CLT and Bootstrap in High Dimensions

V. Chernozhukov (MIT) D. Chetverikov (UCLA) K. Kato (Tokyo)

May 18, 2015
This presentation is based on:

Let X_1, \ldots, X_n be a sequence of centered independent random vectors in \mathbb{R}^p, with each X_i having coordinates denoted by X_{ij}; that is,

$$X_i = (X_{ij})_{j=1}^p.$$

Define the normalized sum:

$$S_n^X := (S_{nj})_{j=1}^p := \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i.$$

(1)

Let Y_1, \ldots, Y_n be independent Gaussian random vectors in \mathbb{R}^p:

$$Y_i \sim N(0, E[X_i X_i'])).$$

Define the Gaussian analog of S_n^X as:

$$S_n^Y := (S_{nj})_{j=1}^p := \frac{1}{\sqrt{n}} \sum_{i=1}^n Y_i.$$

(2)
Define the Kolmogorov distance between S_n^X and S_n^Y:

$$\rho_n := \sup_{A \in \mathcal{A}} \left| P(S_n^X \in A) - P(S_n^Y \in A) \right|$$

where \mathcal{A} is some class of sets

Question: how fast can $p = \rho_n$ grow as $n \to \infty$ under the restriction that $\rho_n \to 0$?

Bentkus (2003): for i.i.d. X_i, if \mathcal{A} is the class of all convex sets, then

$$\rho_n = O\left(\frac{p^{1/4} E[\|X\|_2^3]}{\sqrt{n}} \right)$$

Typically $E[\|X\|_2^3] = O(p^{3/2})$, so

$$\rho_n \to 0 \quad \text{if} \quad p = o(n^{2/7})$$

Nagaev (1976): this result is nearly optimal, $\rho_n \gtrsim E[\|X\|_2^3]/\sqrt{n}$
Introduction

However, in modern statistics, often $p \gg n$

- high dimensional regression models
- multiple hypothesis testing problems

Question: can we find a non-trivial class of sets \mathcal{A} such that

$$p = p_n \gg n \text{ but } \rho_n \to 0$$

Our first main result(s):

Subject to some conditions, if \mathcal{A} is the class of all rectangles (or sparsely convex sets), then

$$\rho_n \to 0 \text{ if } \log p = o(n^{1/7})$$
The example is motivated by the problem of removing the Gaussianity assumption in Dantzig/Lasso estimators of (very) high-dimensional sparse regression models. Let

\[
S_n^X = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i, \quad X_{ij} = z_{ij} \varepsilon_i, \quad \varepsilon_i \text{ i.i.d. } t(5)/c
\]

\(z_{ij}\)'s are fixed bounded "regressors", \(|z_{ij}| \leq B\), drawn from \(U(0,1)\) distribution once, and

\[
S_n^Y = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_i, \quad Y_{ij} = z_{ij} e_i, \quad e_i \text{ i.i.d. } N(0,1),
\]

so that \(E[Y_i Y_i'] = E[X_i X_i']\). Compare

\[
P\left(\|S_n^X\|_{\infty} \leq t\right) \text{ and } P\left(\|S_n^Y\|_{\infty} \leq t\right).
\]

(i.e. \(\rho_n\) for \(A = \text{cubes in } \mathbb{R}^p\))
Simulation Example

Figure: P-P plots comparing $P(\|S_n^Y\|_\infty \leq t)$ and $P(\|S_n^X\|_\infty \leq t)$. The dashed line is the 45° line.

$n=100; p=5000$

$n=400; p=5000$
Introduction – Bootstrap

Generally, $P(S_n^Y \in A)$ is unknown since don’t know covariance matrix
$$\frac{1}{n} \sum_{i=1}^n E[X_i X_i']$$. So the second result, is that under similar conditions

$$\varrho_n^* = \sup_{A \in A} \left| P(S_n^{X*} \in A \mid \{X_i\}_{i=1}^n) - P(S_n^Y \in A) \right| \to_P 0$$

We prove this result for the Gaussian Bootstrap (multiplier method with Gaussian multipliers):

$$S_n^{X*} := \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \bar{X}) e_i, \quad \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i,$$

(3)

where $(e_i)_{i=1}^n$ are i.i.d. $N(0, 1)$ multipliers; and the Empirical Bootstrap:

$$S_n^{X*} := \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \bar{X}) m_{i,n}, \quad \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i,$$

(4)

where $(m_{i,n})_{i=1}^n$ is n-dimensional multinomial variate based on n trials with success probabilities $1/n, \ldots, 1/n$.
Conditions

Let \(b > 0 \) and \(q \geq 4 \) be constants, and \((B_n)_{n=1}^{\infty} \) be a sequence of positive constants, possibly growing to \(\infty \).

