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Introduction

This presentation is based on:

1. “Central Limit Theorems and Bootstrap in High Dimensions,"
ArXiv, 2014.

2. “Gaussian Approximations and Multiplier Bootstrap for Maxima of Sums
of High-Dimensional Random Vectors," Ann. Stat., 2013

3. “Comparison and Anti-Concentration Bounds for Maxima of Gaussian
Vectors", Prob. Theory Rel. Fields, 2015+.

4. “Gaussian Approximation of Suprema of Empirical Processes," Ann.
Stat., 2014a

5. “Anti-Concentration and Adaptive, Honest Confidence Bands" Ann.
Stat., 2014b
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Introduction
Let X1, . . . ,Xn be a sequence of centered independent random
vectors in Rp, with each Xi having coordinates denoted by Xij ; that is,

Xi = (Xij )
p
j=1.

Define the normalized sum:

SX
n := (SX

nj )
p
j=1 :=

1√
n

n∑
i=1

Xi . (1)

Let Y1, . . . ,Yn be independent Gaussian random vectors in Rp:

Yi ∼ N(0,E[XiX ′i ]).

Define the Gaussian analog of SX
n as:

SY
n := (SY

nj )
p
j=1 :=

1√
n

n∑
i=1

Yi . (2)
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Introduction

Define the Kolmorogorov distance between SX
n and SY

n :

ρn := sup
A∈A

∣∣P(SX
n ∈ A)− P(SY

n ∈ A)
∣∣

where A is some class of sets

Question: how fast can p = pn grow as n→∞ under the restriction
that ρn → 0?

Bentkus (2003): for i.i.d. Xi , if A is the class of all convex sets, then

ρn = O

(
p1/4E[‖X‖3

2]√
n

)

Typically E[‖X‖3
2] = O(p3/2), so

ρn → 0 if p = o(n2/7)

Nagaev (1976): this result is nearly optimal, ρn & E[‖X‖3
2]/
√

n
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Introduction

However, in modern statistics, often p � n
high dimensional regression models
multiple hypothesis testing problems

Question: can we find a non-trivial class of sets A such that

p = pn � n but ρn → 0

Our first main result(s):

Subject to some conditions, if A is the class of all rectangles (or
sparsely convex sets), then

ρn → 0 if log p = o(n1/7)
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Simulation Example

The example is motivated by the problem of removing the
Gaussianity assumption in Dantzig/Lasso estimators of (very)
high-dimensional sparse regression models. Let

SX
n =

1√
n

n∑
i=1

Xi , Xij = zijεi , εi i.i.d. t(5)/c

zij ’s are fixed bounded "regressors", |zij | ≤ B, drawn from U(0,1)
distribution once, and

SY
n =

1√
n

n∑
i=1

Yi , Yij = zijei , ei i.i.d. N(0,1),

so that E[YiY ′i ] = E[XiX ′i ]. Compare

P
(
‖SX

n ‖∞ ≤ t
)

and P
(
‖SY

n ‖∞ ≤ t
)
.

(i.e. ρn for A = cubes in Rp)
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Simulation Example
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Figure: P-P plots comparing P
(
‖SY

n ‖∞ ≤ t
)

and P
(
‖SX

n ‖∞ ≤ t
)
. The dashed

line is the 45◦ line.
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Introduction – Bootstrap
Generally, P(SY

n ∈ A) is unknown since don’t know covariance matrix
1
n

∑n
i=1 E[XiX ′i ]. So the second result, is that under similar conditions

ρ∗n = sup
A∈A

∣∣P(SX∗
n ∈ A | {Xi}n

i=1)− P(SY
n ∈ A)

∣∣→P 0

We prove this result for the Gaussian Bootstrap (multiplier method
with Gaussian multipliers):

SX∗
n :=

1√
n

n∑
i=1

(Xi − X̄ )ei , X̄ =
1
n

n∑
i=1

Xi , (3)

where (ei )
n
i=1 are i.i.d. N(0,1) multipliers; and the Empirical

Bootstrap:

SX∗
n :=

1√
n

n∑
i=1

(Xi − X̄ )mi,n, X̄ =
1
n

n∑
i=1

Xi , (4)

where (mi,n)n
i=1 is n-dimensional multinomial variate based on n trials

with success probabilities 1/n, . . . ,1/n.
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Conditions

Let b > 0 and q ≥ 4 be constants, and (Bn)∞n=1 be a sequence of
positive constants, possibly growing to∞.

Consider the following conditions:

(M.1) n−1∑n
i=1 E[X 2

ij ] ≥ b for all j = 1, . . . ,p,

(M.2) n−1∑n
i=1 E[|Xij |2+k ] ≤ Bk

n for all j = 1, . . . ,p and k = 1,2.

and one of the following:

(E.1) E[exp(|Xij |/Bn)] ≤ 2 for all i = 1, . . . ,n and j = 1, . . . ,p,

(E.2) E[(max1≤j≤p |Xij |/Bn)q] ≤ 2 for all i = 1, . . . ,n,

Let A = Ar be a the class of all rectangles:

A = {z = (z1, . . . , zp)′ ∈ Rp : zj ∈ [aj ,bj ] for all j = 1, . . . ,p}

for some −∞ ≤ aj ≤ bj ≤ ∞, j = 1, . . . ,p.

