regularization via penalization or selection.
3. Solution: Solve Z-problems with Orthogonal Scores

- In all cases, it is possible to construct Z-problems

\[\mathbb{E}[\psi(W, \alpha_0, \eta_0)] = 0 \]

with Neyman-orthogonal (or “immunized”) scores \(\psi \):

\[\partial_\eta \mathbb{E}[\psi(W, \alpha_0, \eta)] \bigg|_{\eta=\eta_0} = 0. \]

- Then we can simply use plug-in estimators \(\hat{\eta} \), based on regularization via penalization or selection, to form Z-estimators of \(\alpha_0 \):

\[\mathbb{E}_n[\psi(W, \tilde{\alpha}, \hat{\eta})] = 0. \]
3. Solution: Solve Z-problems with Orthogonal Scores

In all cases, it is possible to construct Z-problems

$$\mathbf{IE}[\psi(\underbrace{W}_{\text{data}}, \underbrace{\alpha_0}_{\text{target parameter}}, \underbrace{\eta_0}_{\text{high-dim nuisance parameter}})] = 0$$

with Neyman-orthogonal (or “immunized”) scores ψ:

$$\partial_\eta \mathbf{IE}[\psi(W, \alpha_0, \eta)] \bigg|_{\eta=\eta_0} = 0.$$

Then we can simply use plug-in estimators $\hat{\eta}$, based on regularization via penalization or selection, to form Z-estimators of α_0:

$$\mathbf{IE}_n[\psi(W, \hat{\alpha}, \hat{\eta})] = 0.$$

Note that $\varphi \neq \psi + \text{extra nuisance parameters!}$
3.a. Distribution of the Z-Estimator with Orthogonal Scores

\[p = 200, \ n = 100 \]

\[\Rightarrow \text{low bias, accurate confidence intervals} \]

\[\text{obtained in a series of our papers, ArXiv, 2010, 2011, ...} \]
3.b. Regularization Bias of The Orthogonal Plug-in Z-Estimator

- Expand the bias in estimating equations:

\[
\sqrt{n} \mathbb{E} \psi(W, \alpha_0, \eta) \bigg|_{\eta=\hat{\eta}} = \sqrt{n} \mathbb{E} \psi(W, \alpha_0, \eta_0) + \partial_\eta \mathbb{E} \psi(W, \alpha_0, \eta) \bigg|_{\eta=\eta_0} \sqrt{n}(\hat{\eta} - \eta_0) + O\left(\sqrt{n} \|\hat{\eta} - \eta_0\|^2\right)
\]

\(= 0\)

\(=: I = 0\)

\(=: II \to 0\)

- \(II \to 0\) under sparsity conditions

\[\|\eta_0\|_0 \leq s = o\left(\sqrt{n} / \log p\right)\]

or approximate sparsity (more generally) since

\[\sqrt{n} \|\hat{\eta} - \eta_0\|^2 \lesssim \sqrt{n} (s/n) \log p = o(1)\]

- \(I = 0\) by Neyman orthogonality.
3c. Theoretical result I

Approximate Sparsity: after sorting absolute values of components of \(\eta_0 \) decay fast enough:

\[
|\eta_0|_{(j)} \leq Aj^{-a}, \quad a > 1.
\]

Theorem (BCK, Informal Statement)

Uniformly within a class of approximately sparse models with restricted isometry conditions

\[
\sigma_n^{-1} \sqrt{n}(\hat{\alpha} - \alpha_0) \rightsquigarrow N(0, 1),
\]

where \(\sigma_n^2 \) is conventional variance formula for Z-estimators assuming \(\eta_0 \) is known. If the orthogonal score is efficient score, then \(\hat{\alpha} \) is semi-parametrically efficient.
3.d. Neyman-Orthogonal Scores

- In low-dimensional parametric settings, it was used by Neyman (56, 79) to deal with crudely estimated nuisance parameters. Frisch-Waugh-Lovell partialling out goes back to the 30s.

- For $p \gg n$ settings, Belloni, Chernozhukov, and Hansen (ArXiv 2010a,b) first used Neyman-orthogonality in the context of IV models. The η_0 was the parameter of the optimal instrument function, estimated by Lasso and OLS-post-Lasso methods.
Least squares:

$$\psi(W_i, \alpha, \eta_0) = \{\tilde{y}_i - \tilde{d}_i\alpha\}\tilde{d}_i,$$

$$y_i = x_i'\eta_{10} + \tilde{y}_i, \quad \mathbb{E}[\tilde{y}_i x_i] = 0,$$

$$d_i = x_i'\eta_{20} + \tilde{d}_i, \quad \mathbb{E}[\tilde{d}_i x_i] = 0.$$

Thus the orthogonal score is constructed by Frisch-Waugh partialling out from y_i and d_i. Here

$$\eta_0 := (\eta_{10}', \eta_{20}')'$$

can be estimated by sparsity based methods, e.g. OLS-post-Lasso.

Semi-parametrically efficient under homoscedasticity.

Reference: Belloni, Chernozhukov, Hansen (ArXiv, 2011a,b).
3.f. Examples of Orthogonal Scores: LAD regression

- LAD regression:

\[\psi(W_i, \alpha, \eta_0) = \{1(y_i \leq d_i\alpha + x'_i\beta_0) - 1/2\}\tilde{d}_i, \]

where

\[f_i d_i = f_i x'_i \gamma_0 + \tilde{d}_i, \quad \mathbb{E}[\tilde{d}_i f_i x_i] = 0, \]

\[f_i := f_{y_i | d_i, x_i}(d_i\alpha_0 + x'_i\beta_0 | d_i, x_i). \]

Here

\[\eta_0 := (f_{y_i | d_i, x_i}(\cdot), \alpha'_0, \beta'_0, \gamma'_0)' \]

can be estimated by sparsity based methods, by L1-penalized LAD and by OLS-post-Lasso. Semi-parametrically efficient.