Consider the following conditions:

(M.1) \(n^{-1} \sum_{i=1}^{n} E[X_{ij}^2] \geq b \) for all \(j = 1, \ldots, p \),

(M.2) \(n^{-1} \sum_{i=1}^{n} E[|X_{ij}|^{2+k}] \leq B_n^k \) for all \(j = 1, \ldots, p \) and \(k = 1, 2 \).

and one of the following:

(E.1) \(E[\exp(|X_{ij}|/B_n)] \leq 2 \) for all \(i = 1, \ldots, n \) and \(j = 1, \ldots, p \),

(E.2) \(E[\max_{1 \leq j \leq p} |X_{ij}|/B_n]^q \leq 2 \) for all \(i = 1, \ldots, n \),

Let \(\mathcal{A} = \mathcal{A}' \) be the class of all rectangles:

\[
\mathcal{A} = \{ z = (z_1, \ldots, z_p)' \in \mathbb{R}^p : z_j \in [a_j, b_j] \text{ for all } j = 1, \ldots, p \}
\]

for some \(-\infty \leq a_j \leq b_j \leq \infty \), \(j = 1, \ldots, p \).
Theorem (Central Limit Theorem)

Recall that

$$
\rho_n := \sup_{A \in \mathcal{A}} \left| P\left(S_n^X \in A \right) - P\left(S_n^Y \in A \right) \right|
$$

Assume (M.1-2), then under (E.1)

$$
\rho_n \leq C \left(\frac{B_n^2 \log^7(pn)}{n} \right)^{1/6} \tag{5}
$$

where the constant C depends only on b, and under (E.2)

$$
\rho_n \leq C \left[\left(\frac{B_n^2 \log^7(pn)}{n} \right)^{1/6} + \left(\frac{B_n^2 \log^3 p}{n^{1-2/q}} \right)^{1/3} \right] \tag{6}
$$

where the constant C depends only on b and q.

Remark: Bentkus (1985) provides an example, with $(X_{ij}, 1 \leq j \leq p) \subset \mathcal{F}$, where \mathcal{F} is P-Donsker, such that $\rho_n \gtrsim (1/n)^{1/6}$.

CCK

CLT and Bootstrap in High Dimensions
Theorem (Gaussian and Empirical Bootstrap Theorem)

Define

\[\rho_n^* := \sup_{A \in \mathcal{A}} \left| P(S_{n}^{X*} \in A \mid \{X_i\}_{i=1}^n) - P(S_n^Y \in A) \right|. \]

Assume (M.1-2), then under (E.1), with probability at least \(1 - \alpha\),

\[\rho_n^* \leq C \left(\frac{B_n^2 \log^5 (pn) \log^2 (1/\alpha)}{n} \right)^{1/6}, \tag{7} \]

where the constant \(C\) depends only on \(b\), and under (E.2), with probability at least \(1 - \alpha\),

\[\rho_n^* \leq C \left[\left(\frac{B_n^2 \log^5 (pn) \log^2 (1/\alpha)}{n} \right)^{1/6} + \left(\frac{B_n^2 \log^3 p}{\alpha^2/q n^{1-2/q}} \right)^{1/3} \right], \tag{8} \]

where the constant \(C\) depends only on \(b\) and \(q\).
Some ingredients behind the proofs, I

Focus on max rectangles for simplicity:

\[A = \left\{ z = (z_1, \ldots, z_p) \in \mathbb{R}^p : \max_{1 \leq j \leq p} z_j \leq s \right\}, \ s \in \mathbb{R} \]

- **Slepian’s interpolation:**

 Define
 \[Z(t) := \sqrt{t}S_n^X + \sqrt{1-t}S_n^Y, \ t \in [0, 1] \]

 Then
 \[P(S_n^X \in A) - P(S_n^Y \in A) = E[1(Z(1) \in A)] - E[1(Z(0) \in A)] \]