CCK CLT and Bootstrap in High Dimensions



Formal Results, I

Theorem (Central Limit Theorem)
Recall that

ρn := sup
A∈Ar

∣∣P(SX
n ∈ A)− P(SY

n ∈ A)
∣∣

Assume (M.1-2), then under (E.1)

ρn ≤ C

(
B2

n log7(pn)

n

)1/6

(5)

where the constant C depends only on b, and under (E.2)

ρn ≤ C

(B2
n log7(pn)

n

)1/6

+

(
B2

n log3 p
n1−2/q

)1/3
 (6)

where the constant C depends only on b and q.

Remark: Bentkus (1985) provides an example, with (Xij , 1 ≤ j ≤ p) ⊂ F , where F is
P-Donsker, such that ρn & (1/n)1/6 .
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Formal Results, II

Theorem (Gaussian and Empirical Bootstrap Theorem)

Define
ρ∗n := sup

A∈Ar

∣∣P(SX∗
n ∈ A | {Xi}n

i=1)− P(SY
n ∈ A)

∣∣ .
Assume (M.1-2), then under (E.1), with probability at least 1− α,

ρ∗n ≤ C

(
B2

n log5(pn) log2(1/α)

n

)1/6

, (7)

where the constant C depends only on b, and under (E.2), with
probability at least 1− α,

ρ∗n ≤ C

(B2
n log5(pn) log2(1/α)

n

)1/6

+

(
B2

n log3 p
α2/qn1−2/q

)1/3
 (8)

where the constant C depends only on b and q.
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Some ingredients behind the proofs, I
Focus on max rectangles for simplicity:

A =

{
z = (z1, . . . , zp)

′ ∈ Rp : max
1≤j≤p

zj ≤ s
}
, s ∈ R

Slepian’s interpolation:

Define
Z (t) :=

√
tSX

n +
√

1− tSY
n , t ∈ [0, 1]

Then

P(SX
n ∈ A)− P(SY

n ∈ A) = E[1(Z (1) ∈ A)]− E[1(Z (0) ∈ A)]

Smoothing:

Approximate the indicator map

z 7→ 1(z ∈ A) = 1
(

max
1≤j≤p

zj ≤ s
)

by some smooth map
z 7→ m(z)

by smoothing the interval indicator y 7→ 1(y ≤ s) and smoothing the
max operator z 7→ max1≤j≤p zj .

CCK CLT and Bootstrap in High Dimensions



Some ingredients behind the proofs, II

Calculations:

E[1(Z (1) ∈ A)]− E[1(Z (0) ∈ A)]
(1)
≈ E[m(Z (1))]− E[m(Z (0))]

=

∫ 1

0
E
[

dm(Z (t))
dt

]
dt

(2)
≈ 0

by proving the (1) first and that

E
[

dm(Z (t))
dt

]
≈ 0

Approximation of max operator by a logistic potential:∣∣∣∣∣∣max
1≤j≤p

zj − β−1 log

 p∑
j=1

exp(βzj)

∣∣∣∣∣∣ ≤ log p
β
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Some ingredients behind the proofs, III

Anti-concentration of suprema of Gaussian processes: (needed to show
negligibility of errors due to smoothing the indicator function)

sup
t∈R

P
(

t ≤ max
1≤j≤p

SY
n,j ≤ t + ε

)
≤ 4ε

(
E
[

max
1≤j≤p

SY
n,j

]
+ 1
)

. ε
√

log p,

stated for the case when E[(SY
n,j)

2] = 1 for each j . This is opposite of the
(super)-concentration.
Ref: CCK, PTRF.

Stein’s leave-one-out method (needed to simplify computations of
expectations)
(stability property of third-order derivatives of the logistic potential over
certain subsets of Rp play a crucial role)
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Some ingredients behind the proofs, IV

Double Slepian Interpolation: to improve the dependence of
bounds on n (Inspired by Bolthausen’s (1984) arguments for
combinatorial CLTs)
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Details on Double Slepian Interpolation

By using single Slepian interpolant

Z (t) :=
√

tSX
n +
√

1− tSY
n , t ∈ [0, 1]

the argument gives

ρn ≤ ρ′n := sup
t∈[0,1],A∈Ar

|P(Z (t) ∈ A)− P(Z (0) ∈ A)| ≤ n−1/8 × C(n, p).

Define the double Slepian interpolation

D(v , t) :=
√

vZ (t) +
√

1− vSW
n , v ∈ [0, 1], t ∈ [0, 1]

where SW
n is an independent copy of SY

n .