- Reference: Belloni, Chernozhukov, Kato (ArXiv, 2013a,b).
3.f. Examples of Orthogonal Scores: Logistic regression

- Logistic regression,

\[\psi(W_i, \alpha, \eta_0) = \{y_i - \Lambda(d_i\alpha + x_i'\beta)\} \tilde{d}_i / \sqrt{w_i}, \]

\[\sqrt{w_i}d_i = \sqrt{w_i}x_i'\gamma_0 + \tilde{d}_i, \quad \mathbb{E}[\sqrt{w_i d_i x_i}] = 0, \]

\[w_i = \Lambda(d_i\alpha_0 + x_i'\beta_0)(1 - \Lambda(d_i\alpha_0 + x_i'\beta_0)) \]

Here

\[\eta_0 := (\alpha'_0, \beta'_0, \gamma'_0)' \]

can be estimated by sparsity based methods, by L1-penalized logistic regression and by OLS-post-Lasso. Semi-parametrically efficient.

- Reference: Belloni, Chernozhukov, Ying (ArXiv, 2013).
4. Generalization: Many Target Parameters

- Consider many Z-problems

\[
\mathbb{E}[\psi_j(W_j, \alpha_{j0}, \eta_{j0})] = 0
\]

with Neyman-orthogonal (or “immunized”) scores:

\[
\partial_{\eta_j} \mathbb{E}[\psi_j(W, \alpha_{j0}, \eta_j)] \bigg|_{\eta_j = \eta_{j0}} = 0
\]

\[j = 1, \ldots, p_1 \gg n.\]

- The can simply use plug-in estimators \(\hat{\eta}_j\), based on regularization via penalization or selection, to form Z-estimators of \(\alpha_{j0}\):

\[
\mathbb{E}_n[\psi_j(W, \hat{\alpha}_j, \hat{\eta}_j)] = 0, \quad j = 1, \ldots, p_1.
\]
4. Generalization: Many Target Parameters

Theorem (BCK, Informal Statement)

Uniformly within a class of approximately sparse models with restricted isometry conditions holding uniformly in $j = 1, ..., p_1$ and $(\log p_1)^7 = o(n)$,

$$\sup_{R \in \text{rectangles in } \mathbb{R}^{p_1}} |P(\{\sigma_j^{-1}\sqrt{n}(\hat{\alpha}_j - \alpha_{j0})\}_{j=1}^{p_1} \in R) - P(\mathcal{N} \in R)| \to 0,$$

where σ_j^2 is conventional variance formula for Z-estimators assuming η_{j0} is known, and \mathcal{N} is the normal random p_1-vector that has mean zero and matches the large sample covariance function of $\{\sigma_j^{-1}\sqrt{n}(\hat{\alpha}_j - \alpha_{j0})\}_{j=1}^{p_1}$.

Moreover, we can estimate $P(\mathcal{N} \in R)$ by **Multiplier Bootstrap**.

- These results allow construction of simultaneous confidence rectangles on all target coefficients as well as control of the family-wise-error rate (FWER) in hypothesis testing.

5. Literature: Neyman-Orthogonal Scores vs. Debiasing

- **ArXiv 2010-2011 – use of orthogonal scores linear models**
 - b. Zhang and Zhang (ArXiv, 2011): introduces debiasing + use Lasso methods to estimate nuisance parameters in mean regression;

- **ArXiv 2013-2014 – non-linear models**
 - c. Belloni, Chernozhukov, Kato (ArXiv, 2013), Belloni, Chernozhukov, Wang (ArXiv, 2013);
 - d. Javanmard and Montanari (ArXiv, 2013 a,b);
 - van de Geer and co-authors (ArXiv, 2013);
 - e. Han Liu and co-authors (ArXiv 2014)

[b,d] introduce de-biasing of an initial estimator $\hat{\alpha}$. We can interpret “debiased” estimators = Bickel’s “one-step” correction of an initial estimator in Z-problems with Neyman-orthogonal scores. They are first-order-equivalent to our estimators.
Conclusion

Without Orthogonalization

With Orthogonalization
Bibliography

- Confidence Intervals for Low-Dimensional Parameters in High-Dimensional Linear Models, Cun-Hui Zhang, Stephanie S. Zhang (arXiv 2011, JRSS(b))

On asymptotically optimal confidence regions and tests for high-dimensional models, Sara van de Geer, Peter Bhlmann, Ya’acov Ritov, Ruben Dezeure (arXiv 2013, Annals of Statistics)
Honest Confidence Regions for a Regression Parameter in Logistic Regression with a Large Number of Controls, Alexandre Belloni, Victor Chernozhukov, Ying Wei (ArXiv 2013)

Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models, Alexandre Belloni, Victor Chernozhukov, Kengo Kato (ArXiv 2013)

Bibliography

- Program Evaluation with High-Dimensional Data, Alexandre Belloni, Victor Chernozhukov, Ivan Fernández-Val, Chris Hansen (arXiv 2013)

- A General Framework for Robust Testing and Confidence Regions in High-Dimensional Quantile Regression, Tianqi Zhao, Mladen Kolar and Han Liu (arXiv 2014)

- A General Theory of Hypothesis Tests and Confidence Regions for Sparse High Dimensional Models, Yang Ning and Han Liu (arXiv 2014)