- **Smoothing:**

 Approximate the indicator map
 \[z \mapsto 1(z \in A) = 1(\max_{1 \leq j \leq p} z_j \leq s) \]

 by some smooth map
 \[z \mapsto m(z) \]

 by smoothing the interval indicator \(y \mapsto 1(y \leq s) \) and smoothing the max operator \(z \mapsto \max_{1 \leq j \leq p} z_j \).
Some ingredients behind the proofs, II

- **Calculations:**

 \[E[1(Z(1) \in A)] - E[1(Z(0) \in A)] \overset{(1)}{=} E[m(Z(1))] - E[m(Z(0))] \]

 \[= \int_0^1 E \left[\frac{dm(Z(t))}{dt} \right] dt \]

 \[\overset{(2)}{=} 0 \]

 by proving the (1) first and that

 \[E \left[\frac{dm(Z(t))}{dt} \right] \approx 0 \]

- **Approximation of max operator by a logistic potential:**

 \[\left| \max_{1 \leq j \leq p} z_j - \beta^{-1} \log \left(\sum_{j=1}^{p} \exp(\beta z_j) \right) \right| \leq \frac{\log p}{\beta} \]
Some ingredients behind the proofs, III

- **Anti-concentration of suprema of Gaussian processes**: (needed to show negligibility of errors due to smoothing the indicator function)

 \[
 \sup_{t \in \mathbb{R}} P \left(t \leq \max_{1 \leq j \leq p} S_{n,j}^Y \leq t + \epsilon \right) \leq 4\epsilon \left(E \left[\max_{1 \leq j \leq p} S_{n,j}^Y \right] + 1 \right) \lesssim \epsilon \sqrt{\log p},
 \]

 stated for the case when \(E[(S_{n,j}^Y)^2] = 1 \) for each \(j \). This is opposite of the (super)-concentration.

 Ref: CCK, PTRF.

- **Stein’s leave-one-out method**: (needed to simplify computations of expectations)

 (stability property of third-order derivatives of the logistic potential over certain subsets of \(\mathbb{R}^p \) play a crucial role)
Some ingredients behind the proofs, IV

- **Double Slepian Interpolation**: to improve the dependence of bounds on n (Inspired by Bolthausen’s (1984) arguments for combinatorial CLTs)
Details on Double Slepian Interpolation

- By using single Slepian interpolant

\[Z(t) := \sqrt{t}S_n^X + \sqrt{1-t}S_n^Y, \quad t \in [0, 1] \]

the argument gives

\[\rho_n \leq \rho'_n := \sup_{t \in [0, 1], A \in A'} |P(Z(t) \in A) - P(Z(0) \in A)| \leq n^{-1/8} \times C(n, p). \]

- Define the double Slepian interpolation

\[D(v, t) := \sqrt{v}Z(t) + \sqrt{1-v}S_n^W, \quad v \in [0, 1], \quad t \in [0, 1] \]

where \(S_n^W \) is an independent copy of \(S_n^Y \).

- By doing double interpolation and using other ingredients mentioned above, obtain

\[\rho'_n \leq \frac{1}{2}\rho'_n + n^{-1/6} \times C(n, p)' \implies \text{result} \]
Connections to Literature

Classical CLTs under expanding dimension:

Bootstrap and Multiplier methods:

Stein’s Method and other modern invariance principles
- Chatterjee (2005), Roellin (2011).

Spin glasses
- Panchenko (2013), Talagrand (2003), and others.
Further Results

- (CCK, Ann. Stat. 2014a). The results presented extend to suprema of empirical processes:

\[\sup_{t \in \mathbb{R}} \left| \mathbb{P} \left(\sup_{f \in \mathcal{F}_n} g_n(f) \leq t \right) - \mathbb{P} \left(\sup_{f \in \mathcal{F}_n} g_P(f) \leq t \right) \right| \to 0 \]

provided the complexity of \(\mathcal{F}_n \) does not grow too quickly. The approximations are more generally applicable than Hungarian couplings (e.g. Rio), and competitive when both apply.

- There is also an analogous result for Gaussian and Empirical bootstrap.