By doing double interpolation and using other ingredients mentioned
above, obtain

ρ′n ≤
1
2
ρ′n + n−1/6 × C(n, p)′ =⇒ result
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Connections to Literature

Classical CLTs under expanding dimension:
Senatov (1980), Asriev and Rotar (1985), Portnoy (1986), Götze
(1991), Bentkus (2003), L.H.Y. Chen and Roellin (2011), and
others

Bootstrap and Multiplier methods:
Gine and Zinn (1990), Koltchinskii (1981), Pollard (1982)

Stein’s Method and other modern invariance principles
Chatterjee (2005), Roellin (2011).

Spin glasses
Panchenko (2013), Talagrand (2003), and others.
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Further Results

(CCK, Ann. Stat. 2014a). The results presented extend to
suprema of empirical processes:

sup
t∈R

∣∣∣∣∣P
(

sup
f∈Fn

Gn(f ) ≤ t

)
− P

(
sup
f∈Fn

GP(f ) ≤ t

)∣∣∣∣∣→ 0

provided the complexity of Fn does not grow too quickly.
The approximations are more generally applicable than
Hungarian couplings (e.g. Rio), and competitive when both apply.
There is also an analogous result for Gaussian and Empirical
bootstrap.
(CCK, Ann. Stat. 2014b). Provide an application to the problem
of uniform and uniform adaptive confidence bands in
nonparametric problems, in particular providing a practical
version of Gine-Nickl-type bands.
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Results do extend beyond rectangles

Definition (Sparsely convex sets)

For integer s > 0, we say that A ⊂ Rp is an s-sparsely convex set if
there exist an integer Q > 0 and convex sets Aq ⊂ Rp, q = 1, . . . ,Q,
such that

A = ∩Q
q=1Aq

and the indicator function of each Aq ,

w 7→ 1{w ∈ Aq},

depends at most on s components of its argument w = (w1, . . . ,wp)
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Examples of Sparsely Convex Sets

Example 1: (1-sparse)

A = {z ∈ Rp : zj ∈ [aj ,bj ] for all j = 1, . . . ,p}

for some −∞ ≤ aj ≤ bj ≤ ∞, j = 1, . . . ,p

Example 2: (s-sparse)

A = {z ∈ Rp : v ′j z ≤ aj , for all j = 1, . . . ,m}

for some aj ∈ R such that vj ∈ Sp−1 with ‖vj‖0 ≤ s, j = 1, . . . ,m

Example 3: (s-sparse)

A = {z ∈ Rp : ‖(zj )j∈Jk ‖2
2 ≤ ak : k = 1, ...,m},

for some ak > 0 and Jk being a subset of {1, . . . ,p} of fixed
cardinality s, k = 1, . . . ,m
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Conditions

Let b > 0 and q ≥ 4 be constants, and (Bn)∞n=1 be a sequence of
positive constants, possibly growing to∞.

Consider the following conditions:

(M.1′) n−1∑n
i=1 E[(v ′Xi )

2] ≥ b for all v ∈ Sp−1 with ‖v‖0 ≤ s,

(M.2 ) n−1∑n
i=1 E[|Xij |2+k ] ≤ Bk

n for all j = 1, . . . ,p and k = 1,2.

(E.1 ) E[exp(|Xij |/Bn)] ≤ 2 for all i = 1, . . . ,n and j = 1, . . . ,p,

(E.2 ) E[(max1≤j≤p |Xij |/Bn)q] ≤ 2 for all i = 1, . . . ,n,
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Formal Results, III

Theorem (CLT for Sparsely Convex Sets)
For As denoting the class of all s-sparsely convex sets, let

ρn := sup
A∈As

∣∣P(SX
n ∈ A)− P(SY

n ∈ A)
∣∣

Assume (M.1’) and (M.2), then under (E.1)

ρn ≤ C

(
B2

n log7(pn)

n

)1/6

(9)

where the constant C depends only on b and s, and under (E.2)

ρn ≤ C

(B2
n log7(pn)

n

)1/6

+

(
B2

n log3 p
n1−2/q

)1/3
 (10)

where the constant C depends only on b, q, and s.
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Formal Results, IV

Theorem (Gaussian Bootstrap Theorem)

Define
ρ∗n := sup

A∈As

∣∣P(SX∗
n ∈ A | {Xi}n

i=1)− P(SY
n ∈ A)

∣∣ .
Assume (M.1-2), then under (E.1), with probability at least 1− α,

ρ∗n ≤ C

(
B2

n log5(pn) log2(1/α)

n

)1/6

, (11)

where the constant C depends only on b and s, and under (E.2), with
probability at least 1− α,

ρ∗n ≤ C

(B2
n log5(pn) log2(1/α)

n

)1/6

+

(
B2

n log3 p
α2/qn1−2/q

)1/3
 (12)

where the constant C depends only on b, q, and s.
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Conclusion

Thank you very much!
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