Results do extend beyond rectangles

Definition (Sparsely convex sets)

For integer $s > 0$, we say that $A \subset \mathbb{R}^p$ is an s-sparsely convex set if there exist an integer $Q > 0$ and convex sets $A_q \subset \mathbb{R}^p$, $q = 1, \ldots, Q$, such that

$$A = \bigcap_{q=1}^Q A_q$$

and the indicator function of each A_q,

$$w \mapsto 1\{w \in A_q\},$$

depends at most on s components of its argument $w = (w_1, \ldots, w_p)$.
Examples of Sparsely Convex Sets

- Example 1: (1-sparse)
 \[A = \{ z \in \mathbb{R}^p : z_j \in [a_j, b_j] \text{ for all } j = 1, \ldots, p \} \]
 for some \(-\infty \leq a_j \leq b_j \leq \infty, j = 1, \ldots, p\)

- Example 2: (s-sparse)
 \[A = \{ z \in \mathbb{R}^p : v_j' z \leq a_j, \text{ for all } j = 1, \ldots, m \} \]
 for some \(a_j \in \mathbb{R}\) such that \(v_j \in S^{p-1}\) with \(\|v_j\|_0 \leq s, j = 1, \ldots, m\)

- Example 3: (s-sparse)
 \[A = \{ z \in \mathbb{R}^p : \| (z_j)_{j \in J_k} \|_2^2 \leq a_k : k = 1, \ldots, m \} , \]
 for some \(a_k > 0\) and \(J_k\) being a subset of \(\{1, \ldots, p\}\) of fixed cardinality \(s, k = 1, \ldots, m\)
Let $b > 0$ and $q \geq 4$ be constants, and $(B_n)_{n=1}^{\infty}$ be a sequence of positive constants, possibly growing to ∞.

Consider the following conditions:

(M.1') $n^{-1} \sum_{i=1}^{n} \mathbb{E}[(v'X_i)^2] \geq b$ for all $v \in S^{p-1}$ with $\|v\|_0 \leq s$,

(M.2) $n^{-1} \sum_{i=1}^{n} \mathbb{E}[|X_{ij}|^{2+k}] \leq B_n^k$ for all $j = 1, \ldots, p$ and $k = 1, 2$.

(E.1) $\mathbb{E}[\exp(|X_{ij}|/B_n)] \leq 2$ for all $i = 1, \ldots, n$ and $j = 1, \ldots, p$,

(E.2) $\mathbb{E}[(\max_{1 \leq j \leq p} |X_{ij}|/B_n)^q] \leq 2$ for all $i = 1, \ldots, n$,

CCK CLT and Bootstrap in High Dimensions
Theorem (CLT for Sparsely Convex Sets)

For A^s denoting the class of all s-sparsely convex sets, let

$$
\rho_n := \sup_{A \in A^s} \left| P(S^n_X \in A) - P(S^n_Y \in A) \right|
$$

Assume (M.1') and (M.2), then under (E.1)

$$
\rho_n \leq C \left(\frac{B^2_n \log^7 (pn)}{n} \right)^{1/6}
$$

where the constant C depends only on b and s, and under (E.2)

$$
\rho_n \leq C \left[\left(\frac{B^2_n \log^7 (pn)}{n} \right)^{1/6} + \left(\frac{B^2_n \log^3 p}{n^{1-2/q}} \right)^{1/3} \right]
$$

where the constant C depends only on b, q, and s.
Theorem (Gaussian Bootstrap Theorem)

Define
\[\rho_n^* := \sup_{A \in \mathcal{A}^s} \left| P(S_n^{X*} \in A \mid \{X_i\}_{i=1}^n) - P(S_n^Y \in A) \right|. \]

Assume (M.1-2), then under (E.1), with probability at least \(1 - \alpha \),
\[\rho_n^* \leq C \left(\frac{B_n^2 \log^5 (pn) \log^2 (1/\alpha)}{n} \right)^{1/6}, \]
where the constant \(C \) depends only on \(b \) and \(s \), and under (E.2), with probability at least \(1 - \alpha \),
\[\rho_n^* \leq C \left[\left(\frac{B_n^2 \log^5 (pn) \log^2 (1/\alpha)}{n} \right)^{1/6} + \left(\frac{B_n^2 \log^3 p}{\alpha^{2/q} n^{1-2/q}} \right)^{1/3} \right], \]
where the constant \(C \) depends only on \(b, q, \) and \(s \).
Conclusion

Thank you very much!